JAST, Vol. 4, No. 4, pp 3746
(© Iranian Aerospace Society, December 2007

JJournal of Aerospace Science and Technology

Automatic Landing of Small
Helicopters on 4DOF Moving Platforms

F. Saghafi'!, S. M. Esmailifar?

In this research, an automatic control system is designed for landing a small
helicopter on a {DOF moving platform. The platform has three translational
and one directional degrees of freedom. The controller design approach is
based on development of the helicopter nonlinear dynamic model into the SDC
(State Dependent Coefficient) form and the real time solving of the State
Dependent Riccati Equation (SDRE). To compensate the simplifications and
term eliminations necessary to make the SDC form, a nonlinear compensator

is added. The performance of the control system in automatic landing is

evaluated by computer simulation in different scenarios.

The results show

satisfactory tracking performance of the controller during landing phase on a

moving platform.

NOMENCLATURE Your Main rotor force in Y direction (N)

Helicopter mass (kg) Yius Fuselage force in Y direction (N)

U Helicopter l.ongitudinal velocity in Yy, Tail rotor force in Y direction (N)
body coordinate (m/s) Y, r Vertical fin force in Y direction
Helicopter lateral velocity i . . .

v clcopter fatetal velocity th body Zvr Main rotor force in Z direction (N)
coordinate (m/s) . S

w Helicopter vertical velocity in body Zus Fuselage force in Z direction (N)
coordinate (m/s) AY Horizontal tail force in Z direction (N)

P Helicopter roll rate in body Ly Main rotor moment in X
coordinate (rad/s) direction (N.m)

q Helicopter pitch rate in body Ly Vertical fin moment in X
coordinate (rad/s) direction (N.m)

T Helicopter yaw rate in body Ly, Tail rotor moment in X direction (N.m)
coordinate (rad/s) M Main rotor moment in Y

q Gravity acceleration (m/s?) direction (N.m)

) Roll angle (rad) My Horizontal tail moment in Y

9 Pitch angle (rad) direction (N.m)

N, Vertical fin moment in Z

/ Y le (rad vf oo

q}) I Ha;f] anf ¢ (rad) ¢ of direction (N.m)

wrs Lyyy Lszy Iy, Helicopter mass moment o . . L
inertia (kg.m?) Ny Tail rotor moment in Z direction (N.m)

X Main rotor force in X direction Qe Engine output torque (N.m)

Xus Fuselage force in X direction T Rotor thrust (N)

Cr Rotor thrust coeflicient
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Ao Main rotor inflow ratio

I Advance ratio

e Longitudinal airflow component

Ly Lateral airflow component

Iy Normal airflow component

TNw Coefficient of non-ideal wake
contraction

a Lift curve slop

a Solidity ratio

Ueol Collective pitch control (rad)

Ulon Longitudinal cyclic pitch control (rad)

Ulgt Lateral cyclic pitch control (rad)

Uteol Tail rotor collective pitch control (rad)

Uind Wind velocity in X direction (m/s)

Vwind Wind velocity in Y direction (m/s)

Waind Wind velocity in Z direction (m/s)

ai Longitudinal flap angle (rad)

by Lateral flap angle (rad)

Te Effective rotor time constant with the
stabilizer bar (s)

A, Effective steady state gain for
longitudinal cyclic input

By, Effective steady state gain for lateral
cyclic input

K, Scale of the flap response to speed
variation

Kg Hub torsional stiffness (N.m/rad)

homr Vertical distance between hub and
c.g. (m)

us SDRE control input

u® Compensator control input

u’ Trim or tracking control input

u” Optimal part of SDRE control input

fro Rigid body dynamics term in system
dynamic

T, All control forces (N)

Ty All drag forces (N)

Viip The blade tip velocity (m/s)

R The body to inertial coordinate
transformation matrix

P The angular velocity to the Euler
angles derivatives transformation
matrix
INTRODUCTION

Today; special capabilities of helicopters have made
them very useful vehicles in aerial missions over sea
and land. Having a highly coupled nonlinear dynamics,

F. Saghafi, S. M. Esmailifar

guidance, navigation and control of helicopters are
challenging tasks for pilots and control engineers. One
of these challenging tasks is landing on a moving
platform such as a shipboard deck. Many accidents
are reported related to this maneuver on a rocking
ship. Therefore, an automatic landing system seems
to be vital for helicopters in shipboard operations.
This problem is even more complicated for small
autonomous helicopters. Such helicopters have high
thrust to weight ratio, hence they are more agile and
less controllable than their full scale counterparts.

Consequently, many researches have been carried
out in the field of helicopter modeling. Ref. [1] presents
the nonlinear model of a small helicopter. This model
is based on the “6DOF rigid body dynamic equations
integrated with the helicopter aerodynamics presented
in Ref. [2] and the main rotor dynamics presented in
Refs. [3,4]”. In Ref. [53], the accurate dynamic effects
of fly bar is also modeled and implemented into the
rest of helicopter mathematical model. In the field of
automatic landing of helicopters, the majority of the
researches are focused on the method of vision based
approach and its associated image processing problems.
In Refs. [6,7,8], a detailed description of the subject is
presented. In Ref. [9], “Yu” has designed a 3D vision
system for estimating the height over the ground in
helicopter landing process. “Johnson” has described
an algorithm for landing hazard avoidance based on
the images taken from a single moving camera in Ref.
[10]. In Ref. [11], “Xu” has presented a real-time stereo
vision based pose and motion estimation system that
can be used for landing an unmanned helicopter on a
moving platform.

Elsewhere in Ref. [12], “Oh” has described how a
tether can be used for a more secure landing in rough
weather. It has been shown that the tether tension
can be used to make coupling between the transla-
tional and rotational motion in order to augment the
position controllability of the helicopter. In the other
researches, Refs. [13,14,15], the adaptive control of
the helicopter is the main issue of concern. Different
approaches have been taken to design and implement
adaptive control laws including the intelligent control
approaches such as fuzzy logic and artificial neural
network (Refs. [16,17]). In [18], “Bogdanov” has used
SDRE (State Dependent Riccati Equation) method to
control a small helicopter. This method has been
previously introduced by “Cloutier” in Refs. [19,20,21].
These papers are the main sources of SDRE and its
developments. In this approach, which in fact belongs
to the Model Based Control family, the nonlinear
dynamic model is converted to a pseudo linear model
and then the Riccati equation is solved. SDRE is a
suboptimal method which can easily be used for ex-
tremely nonlinear systems. Also the issues of stability,
controllability and observability of the SDRE method
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are the subject of many other recent works including
Refs. [22,23,24].

In the present research, the SDRE method is
used to design a nonlinear control system for the
automatic landing of small helicopters on a 4DOF
moving platform. Here, the rotor flapping dynamics
is also considered. Neglecting the flapping dynamics
in [18] has resulted in an inefficient attitude tracking
performance by helicopters, which is an important issue
in landing problems.

HELICOPTER MODEL
Based on the selected controller design approach,
SDRE, which is a model based method, an analytical
helicopter model is required. Assuming rigid body
dynamics, the 6DOF equations of motion of helicopter
can be written as follows (Figure (1)):
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In this work, the cross product moment of inertia
I, is neglected. This assumption is based on the
relative magnitude of the helicopter cross product and
axial mass moments of inertia, especially in unmanned
helicopters, of Ref. [1].

The modeling of helicopter aerodynamics needs
a complete modeling of the induced flow distribution
on its rotor blades, Refs. [2,3,4]. Any simplification
may result in an unsatisfactory dynamic prediction.
However, using the system identification techniques in
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Figure 1. Helicopter forces and moments.

Ref. [1], the defects of the simplified induced flow dis-
tribution have been compensated for. In this reference,
the rotor thrust is calculated from the solution of the
following equations derived based on the momentum
theory.
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In Equation (2), the solidity ratio, o, is equal to the

quotient —2"7}:}%“, and the speed ratios are calculated as
follows:
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Also the lateral and longitudinal flapping equations are
given as follows:

, by 10biv—uv, B,
hi=—p— S

Te E Oy QR Te Hlat
. aq 1 (Oa; u—1uy, Oag w— wy
a1 =—q¢— —+ —

Te Te 8,U/x QR 8/1/2 QR

Au,
+¢ulon (4)

€

In addition, flapping derivatives are determined as:
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Having had the flapping angles, the rotor forces and
moments can be calculated as follows:

Ly, = ( 7ﬁ + Thmr) by
Mmr = ( 7ﬁ + Thmr) a1
Ymr = Tmrbla

bt

mr = —dmradl,

Ly = =Ty (6)

Tail rotor thrust is calculated with the same
method as used for the main rotor thrust with its own
characteristic parameters. Other forces and moments
are drag based forces determined as mentioned in Ref.

[1].
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CONTROLLER DESIGN
The SDRE approach is based on the minimization of
an objective function J(z) for an input affine system.

J= /t roo @70 ()2 +uT R (2) u) dt

&= f(x) +g(x)u (7)

where x and u are the system state and input vectors
respectively, and Q(z) and R(x) are positive definite
state dependent matrices. In addition, f(z) must be a
continuously differentiable function of z and f(0) = 0.

The SDRE approach for obtaining a suboptimal
solution to the problem given in Eq. (7) can be stated
as follows:

e Use direct parameterization to express the nonlinear
problem in the state dependent coefficient (SDC)
form.

& = A(x)z + B(x)u (8)

e Solving Riccati equation for (A(x), B(z)):

AT(z)P + PA(x) — PB(x)R™ ()
BT ()P +Q(z) =0 (9)

e Using Riccati solution to obtain the suboptimal
control feedback:

uw=—RY2)BT (2)P(x)x (10)

As is shown in Refs. [22,23,24], the stability,
controllability and observability of this method are
guaranteed. To use the SDRE method, the helicopter
nonlinear dynamic model must be converted to the
SDC form (Eq. (8)), satisfying the condition f(0) = 0.
However, in its present form, it is not possible to do
such a conversion. In general, if each mathematical
function f(z) € C! is written in the following form:

flz) = Alw)z + Af(z) (11)

then the first term, A(z)z, which includes all the terms
that satisfy the condition lim, .9 # < M < o,
can be used in SDC form. Examples of such functions
contain fi(x) = aa™, with A(z) = az™ !, or fi(x) =
sinz, which yields A(x) = S22 However, the second
term, A f(x), cannot be used in SDC form (Eq. (8))
because lim,_.q AfT(x) = Foo. To solve this problem,
reference [18] has added a nonlinear compensator to
the control inputs as mentioned in the following.

Let’s consider that the helicopter nonlinear math-
ematical model is given by:

= flz,w,u) (12)
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where w is the wind velocity. If the model can be
converted to the following form:

flaz,w,u) = Alx,w)r + Blz,w)u + Af(z,w,u) (13)

then, as previously mentioned, it will be possible to
exclude Af(z,w,u) by considering the compensator u°
which satisfies the Eq. (14).

flz,w,u®® +u®) = Az, w)x + Bz, w)u’?

W=l " (14)

In Eq. (14), u" is the control input obtained from
the Riccati Eq. (10), and u’ is the trim or tracking
control input. The compensator introduced here is
shown in Figure (2).

Development of the helicopter SDC form
The state equations of the helicopter nonlinear dynam-
ics can be written as follows:

= frp(z) + Tulz,w,u) + Ta(x,w)
x = [$7U7w7p7q7r7 ¢7w7x7y7 Z? a/7 b]T (15)

where the helicopter state vector, z, is defined by
fourteen components and it is assumed that all of these
state variables are measurable.

The main rotor thrust is numerically calculated
from Eq. (2). Bearing in mind that most of the control
forces are produced by the main rotor thrust, therefore,
it is necessary to linearize the thrust equation about the
main rotor collective input (u? ;) in order to be used
in conversion to the SDC form.

0
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Figure 2. Controllers scheme.
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Now, by replacing the equations associated with
the main rotor thrust and other terms related to z
and u into the Eq. (13), the following matrices are
produced:

3x3 3x3 3x3 3x3 3x2
APBE A3 A A3
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where, R(¢,0,v) is the body to inertial coordinate
transformation matrix and (¢, 8,%) is the angular
velocity to the Euler angles derivatives transformation
matrix.

Having determined the state and input matrices
(A(x,w), B(z,w)), the Riccati Eq. (9) can be solved.
There are two groups of approaches to solving this
equation, direct and iterative. Schur-decomposition
is a direct approach and Kleinman, Quasi-Newton or
Newton-Kleinman methods are iterative approaches
(Refs. [25,26,27,28]). However, by a suitable first
initial guess, the Kleinman method will need less
computational time than the other approaches, Ref.
[29]. Here, the last computed dynamic costate value
of the Riccati equation, P, is considered as the best
initial guess for each iteration period. This comes
from the continuity property of the solution, Ref. [18].
Having determined the value of P by solving the Riccati
equation, the control input can be computed using Eq.
(10).

Compensator design
By substitution of Eq. (15) into Eq. (14), the following
is achieved:

fro(2) + Ty (x, w,ut + uc) + Ty (z,w) =
A(z,w) x4+ B (z,w)u’ (19)

Collecting all the independent terms of u°, the vector

D(z,w,u*?) can be defined as:

D(z,w,u*")=A(z, w) 2+ Bz, w) u** — foy(2) - Ty(z, w)
(20)

Therefore, this equation can be written as:

T, (x,w,uSd + uc) =D (x,w,uSd) (21)

where the flapping components in f,,(z) and Ty(z, w)
are defined as:

g
frora 2 T%

da U—Uy Ja w—wy
Ay Viig Apr Vi,
leS _ H tip H tip (22)
Tara 91—
a/"‘y ‘/tip

If the operator T, (x,w,uSd + uc) is control-
invertible, then the compensator output can be com-
puted as u® = T (z,w, D) — u*.

va“ Ymr"_Y;fr Zmr Lmr+Ltr

T, (x, w, uSd—l-uc) :[

m m m L.

Mmr Ntr - Qe 1 Au , Bu 4
0 X6 lon on lat “ 23
I,, L. T, Uon T et | (23)
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helicopter velocity in longitudinal direction
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Figure 3. Longitudinal translational and angular velocity, ¢ and distance in X direction of inertial coordinates in the first

simulation.

Similarly the inputs uj,, and uj,, can be calcu-
lated from components 13 and 14 of the vector T,
given in Eq. (23) respectively. However, there are six
equations available for determination of u¢ ; and uy, ;,
from which the sensitive mode equation is preferred,
the translational motion in the body Z direction is
chosen for uf, ; and the angular motion about the body
Z direction is selected for uf, ;:
uly =Tt (2, w,mD (3)) — usl

col — col

I..D (6 e\ Ly, W, Uco
= T3 (o RO Qe i)y
c D(13) Te sd
Ulon = — Ulon
! Aulon !
D (14) IE d
Ur = ——— — Ui (24)
! Bulat !

By calculating u°, the cycle in Figure (2) is completed.

SIMULATION
Two scenarios are considered to show the controller
performance. In the first scenario, the landing of
helicopter on a ship platform with only three trans-
lational motions is studied. In the second scenario, an
angular directional motion is added. The study has
been carried out using a helicopter/platform computer

simulation program developed based on the presented
mathematical formulation.

First scenario: In this scenario, the platform is
considered to have translational velocities of 5 m/s in
longitudinal and 1 m/s in lateral direction. At time
to = 0, the helicopter hovers in 5 meters height above
the ship. The sinusoidal motion in Z direction with
periodic velocity w = sin Q%t is also considered, where
T = 10s. Running the simulation, the helicopter starts
to track the shipboard deck.

The simulation results are shown in Figures (3-
5). As can be seen, the helicopter tracks the platform
very well after seven seconds. Landing is performed as
soon as the position misalignment gets zero which takes
place after seven seconds. The steady error observed
in the bank angle, ¢, (Figure (3), third graph), is a
result of the pendulum motion of the helicopter body
relative to the thrust rotor. This property causes the
bank angle to return to its trim value when the control
efforts are ended.

Second scenario: In this scenario, the ship is
considered to have a 5 m/s longitudinal velocity and at
the same time rotate with 0.1 rad /s yaw rate and have a
0.5 m/s side slip velocity. A sinusoidal vertical motion
w = gin Q%t, where T = 105 is also considered for the
ship. At t = Os, the helicopter is hovering in 5 meters
height above the ship. The results of this simulation
are given in Figures (6-8). In these graphs, the
helicopter and platform motions are shown by solid and
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Figure 4. Lateral translational and angular velocity, # and distance in Y direction of inertial coordinates in the first

simulation.
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Figure 5. Vertical translational and angular velocity, ¢ and distance in Z direction of inertial coordinates in the first

simulation.

dashed lines respectively. The simulation shows that
the helicopter tracks both directional and translational
motion of the platform quite satisfactorily.

CONCLUSION
For automatic landing, a helicopter must be able to
track the translational and rotational motion of the

target platform accurately. In marine vehicles the main
dynamic modes include three translational and one
directional motion. This is due to the fact that in most
conditions the vehicle situation can be determined by
these four modes. In addition, small helicopters have
four controls including two cyclic and two collective
pitch inputs. Therefore, the desired SDRE controller
for automatic landing is designed based on the four
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Figure 6. Longitudinal translational and angular velocity, ¢ and distance in X direction of inertial coordinates in the

second simulation.
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Figure 7. Lateral translational and angular velocity, ¢ and distance in Y direction of inertial coordinates in the second

simulation.

degrees of freedom assumption and its associated four
input controllers. The simulation results show that the
helicopter is able to track the ship position, velocity
and directional angle and damp other angle deviations
and angular rates. This confirms the satisfactory
performance of the designed controller.

Using the position and angle feedbacks in con-

troller design, the steady errors of the angular rates
and velocities approach zero. This is mainly because
the mentioned feedbacks play the roles of integral
feedbacks. On the other hand, in positions and angles
tracking, the steady errors are not exactly zero because
there aren't any integral feedbacks for these states.
However, it can be made desirably small by setting
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Figure 8. Vertical translational and angular velocity, 1 and distance in Z direction of inertial coordinates in the second

simulation.

an objective function states gain matrix (Eq. (7)).
Absence of integral feedbacks in positions and angles
tracking results in overshoot reducing, which is in fact
one of the most important requirements for automatic
landing especially in vertical direction. This is obvious
from graphs given in Figures (3-8), which show the
helicopter displacements from target in different axes.
This fact is more observable in Figures (3) and (8) in
which the vertical displacement of the helicopter from
the platform is shown. As it is shown, the settling times
are about 7 seconds in both scenarios. Short settling
time and low overshoot make this method suitable for
the helicopter automatic landing.

In second and third graphs of Figures (3,4) and
(6,7), the angular behavior of helicopter in longitudinal
and lateral directions is an indication of oscillatory
motion which is damp and made stable by the designed
controller. As shown in the figures, the maximum roll
angle amplitude is about 30 degrees.

In this work, all the equations are solved ana-
lytically except the Riccati equation. The number of
the iterations needed to solve the Riccati equation by
Kleinman method is less than five. This is a very
good agreement with the requirement of the real time
implementation of the designed controller.

After converting the complicated models into
the simple SDC form, application of this method is

straightforward. Also using a compensator prevents
decreasing the controller performance in different con-
ditions. All of these have made it a suitable method
of controller design for complicated systems like heli-
copters.
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