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Numerical Analysis of MAV’s Flapping
Wings in Unsteady Conditions
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Today, Flapping Micro Aerial Vehicles (MAV) are used in many different
applications. Reynolds Number for this kind of aerial vehicle is about 10* ~
10°, which shows dominancy of inertial effects in comparison to viscous effects
in the flow field in areas except adjacent to the solid boundaries. Because of
the periodic flapping stroke, fluid flow is unsteady. In addition, these creatures
have some complezities in kinematic modeling. Although numerical methods are
widely used for unsteady aerodynamic problems, it is highly difficult to solve
the full 3D Navier-Stokes equations for complexr flows like the ones for the
flapping insect wings. Actually, the numerical simulation of flapping wings
for different conditions of flapping frequencies and wing shapes has not been
domne yet. Thus, the present study is a pioneer. In this work, a computer code
based on the unsteady Panel Method has been developed for the flow analysis.
The prepared algorithm and the computer code are capable of modeling MAV’s
fapping wings in different unsteady conditions. The results of the aerodynamic
design coefficients have been drawn. At the end the optimum wing shape and

fapping frequency are discussed as other findings of this study.

INTRODUCTION

Flapping wing flight stands out as one of the most
complex yet widespread modes of transportation found
in nature. Over a million different species of insects
fly with flapping wings, and 10,000 types of birds and
bats flap their wings for locomotion [1]. Flapping wing
designs are subject of great interest by the scientific
community, as their capability for complex motion is
thought to hold great potential for the exploitation
of unsteady aerodynamic effects. For practical use in
the conceptual and preliminary design of flapping wing
vehicles, an efficient and easy-to-use tool providing es-
timates of aerodynamic forces and moment coefficients
would be of great benefit. Such a tool would allow
selection of design variables through trade studies,
and can be used in conjunction with optimization
algorithms without a considerable time investment.

The studies on flapping motion flight can be clas-
sified into two main parts: the zoological configurations
and the simplified configurations. The zoological con-
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figurations are performed based on the study of insects
or birds [2]. The simplified configurations are mostly
the works based on the aerodynamics of the flow. The
models are made easier such that the real insect/bird
wing geometries are replaced with different pre-defined
aerodynamic profiles. Although numerical methods
are widely used for unsteady aerodynamic problems,
it is highly difficult to solve the full 3D Navier—Stokes
equations for complex flows like the ones of the flapping
insect wings. Hamdani and Sun [3] simulated a series
of impulsive starts at different accelerations around a
2D insect wing. The mean streamwise velocity field of
the wake of a NACA 0012 airfoil oscillating in plunge
at zero free stream velocity and at a zero angle of
incidence at the neutral position was calculated by
Lai and Platzer [4]. Wang et.al. [5] also performed
a complete study on sinusoidal flapping motion in
hover mode by giving a comparison of two-dimensional
numerical simulations using an elliptical cross section
with three-dimensional experimental results. They also
presented comparisons of computational, experimental
and quasi-steady forces and examined unsteady effects
such as wing acceleration and wake capture mechanism.

Dickinson [6] experimentally observed that four
important parameters of stroke reversal influence the



generation of the force during the subsequent stroke
namely the position of the rotational axis, the speed
of rotation, the angle of attack of the preceding stroke
and the length of the preceding stroke. The motion of
the wing profile was divided into three temporally dis-
tinct phases: the first translation (downstroke), wing
rotation, and the second translation in the opposite
direction from the first (upstroke).

The most efficient computational tool among
conventional methods such as momentum, blade-
element, hybrid momentum (or vortex), lifting-line,
two-dimensional thin aerofoil, lifting surface (or vortex
lattice) and panel method, is the last one [7]. The
unsteady aerodynamic Panel Method is a classical
boundary element method which relies on developing a
distribution of source and doublet singularities on wing
surface and doublet singularities on the wake. This
method is based on the potential theory which assumes
inviscid flow.

The unsteady panel method is valid for Reynold’s
number of order 10* and above (Re= cU/v , where ¢
is nominal chord length, U is based on the flapping
frequency, a nominal radius, as well as the free-
stream velocity; v is the kinematic viscosity). Some
advantages such as, accommodation of the detailing
of the trailing wake, inclusion of the dynamic effects
and simple kinematic modeling, make panel method
adequate for analysis of the flapping wings.

DEFINITION OF THE FLAPPING MOTION
In the present study, the flapping motion is stud-
ied for the wings which use a NACA airfoil. The
flapping motion is composed using the superposition
of a translational motion and a rotational motion
around a center of rotation. As shown in Figure
1, the flapping motion is divided into four regions
with the first region corresponding to the first half of
the upstroke and the second region representing the
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first half of the downstroke. The third and fourth
regions are the mirror images of these two regions,
corresponding to the second half of the downstroke as
well as the upstroke, respectively. This motion obeys a
sinusoidal flapping pattern. During the different phases
(0 < ¢, < 27 ), the orientation of the wing spanwise
axis is changed. This makes the amplitude of flapping
different for the points on the wing surface. If Z; shows
z-coordinate of any point of the wing with amplitude
A;, we have,

Z; = A;sin(w,t) = A; sin(¢y) (1)

Zi = Ajwy cos(wyt) = Ajw, cos(oy) (2)

where w, is the flapping frequency. To simplify the
calculations, w,t is replaced by ¢,, which shows a
quasi-steady flapping while the kinematic of motion is
unsteady.

BASIC EQUATIONS AND
NUMERICAL SCHEMES
As shown in Figure 2, to kinematically model the
problem, we consider two frames of reference: an
inertial frame (X, Y, Z) and a non-inertial body’s {rame
(z,9,2).

The fluid surrounding the body is assumed to be
inviscid, irrotational and incompressible over the entire
flow field, excluding the body’s solid boundaries and
its wakes. Therefore, a velocity potential ®(X,Y, Z)
can be defined in the inertial frame and the continuity

equation in this frame of reference becomes:
Vi =0 (3)

The first boundary condition requiring zero normal
velocity across the body’s solid boundaries is:

(Vo +V) - 7=0 (4)

Zi

7 3jn/2 on

Figure 1. The wing flapping pattern
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Here —V is the surface velocity and @ = (X, Y, Z,t)
is the vector normal to this moving surface as viewed
from the inertial frame of reference. Note that V is
defined with the minus sign so that the undisturbed
flow velocity will be positive in the body’s frame of
reference.

Since Eq. (3) does not depend directly on time,
the time dependency is introduced through this bound-
ary condition. Thus, the location and orientation of 7
can vary with time.

The second boundary condition requires that the
flow disturbance due to the body’s motion through the
fluid diminish far from the body:

lim V&=0 (5)
| R—Ro|—0

where R = (X,Y,Z).

The mathematical problem is described schemat-
ically in Figure 3. Laplace’s equation for the velocity
potential must be solved for an arbitrary body with
boundary Sp enclosed in a volume V with the outer
boundary So. The boundary conditions (4) and (3)
apply to Sp and S, respectively. The normal vector
i1 is defined such that it always points outside the region
of interest V.

Using one of Green’s identities, for two scalar

Body Attached
Reference

Stationary Inertial X'
Reference Frame

Figure 3. Nomenclature used to define the potential flow
problem.

functions of position ®; and ®2 we have:

/(@N@Q—@quny idS :/(¢1v2<1>2—<1>2v2<1>1)dv
S 1%

(6)

Here the surface integral is taken over the boundaries
S, including a wake model Sy (which might model
a surface across which a discontinuity in the velocity
potential or the velocity may occur),

S=5+ 5w + S« (7)

If ® is the potential of the flow of interest in V, and
r is the distance from a point P(z,y,2), as shown in
Figure 3, by substituting ®; = 1/r and ®; = &, the
above identity can be expressed as:

-

Vo =Vd,,

1 -1 1 - 0 1
= [e¥Cus+ o [ uSLGs ®)
where ¢ and p are source and doublet strengths,
respectively and ®., refers to the free stream poten-
tial. As mentioned before, source-sink and doublet
singularity elements are used on the solid body surface.
Only doublet singularity is used for wake. In this
relation, 0/0n represents derivative in normal direction
to the body’s surface. This derivative for the doublet
indicates the orientation of the element. According to
this equation, the singularity elements induce potential
® at a point which is located in distance r from them.
Using the Dirichlet boundary condition, this integral
equation is reduced below into algebraic form for the
body and wake panels:

N N N
chu}c-l-zcl,ul-l-ZBkO’k:O (9)
k=1 =1 k=1

where N and N,, are numbers of body and wake panels
respectively. In this relation, source strengths are
known through setting the condition of zero normal
velocity at each body panel (relation (7)). The
coeflicients By and Cj can be found by double inte-
gration of distribution functions of source and doublet
singularities on each panel. If a surface element with a
constant-strength source distribution ¢ per area bound
by four straight lines is considered, then the potential
at an arbitrary point P(x,y, 2) due to this element is :

_1/ ds
A ) Ve =m0+ y = y0)” + 27

@(x,y,z) = (10)

where (zq, yo, 0) is the coordinates of each corner
points of the element. Similarly for a constant strength



doublet distribution p per area, the potential at an
arbitrary point P(x,y, z) is:

O(x,y,2) = —_,u/ 2dS
T ] T w0+ (g — o) T 2P

S

(11)

For the sake of simplicity, only constant strength
doublet and source panels are used. To solve Eq. (8)
for the flapping wings in a non-inertial reference frame,
time derivatives must be converted between inertial
and moving coordinate systems through the following
equation:

%) %)
(at)inertial = (at)body
N - = g ad 0
_ / — —
[%"“rel"‘QXﬂ (ax,ay,gz) (12)

In addition, it is necessary to transform coordinates as
well as velocity components from the inertial to the
body reference system and vice versa. This is done by
using the rotation tensor @), which is function of the
momentary rotation angles (in each direction).

-F_;Inertial = QNﬁBody (13)

cos(¢(

t))  sin(¥(t))
—sin(e(t
0

(4
) cos(¥(t))
0

O
1
[ en B el

[ cos(8(t)) 0 —sin(6(t))
0 1 0

| sin(8(t)) 0  cos(0(t))

M1 0 0 -|

0 cos((t))  sin((t)) (14)
|0 —sin((1) cos(r (1) |

where ¥(t), 6(¢t), v(t) are sideslip, attack and roll
angles at a specified time, respectively.

It is possible to transform Eqgs. (3) and (4) into the
body’s frame of reference without explicitly knowing
Q. As at any moment, the continuity equation is
independent of the coordinate system orientation, and
the mass should be conserved. Therefore, the quantity
V2@ is independent of the instantaneous coordinate
system, and the continuity equation in terms of (x,y, z)
remains unchanged.

Also two boundary conditions (4) and (5) should
state the same physical conditions. The gradient
Ve will have the same magnitude and the kinematic
velocity V' is given by the Eq. (15):

V=V +Vu+ax7 (15)
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Therefore, the zero-velocity normal to a solid surface
boundary, in the body frame, results in the sources
strengths of body panels:

o=—Vo+ Vo + 3 X 7) -7 (16)

where VO and & are translational and rotational veloc-
ities of the moving body with respect to the inertial
reference frame. The parameter Vrel refers to the
velocity of moving parts of the body with respect to the
body-attached coordinate system. Due to the flapping
movement, there is a rotational motion in z-direction.
In each time step, by solving a set of Eq. (9), doublet
strengths of the body panels are determined.

The above mathematical formulation, even aif-
ter selecting a desirable combination of sources and
doublets and after fulfilling the boundary conditions
on the body surface, is not unique. For lifting flow
conditions, the magnitude of circulation depends on
the wake shape and the location of the wake shedding
line; therefore, an appropriate wake model needs to
be established. The wake model can be based on two
physical considerations:

e a) Wake Strength: The simplest solution to this
problem is to apply the two-dimensional Kutta
condition along the trailing edge (TE) of the lifting
wing. If circulation is modeled by a vortex distribu-
tion v, then:

Yoz =0 (17)

The wvalidity of this assumption depends on the
component of kinematic velocity normal to the
trailing edge, which must be much smaller than the
characteristic velocity (e.g.,Vrey ) for Eq. (17) to be
valid. Also, the Kelvin condition can be used to
calculate the change in the wake circulation:

ar _
dt
e b) Wake Shape: TFollowing this requirement that
the wake is force free, the Kutta-Joukowski theorem

states that for the wake, the velocity should be
parallel to the circulation vector.

0 (18)

Wake

Figure 4. Wake shedding procedure
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(i) Phase = 300 deg. (j) Phase = 330 deg.

Figure 5. Velocity contours in different flapping phase angles for ““‘4,"” =0.018.



The wake shedding procedure is described schemati-
cally in Figure 4. A typical trailing edge segment is
shown with momentary upper p,, and lower u; doublet
strengths. The Kutta condition requires that the
vorticity at the trailing edge remain zero:

Hw = (:U/u - I’Ll)TE (19)

Thus, the strength of the latest wake panel pu,, is
directly related to the wing’s unknown doublets.

At the end of each time step, wake roll up is done.
Since the wake is force free, each wake panel must move
at the local stream velocity, which is equal to the total
induced velocity at each wake corner point calculated
in the stationary inertial frame.

After finding the distribution of singularities on
the body and wake in a specified time step, the
aerodynamic calculation is done. At first, the total
velocity in each body panel is found by adding the
kinematic and induced (perturbation) velocity compo-
nents. The induced velocity components are obtained
by derivation of doublet and source potential functions
in the local coordinate system of each panel. The
pressure coefficient can now be computed for each panel
as:

P—P, (VD)2
Cr= e, T e
( / p ref ref
2 o o V= 2 0%
+Vr26f(lo+ el +@XT)- VO erfa_t (20)

The contribution of an element with an area of
AS} to the aerodynamic load AF, is:
. 1, .
AFy = _Cpk(§pvref)kASk N (21)
To perform the aerodynamic analysis of the
flapping wings, a general unsteady, three-dimensional
panel method computer code has been specifically
developed for this study. Among the basic wing ge-
ometries, the rectangular wings are used in the present
study. In the kinematic modeling, the orientation of
wing in each time step is determined in correspondence
to the flapping condition. A complete flapping cycle
consists of two upstroke and downstroke levels and its
duration depends on the flapping frequency. In our
study, only the effect of right and left wings is consid-
ered. Both right and left wings flap symmetrically with
respect to the wing-root.

RESULTS
A rectangular wing with NACA2410 airfoil is con-
sidered here (except in the last results at which
NACA2412 is also used). To perform a non-
dimensional analysis, the chord length of the airfoil, the
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Figure 6. (a) Back view of trailing edge wake in different

flapping phase angles for ““{4/"” =0.018, (b) Wake at phase

angle 30 degrees for NACA2410 wing, (c) Wake at phase
angle 330 degrees for NACA2410 wing.
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translational kinematic velocity and the fluid density
are assumed to be unity. For different values of the
length of the flapping stroke (A,, in Figure 1), the
rotational speed, the angle of attack and the wing-span
length, there are distinct findings. To study the effects
of the above-mentioned parameters on the acrodynamic
design coefficients, the other parameters are assumed
to be constant. For each set of these parameters, the
flapping motion is repeated steadily as the time passes
and translation continues unsteadily. After the time
passes sufficiently, the aerodynamic design coefficients
such as lift and pitching moment coefficients will be
known. Additionally the wake of the flow which is
separated from the trailing edge of the wing is obtained
up to this time.

Velocity contours and wake shapes
The velocity contours at different flapping phase angles
for a prescribed wing geometry and aerodynamic con-
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ditions are shown in Figure 5. In Figures 6-a, 6-b and
6-c, the back view schematic wake shape of the flow
which is separated from the wing trailing edge during
the time of different flapping phase angles is shown.
These shapes are changed in each flapping phase.

The effect of the wing span on the chord ratio

In Figures 7(a-c), the distribution of lift, pressure
drag and pitching moment coefficients are shown. For
this set of diagrams, non-dimensional ratio w A, /V is
equal to 0.18 (w is the flapping frequency, A,, is the
wing tip amplitude and V is the translational velocity)
and the effect of parameter span on chord ratio is
inspected. The diagrams of the lift and the pitching
moment coeflicients versus flapping phase angle seem
to be harmonic but asymmetric. This asymmetry is
due to the asymmetry of airfoil NACA 2410. In these
figures, the wing starts to flap from a zero flapping
phase angle. During the first part of upstroke (motion
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Figure 7. (a) Lift coefficient vs. flapping phase angle for different semi-span to chord ratios, (b) Drag coeflicient vs.
flapping phase angle for different semi-span to chord ratios, (c) Pitching moment coefficient vs. flapping phase angle for
different semi-span to chord ratio, (d) Vertical and horizontal forces of a two-dimensional flapping airfoil from [9].



1 in Figure 1), phase angle changes from zero to 90
degrees. For this part of motion, the lift, the drag and
the pitching moment decreases. At phase angle of 90
degrees, the diagrams of different values of the span to
chord ratios have the same values. The decreasing of
C; (the lift coeflicient) and C,, (the pitching moment
coeflicient) continues for phases between 90 and 180
degrees (in the first hall of downstroke), until the
minimum values are reached at the end of the first half
of the downstroke. At this phase, both halves of the
wing are in a flat orientation and the flapping velocity
is maximum negative in relation 2. In the second parts
of the downstroke and upstroke (the motions 3 and 4
in Figure 1, respectively), both C; and C,, increase.
It is not surprising that the lift and drag coefficients
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experience negative values. Because of the motion of
the wing in negative Z direction, the normal vectors
of the panels on the wing surface are in the negative
direction. Therefore, the lift and the pressure drag
forces are totally positive. To compute the values of
the total lift and drag forces as well as the pitching
moment, the distribution of lift, drag and moment must
be integrated, respectively in relation to the flapping
phase angle. To reach the total force and moment
in a specified time step, the corresponding values at
each time step must be added. According to this
criterion and the diagrams in Figure 7, more lift force is
produced if the wing span to chord ratio increases. But
this achievement is expensive because when the wing
span increases, the flapping wing structure experiences
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Figure 8. (a) Lift coefficient vs. flapping phase angle for different angles of attack, (b) Pitching moment coefficient vs.

flapping phase angle for different angles of attack.
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Figure 9. (a) Lift coefficient vs. flapping phase angle for different wA,,/V, (b) Pitching moment coefficient vs. flapping

phase angle for different wA,,/V.
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extended values of moment. This moment is periodic
and enforces consideration of the fatigue phenomenon
in the structure design. Figure 7-d shows the vertical
and horizontal forces of a two-dimensional flapping
airfoil obtained by Hamamoto et. al., 2007 [9], which
demonstrates good agreement with the results of this
study, Figures 7-a and 7-b. The differences of the
Figures are due to the three-dimensional analysis of
the present work.

The effect of the angle of attack

In Figures 8-a and 8-b, the lift and the moment
coeflicients are depicted versus phase angle for different
values of angles of attack. In these diagrams, the wing
span to chord ratio wA,, /V, and the semi-span to chord
ratio are set to be fixed. As expected, by increasing
the angle of attack, both C; and C,, increase too. In
addition, the harmonic shapes of C; and ,, diagrams
versus flapping phase angle are closely preserved. At
higher angles of attack, asymmetry of the C; and C),
diagram is more visible. It is interesting that the
difference between the maximum and minimum values
of the C; and C,, is approximately the same for each
diagram.

The effect of the flapping frequency

In Figures 9-a and 9-b, the effects of the flapping
frequency (w) are investigated. As shown in these
figures, by increasing the ratio wA,, /V, the differences
between maximum and minimum values of the lift
and moment coefficients increase as well. Therefore,
for a specified ratio wA,,/V, that is, a specified wing
geometry, as well as specific translational velocity and
flapping amplitude (A4,,), faster flapping ends in more

lift force. But this advantage is accompanied with
0255
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higher moments. In addition, the effect of asymmetry
of the cross sectional airfoil is more important in higher
flapping frequencies.

The effect of the flapping amplitude

At last, as shown in figures 10-a and 10-b, aerodynamic
design coefficients have the minimum sensitivity to
the parameter of wing tip flapping amplitude (A,,).
The sensitivity of design coefficients to this parameter
increases as this value increases. This means that to
achieve higher values of C; , it is better to change
the other parameters such as wing to span ratio, the
flapping frequency and the angle of attack.

The effect of wing section

In Figures 11-a to 11-c, lift, drag and moment co-
efficients of two wings with different cross airfoils
(NACA2410 and NACA2412) are depicted against the
flapping phase angle, for some values of A,w/V.
Approximately, the lift and moment coefficients of two
wings are distributed in the same range, but these
diagrams for NACA2412 (Figures lla-c) are more
asymmetric than NACA2410. Although the trend of
drag coefficients diagrams of two wings are similar, the
absolute values of these coefficients are higher for the
NACA2412 wing.

CONCLUSION
A computer code based on the unsteady panel method
has been developed to analyze the flapping wings. The
prepared algorithm and the computer code are capable
of modeling MAV’s flapping wings in different unsteady
conditions. The velocity contours on the wing and the
trailing edge wake were shown for different conditions.
Among the different effects, the influences of the wing
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Figure 10. (a) Lift coefficient vs. flapping phase angle for different A,,, (b) Pitching moment coeflicient vs. flapping phase

angle for different A, .
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Figure 11. (a) Lift coefficient vs. flapping phase angle for NACA2410 and NACA2412 wings, (b) Drag coeflicient vs.
flapping phase angle for NACA2410 and NACA2412 wings, (c) Pitching moment coefficient vs. flapping phase angle for
NACA2410 and NACA2412 wings.
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