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Airline Stochastic Capacity Allocation
by Applying Revenue Management

M. Sharifyazdi!, M. Modarres®

To formulate a single-leg seat inventory control problem in an airline
ticket sales system, the concept and techniques of revenue management are
applied in this research. In this model, it is assumed that the cabin capacity
is stochastic and hence its exact size cannot be forecasted in advance, at the
time of planning. There are two groups of early-reserving and late-purchasing
customers demanding this capacity. The price rate as well as the penalty
for booking cancellation caused by overbooking is different for each group.
The model is developed mathematically and we propose an analytical solution
method. The properties of the optimal solution as well as the behavior of
objective function are also analyzed. The objective function is neither concave
nor conver in general. However, we prove it is a unimodal function and by

taking advantage of this property, the optimal solution is determined.

INTRODUCTION
Revenue management is defined as the set of techniques
used to assign the proper amount of a perishable asset
to the right customers at the right time. Any revenue
management problem contains the following common
characteristics:

e A limited capacity of a perishable asset (like airline
tickets) which cannot be enhanced easily in short
term.

e Stochastic demand for perishable asset.

o Different customer groups. The available perishable
asset can be sold at different prices, through differ-
ent booking groups (usually at different periods).

In the models discussed in the literature, it is a common
assumption that the amount of available capacity is
known and deterministic, although perishable. This
assumption can be justified for most of the cases in
airlines, hotels, service industries, but not necessarily
for all situations. For example, in many real world
airline ticket sales systems, the capacity is stochastic
in nature due to some unanticipated/forced group
reservations or some technical reasons. Such cases are
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known as shifting capacity or moving curtain in the
literature.

In many ticket sales systems, acceptance or rejec-
tion of a booking request depends on the availability
of capacity as well as on its price. If a reservation is
made but then cancelled, the system has to pay some
penalty. This may happen if the required capacity for
the booked tickets exceeds the available capacity, due
to its stochastic nature. On the other hand, rejecting a
booking request means loss of income. Therefore, the
acceptance or rejection of a request results in a tradeoff
between income loss and penalty cost. Then, the aim
is to develop an optimal policy of acceptation/rejection
of booking requests in order to earn the maximum
expected total profit (including both the sales income
and the penalty cost). The complexity arises from
the fact that the capacity is not known at the time
of reservation, due to its stochastic nature.

We assume there are two groups of customers,
i.e., late-purchasing and early-reserving customers.
The first group has priority and their expense is
usually (but not necessarily) less than that of the
customers of the second group. Since the price rate and
cancellation penalty cost for each group is different, the
acceptance/rejection policy for each group also differs
appropriately. In fact, the optimal policy determines
the maximum capacity that can be assigned to each
customer group. To formulate the model and obtain
an optimal solution, we apply the concept of revenue
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management (RM) and modify some of its techniques
accordingly to fit our problem.

This paper is organized as follows. The literature
is reviewed briefly in the next section. We define
the problem in more detail in “Capacity allocation
problem” section. A model is developed in section 4 for
capacity allocation problem with two customer groups
and stochastic production capacity. Furthermore, in
section 4, the unimodality property of the objective
function is proved and an approach for determining the
solution is also introduced. In the next section, entitled
“Special case: Deterministic capacity”, compatibility
of the results against previous works is investigated.
Sensitivity of the optimal solution and optimal value
of the objective function with respect to various pa-
rameters is studied in “Sensitivity analysis” section.
Finally, in the last section, “Conclusion”, the paper
is summarized and suggestions for future works are
presented.

LITERATURE REVIEW

Revenue Management (also called Yield Management),
which originated from airline industry refers to a set of
methods, techniques, as well as concepts used to assign
some perishable asset to several groups of customers.
Littlewood [1] from former BOAC airline company, is
usually considered as the founder of revenue manage-
ment. He presented an analytical model to assign seats
to two price groups of passengers in a flight. McGill and
VanRyzin [2] categorized the major areas of research
in the field of Revenue Management as seat inventory
control, overbooking, pricing and demand forecasting.
A review of mathematical optimization and operational
research techniques in airline seat inventory control
(both static and dynamic) is carried out by Pak and
Piersma [3]. There is a vast literature regarding
revenue management, although to our knowledge there
is no model similar to ours.

The most familiar and oldest application of rev-
enue management is in airline industry, where a fixed
capacity of seats must be sold (booked) before each
flight departure. However, it also has been effectively
applied to other areas such as car rental, Geraghty and
Johnson [4], Carol and Grimes [3], broadcasting (Cross
[6]), cruise ships (Kimes [7], Belobaba [8], Ladany and
Arbel [9], Smith et.al. [10], Gallego and van Ryzin [11]),
Internet service providers (Nair et.al. [12], Paschalidis
and Tsitiklis [13]), railways (Kimes [7], Strasser [14],
Ciancimino et al. [15], Wen et.al. [16], Chen and Gao
[17]), nonprofit sector (Metters and Vargas [18], Kraft
[19]), lodging and hotels (Rothstein [20], Ladany [21],
Liberman and Yechiali [22,23], Kimes [7], Hanks et.al.
[24], Bitran and Mondschein [25], Feng and Gallego
[26], Bitran and Gilbert [27], Baker and Collier [28],
Badinelli [29], Upchurch et.al. [30], Choi and Mattila
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[31]), restaurants (Kimes et.al. [32], Kimes [33], Kimes
et al. [34], Kimes [35], Kimes and Thompson [36], Lai
and Ng [37]), health care (Chapman and Carmel [38]),
tourism (Shwartz and Lin [39]), holiday retail shopping
(Coulter [40]) and production planning (Harris and
Pinder [41], Modarres and Sharifyazdi [42], Modarres
and Nazemi [43]).

Revenue management practitioners agree that
RM is more applicable for environments with short-
run fixed capacity (Smith et.al. [10], Cross [6], Harris
and Pinder [41]). However due to many reasons, as
mentioned before, the capacity may have a stochastic
nature. Thus, in this paper we propose a two-group
revenue management (seat inventory control) model
with probabilistic capacity.

Despite the differences mentioned above, models
dealing with the concept of expected marginal seat
revenue, such as littlewood [1] and belobaba [8] can
be considered as the ancestors of our model.

CAPACITY ALLOCATION PROBLEM
In this section, we define the problem in more detail.
In subsequent sections, this problem is formulated
mathematically and then we present our approach to
obtain its optimal solution.

PROBLEM DEFINITION

Consider an airline ticket sales system with stochastic
capacity. As mentioned before, the system has two
types of customers, for example, late-purchasing and
early-reserving customers. A booking limit is the
maximum number of tickets, which can be assigned to a
specific group. In the case of limited and deterministic
capacity, there is a booking limit for the second group
of customers while there is no limit for the first group as
far as the acceptance of booking requests is concerned.
However, the second group customers take advantage
of some kind of discount and their price rate is usually
less than that of the customers of the first group.

Demand (or total size of booking requests) in
each group is a non-negative random variable with a
known continuous probability distribution function and
independent of demand of the other group.

Each booking request is either accepted or re-
jected at the arrival time, according to the adopted
policy of the system. However, if an order is accepted
and then cancelled by the airline at departure time,
the system has to pay some penalty. Therefore, it
is important to determine how many requests can be
accepted from each group in order to maximize the
expected total income (including the penalty cost).The
price rate depends on the group of customer. Simi-
larly, the cancellation penalty of a reservation differs,
depending on the customer group. It is assumed that
the penalty rate of booking cancellation for the second
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group customers is higher than that of the first group,
because of their long term relationships.

The decision maker problem is how to allocate
the awvailable cabin capacity to the different booking
groups. In other words, the optimal policy must
determine the booking limit for the second group
customers, while the capacity is not known at the time
of reservation.

In the previous two-group revenue management
models in the literature, a protection level is set for
more desirable groups against a booking limit for the
other groups. A protection level is the fraction of
capacity that is kept only for the customers of a
special group. In this model, we cannot determine any
protection level for a group because the total capacity
is not known at the time of planning.

PRIORITY RULE

At departure time, if the available capacity is less than
the number of sold tickets, then the early-reserving
customers (second group) have priority over the other
group. In other words, when the capacity is not
sufficient for all of the ticket-holding show-up cus-
tomers, then the tickets of the first group customers are
cancelled first. Tickets of the second group customers
are canceled only if all sold tickets of the first group
have been cancelled.

NOTATION OF INPUT DATA
IN THE MODEL

T1, T9: price of a ticket for group 1 and 2, respectively;
p1, p2 : penalty of booking cancellation for group 1 and
2, respectively;
71, w2 : lost profit of booking cancellation in group 1
and 2, respectively.
Note:

1. Logically 2 < 71 and we assume p; < ps. However,
the objective function and the method are not
directly influenced by this assumption.

2. m, ™y are not independent parameters and are
derived from rq, 72, p1, p=2, as follows:

T =T; +Pis 1=1,2 (1)

It is assumed that 71 < 2.

RANDOM VARIABLES:
1, x2 : demand for tickets of group 1 and 2, respec-
tively, (z1, 22 > 0);
¢ : stochastic capacity of cabin. (¢ > 0);
fi{z1), fa(za), fe(c) : probability density functions of
x1, o and c, respectively;
Fi(x1), Fa(x2), F.(c¢) : cumulative distribution func-
tions for 1, z2 and ¢, respectively;
Fi()=1-F().

DECISION VARIABLES:

b2: booking limits allocated to reservations of group 2;
a1, a2: the number of accepted reservation requests for
groups 1 and 2, respectively;

di,ds : the number of denied reservations due to
shortage, for customers of groups 1 and 2, respectively;
R : total revenue gained from income of ticket sales
minus penalty of booking cancellation.

a; = 1
2
{ag = min{zs, by} )

The number of cancelled tickets of group 2 cus-
tomers depends on the capacity only. It is independent
of the reservations of the first group, as explained by
the “priority rule”.

dy = max{0, az — ¢} (3)

However, the number of cancelled tickets of group 1
customers depends on the capacity as well as the num-
ber of reservations for the second group, as mentioned
in the “priority rule”.

0 if a1 +as<c
di=<a1tas—c if aa <c<ai+as (4)
a1 if 0<c<as

On the other hand, the objective function is R = r1a; +
T202 — 7T1d1 — 7I'2d2. Therefore,

E(R) = rlE(al) + TQE(CLQ) - 7I'1E(d1) - 7I'2E(d2) (5)

Although the objective function in our model is to
maximize the expected total revenue (minus penalty),
it is also possible to consider other objectives such as
maximizing capacity utilization, maximizing average
revenue per customer, minimizing lost customer good
will, minimizing opportunity cost (see McGill and Van
Ryzin [2] or Pak and Piersma [3]).

The number of accepted booking requests,
E(a;), 1 =1, 2, is obtained from (2), as follows:

E(a1) = [y w1 fi(xn) dan
(6)
E(az) = fobz l’zfz(l’g) dl’z + szo bzfg(l’z) dl’z

The expected size of capacity for denied reserva-
tions, E(d;), i = 1, 2, is obtained from (3) and (4), as
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follows:

bao+x1 poo o0 xrot+x1 pbs poo
=Ll L
ba by JO 29 0 Jo

by oo poo
+/O /b2 /0 o1 fi(21) fa(22) fo(c)dry drs de

x2  pb2 poo
+ /o /0 /0 21 f1(x1) falwa) fe(c)dzy das de

A= (z1 + b2 — ) fr(21) fo(22) fo () dar dao de
B = (x1 + 2 — ¢) fi(z1) falaz) fo(c)day daa de (7)

and similarly,

B = | / * (0 — ) falra) fo(e) dirn de
+ / i / :o(b2 — O fala) f.(c) dz de (8)

OPTIMALITY CONDITION

In general, the objective function E(R) is neither con-
vex nor concave. This fact is verified through a counter
example in appendix B. However, it will be proved that
E(R) is a unimodal function. Thus, this function has
a maximum, which can lie on either boundary of the
feasible region or zero point of first degree derivative
of the objective function. As a result, the optimal
solution is obtained by setting the derivative of E(R)
with respect to by equal to zero, provided this set
of equations has a solution. Otherwise, the optimal
solution is zero.

UNIMODALITY PROPERTY OF
OBJECTIVE FUNCTION
To prove E(R) is a unimodal function, we present
the following lemma. But first, it is assumed that
some boundary properties hold for probability density
functions as follows:

{hmmﬂoo fi(xi)

—0, i=1,2
lim, .o felc) =0

(9)

These assumptions are very common and rational and
not restrictive in real world problems, because neither
demand nor capacity can be unlimited.

Lemma 1. Derivative of the objective function
with respect to bs, ¢.e. (agéf)), is a product of a
non-increasing function of b2 and a non-negative non-
increasing function of bs.

Proof: As calculated in appendix A,

FQ (bg)w(bg), where:

w(bg) =T9 — (71'2 — 7I'1)Fc(b2) — 7T1Ex1[Fc(l’1 + bg)]
(10)

BE(R) _
Oby -
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while E,, [F.(z1 + b2)] is the expected value of Pr{c <
x1 + ba} over xy.

In our assumption 72 > m > 0 and also F.(b=)
and E,, [F.(x1+b2)] are non-decreasing functions of bs.
Hence, 9(b2) is a non-increasing function of ba. Thus,

OE(R) - - . .
8b(f) is a product of two non-increasing functions of

ba, one of which ( Fy(bs) ) is non-negative.

Now, unimodality property of E(R) will be proved
during three succeeding theorems studying 3 mutually
exclusive and comprehensive cases.

Theorem 1. Let ¢(b2) > 0. Then, E(R) is a
unimodal function with respect to bo, and attains its
maximum at infinity. Figure 1 shows the typical curve
of this function with respect to bs.

Proof: Since both (b2) and Fh(b2) are non-
negative, then the derivative is non-negative and E(R)
is non-decreasing. According to Appendix C, %b(f/)
approaches 0 at infinity. So, E(R) increases till
it reaches (tends to) a fixed value (peak) when bo
approaches infinity. Clearly, in this case the optimal
value of by is found by setting %EQPS) equal to zero and
approaching infinity. That is there should be no limit
for reservations in the second group. The structure of

%%é}? in this case is illustrated in Figure 2.

Theorem 2. Let (b)) > 0 at by = 0 and
¥(ba) < 0 for big values of by (in other words, the
sign of ¥(b2) changes as bs raises). Then, E(R) is a
unimodal function with respect to b2 and attains its
maximum at the point where 88%5) = 0. Figure 3
shows the typical curve of this function with respect to
bo.

Proof: Since at 0 the partial derivative is pos-

A E(R)

»
»
b2

Figure 1. First case for E(R) curve.

OE(R)

Figure 2. First case for partial derivative of E(R) with
respect to ba.
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itive, then F(R) has an ascending start. It increases
till it reaches a peak when ¥ (bs) equals zero and conse-
quently %Q—PSZ = 0. Then, it starts to fall down because
Fy(by) is positive and 9(b2) is negative. Finally, it
approaches a fixed value because Fy(by) approaches
zero and as a result, the derivative approaches zero
too. As mentioned before, this issue has been studied
in appendix C. Clearly, in this case the optimal value

of b2 is found by setting 80%53) to zero. Figure 4 shows

the typical structure of %Q—PSZ in this case.

Theorem 3. Let ¥1(b1) < 0, then E(R) is a
unimodal function with respect to bs and attains its
maximum at bs = 0. Figure 5 shows a typical curve of
this function with respect to bs.

Proof: Since at 0, the partial derivative is
non-positive then E(R) has a descending start. It
approaches a fixed value for large values of bo, because
Fy(by) approaches zero (see Appendix C) and makes
the derivative approach zero, too. Clearly, in this case,
b2 = 0 is the optimal value. For better illustration,

nature of 88%5)

Note: Since limp, oo ¥(b2) =12 —m2 = —p2 < 0,
the first case cannot take place. However, in the second
case, the optimal value (zero point of derivative) may
approach infinity.

is shown in Figure 6.

OPTIMAL SOLUTION
Let b3 be the optimal value of booking limit for group
2. Concluding from the above cases, and also by
considering the fact that E(R) is a unimodal function,
b} is obtained through the following steps.
Step 1. Let 35 be the solution of the equation 88%5) =
0.

E(R)

n
!

bZ

Figure 3. Second case for E(R) curve.

Figure 4. Second case for partial derivative of E(R) with
respect to ba.

E(R)

[
>

b

2

Figure 5. Third case for F(R) curve.

Figure 6. Third case for partial derivative of E(R) with
respect to ba.

Step 2. If ro/m > E,,[F.(x1)] (or in other words
ﬂg > O), then b; = ﬂg.
Step 3. If ro/m < E,,[F.(x1)] (or in other words
B2 < 0), then b5 = 0.

Proof: (0) = ro — n1.Ey [Fo(x1)]. Therefore,
if rofm1 > Ey [F.(x1)] , then ¢(0) > 0 and we should
refer to case 2. Otherwise, 9(0) < 0 and the optimal
solution can be found considering case 3.

SPECIAL CASE: DETERMINISTIC
CAPACITY
To check the result of our model, consider a special
case in which the capacity is deterministic and equal
to ¢ > 0. In other words, ¢ has a one-point probability
distribution. Then, ¥ (b2) can be rewritten as follows:
MM:{Q—M%@—M,g@<§ 1)
T — M2 = —p2 <0, if by > ¢

Since ¥(b2) is a non-increasing function, then a root of
¥ (b2) = 0 lies within [0, ¢]. Thus, the optimal solution
(b3) is obtained by solving ¥ (b2) = 0, as lollows:

_ 7o

Re-ty) =2 (12)

In our assumptions, ro < w2 < 71, then 0 < rg/m < 1.
Hence, the optimal solution can be found appropriately.

Littlewood [1] shows that in a two-group seat in-
ventory control problem, when the capacity is fixed and
deterministic (non-stochastic) and customer groups are
nested (7. e. no booking request belonging to the higher
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priced group is rejected to keep a seat for customers of a
lower priced group), low-fare booking requests should
be accepted as long as r2 > r1.Pr{z; > P}, while
P, is the protection level of group 1. Belobaba [§]
extends this Littlewood’s rule to multiple nested fare
classes and introduces the term “Expected Marginal
Seat Revenue” (EMSR) for the general approach. If
the capacity is fixed, then é — by = P;. In addition,
if there is no penalty for cancellation of a booking due
to shortage of capacity, then 71 = 1 +p1 = r1. So,
relation (12) can be rewritten as:

_ . . 9

Fi(P)=Pr{zy > P} = o (13)
which is fully compatible with the results of EMSRa
model (Belobaba [8])) for two groups as well as Little-
wood [1] and Modarres and Sharifyazdi [42].

SENSITIVITY ANALYSIS
In this section, the sensitivity of the objective function
as well as the optimal solution is studied with respect
to expense parameters (ri, r2, p1 and po) as well as
parameters of probability distributions of demand (x;
and x2) and capacity (c¢). From:

E(R) = [ri(E(a;) — E(d;)) — piE(d;)] (14)

i=1

E(R) is an increasing function of r1 as well as 7
and also a decreasing function of p; as well as po, by
considering E(a;) > E(d;),Vi.

However, we show that the optimal solution is
sensitive to 79/my, rather than to single parameters.
From (10):

P(0) =y = m By, [Fe(21)] (15)

If ro/my is less than E,, [F.(x1)], then the best value
for by is zero by Theorem 3. Conversely, if ro/m; >
E,, [F.(x1)], then the optimal value of bs is the positive
root of ¢ (b2) = 0. Note that E,, [F.(z1)] depends on
the parameters of probability distributions of capacity
and the demand of first group customers, but not on
other parameters. Also from (10):

Y(by) = raFe(by) — p2Fe(b2)
—m [ Fe(b2) + By, [Fe(x1 + b2)]] (16)

Since F.(ba), F.(b2) and [—F.(b2) + E,, [F.(x1 + b2)]]
are non-negative and (b2) is a non-increasing func-
tion, when r3/m > Ey, [Fe(1)], as r2 grows or any
of p1, po or rp decreases, the optimal value of b,
(the value at which #(b2) = 0) increases in a close
neighborhood (to be more exact, we should say “does
not decrease”). We cannot extend this statement
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form “a close neighborhood” to the whole domain of
ba, because [—F.(b2) + E,, [F.(x1 + b2)]] is generally
neither increasing nor decreasing.

Regarding (16), in the case studied in theorem 2,
if E(c) increases to E(c)+6 while the variance as well as
the shape of density function of ¢ remains unchanged,
then the optimal value of by rises exactly by .

Here, when PDF of x; is shifted ahead, that is
when the demand of first group customers increases,
E,, [F.(x1 + b2)] increases (does not decrease) as well.
Consequently, the value of the root of ¥(bs) = 0
(optimal by), is reduced (does not rise).

This can be summarized as follows. In optimal
solution, a positive booking limit is set for the second
group ({requent customers) if the ratio of its price
rate to expense paid back to a first group customer
(price rate plus penalty in the case of cancellation), is
high enough. As long as the price rate for frequent
customers grows up or the price rate of occasional
customers or penalty rate for the customers of either
first or second group reduces, the optimal booking
limit of regular customers tends to rise and does not
decline. Extension of capacity results in higher booking
limit of frequent customers. If proportion of price
rate to penalty rate for occasional customers is too
low, then no capacity is assigned to them. Growth
of capacity has an increasing effect on booking limit
of occasional customers, while the rise of demand of
frequent customers has a decreasing influence on it.
More detailed sensitivity analysis is possible, only if
the PDF’s of demand and capacity are known.

CONCLUSION

In this paper, we formulated a seat inventory control
problem for two groups of early-reserving and late-
purchasing customers, who pay different prices for the
same ticket. We developed a method for a stochastic
capacity allocation problem by applying the concept
of revenue management, and managed to introduce
a new approach. The objective function is unimodal
and thus the optimal solution can be found among two
possible points, depending on such factors as demand
and capacity probability distribution functions, ticket
price and cancellation penalty rate for each group.

It is implied from the properties of the optimal
solution that as long as the cancellation penalty of
group 1 rises or the ticket price of group 2 reduces,
the booking limit of group 2 tends to be tighter and
at its extreme, it will be zero. That is no reservation
for group 2 (early-reserving) should be made when the
cancellation penalty of group 1 (late-purchasing) is too
high or the price rate of group 2 is too low. Similarly,
as long as capacity is more constraining for demands
of group 1, booking limit of group 2 will be lower and
more limiting.
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For further research, it is recommended to find
exact formulas for optimal solution, in accordance with
some specific probability distribution functions, for
both demand and capacity. More specifically, focusing
on normal and uniform distributions, which are the
most applicable ones in real cases, may lead to more
practical results. Another useful way of extending this
model is to increase the number of groups. Developing
a dynamic request acceptance/rejection policy can be
a good idea too. Studying sensitivity of the optimal
solution to parameters of the model, such as price rates
and penalties, while considering special probability dis-
tributions for demand and capacity, is also suggested.
Finding interactive policies for environments with more
than one competing airlines will be useful too.

Further studies are also needed regarding the
situation where plane’s capacity is stochastic. Cur-
rently, such studies are limited to “Shifting Capacity”
or “Moving Curtain” cases. There are lots of works
focusing on probability distributions of demand, no-
shows, go-shows, etc. However, one can hardly find
sources about estimation of capacity probability distri-
bution. Therefore, additional research in this field is
also recommended.

APPENDIX
Appendix A : Derivatives of E(R)
To have derivatives of the objective function with
respect to decision variable bo, first we have to find
the derivatives of expected values of a1, a2,d; and ds
with respect to the mentioned variable:

aE(al)

Obs =0 -
b2
J0E(as2) :/ 0dza+b2 fa(b2)
Obs 0

+ boofz(xz)dxz—bzfz(bz)=F2(b2) (18)

ba bo
%b;lz) :/0 de2+/0 (b2 = ¢) fe(c) f2(b2) de

o g by
+/b by [/0 (ba — ) fe(c) falwa) de| day

1

b2
- /0 (bs — €) fo(c) fa(ba) de = F(by) Fi(bo)
(19)

0 o pbotas
gg)jl) 2(b2)/0 /b2 felo) fi(xy) dedxy

= F(b2) Ear[F. (b2 + 21) — Fu(b2)] (20)

Now, it can be concluded that:
DE(R) _
Obs

Fy(by) [ra — (w2 — 1) Fu(ba) — m Exy [Fe(z1 + b2)]]
(21)

Appendix B: Studying convexity/concavity of
E(R)

The maximal value of E(R) is obtained {rom setting
(11) to zero, if E(R) is concave, or the second-degree
derivative of E(R) is always negative. This property is
checked as follows:

O2E(R)
b2

= —7’2f2(b2)

+ 11 [fe(b2) Fa(b2) — Fu(b2) f2(b2)]
+ wa[Fo(b2) f2(b2) — fa(ba)Ey, [Fe(ba + 21)]
+ F(b2) By, [fe (b2 + 1)]] (22)

Considering second-degree derivative, it can be
observed that the objective function is not generally
convex or concave. Counter example that is presented
below, shows E(R) is neither convex nor concave:
Let:
¢~ U[10,15], 1 ~ U[5,8] and z2 ~ U[6, 9]
while Ula, 8] represents a continuous uniform prob-
ability distribution between o and 3. At the point

bo = 10, %%R—) = 22 > 0 but at the point by = 4,

5
2
%(%R—) = —(% +72) <0, when w3 > 75 > 0. It means

in two different points, convexity directions of E(R)
function are not the same.

Concluding from this example, we can state that,
generally the optimal solution cannot be found by
differentiating the objective function.

Appendix C: Boundary properties of E(R)
There are certain boundary properties of the objective
function and its derivative that do not depend on the
type of probability distribution functions. Considering
boundary assumptions (1) and (2), we have:

1. When the booking limit is set to zero, expected
revenue and first and second degree derivatives of
expected revenue are as follows:

by =0=

E(R) = nE(m) - m1 B, [ (1 — ) fo(c) de]
agbf =71y — 11 By [Fo(21)]

PER) — 1y By, [fo(x1)] > 0

b3
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10.

11.

12.

Since the second degree derivative is positive, the
objective function is convex at zero.

When the value of booking limit is very big,
expected revenue is not sensitive to little changes
of it:

lim (8E(R)) =0

bo—o0 8b2

(24)

When the booking limit takes large amounts, the
objective function will be flat. That is, it is either
COnvex or concave:

2
lim O E(R)

i b S '
bg—o0 ab%

(25)
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