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Maximum Allowable Dynamic Load of
Flexible 2-Link Mobile Manipulators
Using Finite Element Approach

M. H. Korayem!', A. Heidari’, A. Nikoobin?

In this paper a general formulation for finding the maximum allowable
dynamic load (MADL) of flexible link mobile manipulators is presented. The
main constraints used for the algorithm presented are the actuator torque
capacity and the limited error bound for the end-effector during motion on
the given trajectory. The precision constraint is taken into account with two
boundary lines in plane which are equally offset due to the given end-effector
trajectory, while a speed-torque characteristics curve of a typical DC motor
is used for applying the actuator constraint. Finite element method (FEM)
is utilized for deriving the kinematic and dynamic equations which considers
the full nonlinear dynamic of mobile manipulator. In order to wverify the
effectiveness of the presented algorithm, two simulation studies considering a
flexible two-link planar manipulator mounted on a mobile base are presented

and the results are discussed.

INTRODUCTION

Flexible mobile robot manipulator systems exhibit
many advantages over their traditional rigid arm coun-
terparts; they require less material, have less arm
weight, consume less power, are more maneuverable,
require smaller actuators and are more transportable.
Due to their extended workspace, mobile manipulators
offer an efficient application for wide areas. But these
systems are usually “power on board” with limited
capacity. Hence, using light and small platforms
and motor actuators in order to minimize the inertia
and gravity effects on actuators will help a mobile
manipulator to work in an energy-efficient manner.
Using smaller actuators reduces the torque capacity
of the actuators and limits the capability of carrying
heavy loads.

Flexible robot manipulator has a growing appli-
cation in aerospace. Light weight and easy shipping
to the space is one of the advantages of these kinds
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of robots. On the other hand, rigid assumption for
modeling the long arm manipulators which are used in
space for assembling the space state will be inaccurate.
Light weight and easy shipping to the space (less
fuel), usage of longer arm manipulator in the space for
assembling the space state and more maneuverability
are other advantages of these kinds of robot.

Some studies exist on determining MADL for
different types of robotic systems. Determination of
maximum allowable dynamic load for manipulators has
applications in advanced trajectory planning, design
and selection of robot manipulators. For instance,
Thomas et. al. [1] used the load capacity as a criterion
for sizing the actuator at the design stage of robotic
manipulators and considered the maximum load in the
neighborhood of a robot configuration. A technique
was also developed in [2,3] to maximize the MADL of
an entire trajectory, rather than in the neighborhood
of a configuration. In these works, piece-wise rigid
links and joints were assumed. Korayem and Basu [4-
5] presented an algorithm for computing the MADL
of elastic manipulators by relaxing the rigid body as-
sumption. Yue et. al. [6] using a finite element method
for describing the dynamics of a system, computed
the maximum payload of kinematically redundant ma-
nipulators. Korayem and Ghariblu [7] developed an
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algorithm for finding the MADL of rigid mobile ma-
nipulators. There are also some researches on carrying
heavy loads or the application of large forces by mobile
manipulators [8, 9]. Different types of constraints have
been applied to a robotic system in order to solve
the redundancy resolution [10, 11]. None of these
published works considers finding the MADL on mobile
manipulators using finite element approach including
kinematic redundancy. The finite element method,
which is a well-known powerful, modern computational
tool, has been used almost universally during the
past years to solve very complex structural engineering
problems. One of the main advantages of FEM over
most other approximate solution methods is the fact
that FEM can handle irregular geometries routinely.
Another significant advantage of FEM, especially over
analytical solution techniques is the ease with which
nonlinear conditions can be handled.

The main focus of this research is on mobile
manipulators with the consideration of links elasticity.
A brief introduction to the dynamics of these types
of systems is being reviewed firstly. A strategy for
determining the MADL subject to both constraints is
described, where a series of ball-type bounds centered
at the desired trajectory is used for defining the end-
effector oscillation constraint, and motor speed-torque
characteristics curve of a typical DC is used in the ac-
tuator constraint. A computational procedure is then
presented, which allows computation of the MADL for
an arbitrary prescribed dynamic motion of the end-
effector. Finally, two numerical examples involving a
two-link mobile manipulator considering the elasticity
of links are presented and results are discussed.

MODEL DEVELOPMENT APPROACH
The overall approach involves treating each link of the
manipulator as an assemblage of n; elements of length
[;. For each of these elements the kinetic energy T;; and
potential energy V;; are computed in terms of a selected
system of n generalized variables ¢ = (q1,¢2,...qn),
and their rate of change ¢. These energies are then
combined to obtain the total kinetic energy, T', and
potential energy, V', for the entire system. For the sake
of massive calculation, the above-mentioned procedure
is presented in Appendix (A-1) to (A-3).

Dynamic equations for systems are derived
through the Lagrange equations:
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where £L=T-V. Eq. (1) along with associated bound-
ary conditions (Appendix (A-4)) provides the desired
dynamic equations of the system as follows:

Mi-f=0Q (2)
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where M =M (q) and f= f(q, ¢) are nonlinear functions
of generalized variables, ¢, and their rate of change, ¢.
@) denotes the applied torque at each joint.

DYNAMIC MODEL OF FLEXIBLE ROBOT
MANIPULATOR

From Eqs. (A.9) and (A.20), the Lagrangian of link 1

is as follows:

Li=T1 -V
1
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From Eqgs. (A.17) and (A.23), the Lagrangian of link 2
can be derived:

1, . L
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+T? 3305 LT (4)
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The overall Lagrangian for a two-link flexible
mobile manipulator with the base motion in x direction
can then be written as:
L= Li(xo,01,u3,U4,. .. U2n,+2)

+ L2(20, 01, Uany +1, U2n, +2, 02, W3, Wa, ... Wapy1+2) (5)

By applying Lagrange’s equation (Eq. (1)) and per-
forming some algebraic manipulations, the compact
form of the system’s dynamic equations becomes:

Z Mquj + Z Z hquij

7=1 k=1

R, (i=12,.,n) (6)

ZMf i 05 + Z th ijkdide = Ry, j (7)

=1 k=1

where M, the inertia matrix, is comprised of element
coefficients related with the second derivative of gen-
eralized variables, ¢. h considers the contribution of
other dynamic forces such as centrifugal and Coriolis
forces while R consists of gravity and other external
forces. Dynamic Eqs. (6) and (7) are arranged on joint
variables and deflections. To sum up Eq. (6) concerns
the joints rotation in robot and Eq. (7) specifies the
elastic deformation in links [7].

MODIFICATION OF THE MODEL TO
INCLUDE A POINT MASS AT
THE TIP AS LOAD
The extension of the model to a case where a point
mass m; is added at the tip of the manipulator can
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be carried out following the proposed approach in the
preceding section. For computing the kinetic and
potential energies of the tip mass, the end-effector
position 7, can be expressed as follows:

Zo 1| Ia 2| Lo
= + T T, 8
{0} 0 [U2n1+1 ! [U2n2+1] ®)
After computing these energies, they can be added to
the total energy of robot in Lagrange equation. One
can show that the matrix differential model of the

overall system in the matrix form, with manipulator
at the tip is of the form:

Mri— fr=Qr (9)

]

where:
Mr=M+ My, fr=f+fn, Qr=0Q+Qn (10)

and the subscript ‘I” refers to the total system, and
subscript ‘m’ represents the influence of the additional
mass.

KINEMATIC MODEL OF FLEXIBLE
ROBOT MANIPULATOR
Inverse kinematic can be used to derive the generalized
variables (g) for a predefined trajectory which is useful
in our following calculations for finding the MADL. If
the vector of position of the end-effector is shown by
P = X(qr,qs)7, then taking derivative with respect to
time will yield the velocity of the end-effector:

2

P=[J., (@ q)" =7T¢ (11)

where g,, g7 are generalized variables of joints rotation
and deflection in links, respectively and J; , J, are the
Jacobian matrices of the mobile robot manipulator for
rigid and flexible generalized coordinates. After taking
derivative of Eq. (11) with respect to time, equations
of the end-eflector’s acceleration can be expressed as:

-ﬁ:[Jerf](irvif)T+[Jrvjf](@“vif)T:J§+Ji( )
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Then by specifying the generalized coordinates
of motion and their derivations, ¢, ¢ the geometrical
coordinates of motion of the end-effector, p,p, P, can
be obtained. On the contrary, in inverse kinematics
if the trajectory of end-effector (7,7, p) is predefined,
then the generalized coordinates of motion and their
derivations (¢, §), can be specified. So, Eq. (12) can be
rearranged in the following form:

(G, G)T = [y T M = Uy )G )T

In this case, the number of equations is less than
the number of unknowns in Eq. (12); therefore, for in-
verting this equation and finding J~! in Eq. (13) some
additional equations are required as a complementary
set. The first choice is dynamic equations that are
governed on nodes of elements in FEM in the elastic
link (Eq. (7)).

The resulting system of equations is not only
highly coupled and nonlinear but also too lengthy
which makes it extremely difficult to handle manually
even for a low degree of freedom manipulator with a
low number of elements.

FORMULATION OF MADL FOR A
PREDEFINED TRAJECTORY

The MADL of a flexible link mobile manipulator
is defined as the maximum load which the mobile
manipulator can carry in performing the trajectory
with acceptable precision for a pre-defined trajectory
[7]. The emphasis on the tracking accuracy is due to
relaxation of the rigid body assumption and to the fact
that one of the main reasons for the deviation from
the desired trajectory is the flexibility in links. This
can be taken into account in MADL determination by
imposing a constraint on the end-effector deflection, in
addition to the actuator torque constraint. Deflection
of the end-effector can cause excessive deflection from
the pre-defined trajectory, even though the joint torque
constraint is not violated. By considering the actuator
torque and deflection constraints and adopting a log-
ical computing method, the maximum load carrying
capacity of a mobile manipulator for a given trajectory
can be computed. The algorithm shown in Figure 1 is
proposed for finding the MADL of the system.

This algorithm illustrates computing procedure
for finding MADL with consideration of the manipula-
tor workspace and end-effector trajectory. Due to the
simultaneous motion of the vehicle and manipulator,
the overall system has kinematic redundancy. Con-
sequently kinematic equations system must be solved
with the dynamic equations as a one equation set.
Then, the actuator torque and end-effector deflection
constraints must be checked for each point of the
discretised trajectory. The associated MADL for the
trajectory will be found. If this condition is fulfilled,
the computed MADL will then be accepted as a final
solution. The minimum value of this curve is specified
as the maximum dynamic load that robot manipulator
can carry within the defined conditions. Otherwise, the
program jumps back to the first step and a new initial
mass of load, m;, must be selected until all constraints
are satisfied.

Formulation of Actuator Torque Constraint
The joint actuator torque constraint was formulated
based on the typical torque-speed characteristics of DC
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Discretize given trajectory of manipulator to
n points and assume a value for mj,qq

!

Select number of elements & derive
dynamic Equations (6), (7)

!

Compute Jacobian matrix and derive
kinematic equations of system

i

Couple equations (7), (12)
'

Solve these equations with and without considering
load mass to find all generalized variables

i

Calculate 7, ,7¢ , Def,, & Defe
using dynamic equations & Eq.(8)

i

Calculate precision and torque actuator constraints
and correspond coefficients using Eqgs. (17), (19)
and (21) and mysqq(1) = c() * me(¢) for MADL

mload(i) - mload(i - 1)
a definite value

Figure 1. Flowchart of the computation procedure.

motors [7]. Other actuation systems can be dealt with
similarly.

U+ = ky — kag
U™ = —ky — kag (14)

where, ky = Ts, ko = Towpn, Ts is the stall torque
and wy,; is the maximum no load speed of the motor.
UT and U~ are the upper and lower bounds of the
allowable torque. Using the computational procedure
the ith joint torque due to the dynamics of a mobile
vehicle and an n-link manipulator and load can be
computed for each point of the discretised trajectory
(re)i » i = 1,2,...,n+ m. Also, using Eq. (14) the
upper and lower bounds of motor torques can be found

M. H. Korayem, A. Heidari, A. Nikoobin

and the available torque for the carrying load is then:
mm = (UT)i = (1),

. =U7)i—(n)i (15)

7

The maximum allowable torque at the ith joint is equal
to:

77 = max{r]", 7, } (16)

Equation (16) remains valid for flexible manipu-
lators because the linearity between the force F acting
on the end-effector by the load mass and corresponding
joint torques 7 is preserved if small deformations are
assumed. Therefore, it is necessary to introduce the
concept of a load coefficient complying with the torque
actuator constraint which can be calculated for each
point of a given trajectory as follows:

| (Tmax)j - (Tnl )Jl

(11);

where 7,; is the no-load torque. Physically, the load
coeflicient (C,); on the jth joint actuator describes the
accessible torque for carrying the maximum load to the
torque which is applied for carrying the initial load.

(C); = i=12..m (17

Formulation of Accuracy Constraint

Deflection at end-effector could be attributed to both
static and dynamic factors, such as link flexibility, joint
clearance, manipulator and load inertia. These factors
are configuration dependent and for this, MADL varies
from place to place on a given dynamic trajectory. A

(D ‘ff;. ) ' R,

(Def, )j
L (Def),

(Def ), -No load deflection
(Def, ) -Add end effector mass
(Def ), -Full load deflection

Figure 2. Spherical boundary of end-effector deflection [7].

Figure 3. Initial condition for the simulation.
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constraint should be imposed in such a way that the
worst case, which corresponds to the least MADL, is
used to determine the maximum allowable load.

A given trajectory is first digitized into manipu-
lator points. No load deflection (Def,); and deflection
with added end-effector mass (Def.); are calculated
for 7 = 1,2,...,m, using the computational procedure
outlined in appendix and Eq. (8). As seen in Figure
2, the additional mass at the end-effector changes both
the magnitude and the direction of the deflection. But
as long as the magnitude of the deflection is less or
equal to an allowable value, the robot is considered to
remain capable of executing the given trajectory. In
other words, only the magnitude of deflection (Def,);
and (Def.); need to be considered.

This prompted the use of a spherical boundary of
radius R, as the end-effector deflection constraint and
the sphere is centered at the desired position on the

T
Y mL —/,/'/ \
/ X (0.76,2.38)
b Desired Path
L m2,L2
b
=
S

/ i /Path of the Base .76 )
& /
\ P .

=

'Actuator 1

X

Figure 4. Schematic of robot and the desired path of end-
effector.

2451
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Figure 5. The desired and the actual load path.

given trajectory. Although (Def,); and (Def.); are
generally vectors of different directions, the magnitude
increases because the added mass at the end-effector
is linearly related to the mass [7]. Therefore, the
difference between the allowable deflection and the
magnitude of deflection with added end-effector mass
at point j is:

R, — (Def.); (18)

which can be regarded as the remaining amount of end-
effector deflection that can still be accommodated at
point j of the given trajectory. This remaining amount
indicates how much load can be carried through point
j without violating the deflection constraint.

Therefore, it is necessary to introduce the concept
of load coefficient (C,); for point 7, 7 = 1,2,...m, as
follows:

Rp — (Defe )j
max{Def.} — max{Def,}

(Ca)j = (19)

where:
max{Def.} = max{(Def.)1,(Defe)z,....,(Def)m}

max{Def,} = max{(Def, )1, (Defy)2,....(Def)m}
(20)

Finally the load coefficient (c) can be obtained as
follows:

c = min{(C’p)j, (Oa)j}v

Then, the maximum mass that can be carried on the
given trajectory is mised = ¢ X M.

j=12..m. (21)

SIMULATION RESULTS AND DISCUSSION
In order to initially check the validity of the presented
model, the response of the system, with a very large
elastic constant (EI), to an initial conditions corre-
sponding to 1= -90 deg and #>= 5 deg (Figure 3) is
simulated. The response of the system is in agreement
with the harmonic motion of an inelastic bar hanging
freely under gravity. Once more, this problem is
performed for a robot manipulator with elastic links.
The results are in very good accord with a similar case
in paper of Usoro et. al. [12].

Two additional simulations of the system are
performed. In the first test, a robot manipulator with

Table 1. Simulation of Parameters

Parameter Value Unit
Length of Links Li=1o=1.414 m
Mass m1=0.7, m2=0.5 Kg
Moment of Inertia I1=I>=5.5¢e-4 Kg.m?
Spring Constant Ki=15, K2=10 N.m

Actuator Stall Torque Ks1=18,Kso=25 Nm.s/rad
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elastic links is considered. The end-effector and its load
must track a straight line with a predefined speed. In
the second test, MADL is found for a flexible robot
manipulator in which end-effector must move along
a circular path. In both cases, the mobile base of
manipulator moves along a straight line with a constant
speed.

Test 1: MADL of a Flexible Mobile Robot
Manipulator with a Linear Path of
End-effector

This simulation study is performed to investigate the
efficiency of the procedure presented in Figure 1, for
computing the maximum allowable load of a mobile
manipulator. All required parameters are given in
Table 1.

Ag it was mentioned earlier, the path of end-
effector and its payload is linear and starts from point
(z1 = 0,91 = 2m) and ends at a point with coordinate
(zo = 0.76m,y> = 2.38m) (Figure 4). The velocity

0.82 T T T T T T
‘ —— Response of Elastic Link Robot

—— Response of Rigid Link Robot | |

08

0.79

& 0.78 I
0.77
0.76
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l)'MO 0.5 1 15 2 2.5 3 35
Time(Sec)

Figure 6. Joint responses of #; for rigid and flexible links.
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Figure 7. Joint responses of 0, for rigid and flexible links.
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Figure 9. Applied torques of the second motor.

profile of the end-effector is as below:

v=at 0<t<T/4
V= Umax 1/4<t<3T/4 (22)
v=—at 3T/4<t<T

The permissible error bound for the load motion
around the desired path is limited to Re = 0.03m.
To find a suitable base trajectory, initially a linear
path is selected for the vehicle, which starts from a
point with coordinate (z3; = Om, 1 = Om) and ends
at (xp2 = 0.2m,yp2 = 0.2m). The obtained path of
the end-effector, considering link flexibility is shown in
Figure 5 in comparison with the desired path. Also
the joint angles of rigid and flexible links are shown in
Figures 6 and 7. The corresponding applied torques to
the vehicle and manipulator actuators for the final path
of the vehicle are shown in Figures 8 and 9. Finally
Figure 10 shows the equivalent MADL at each instant
for the final motion.

Test 2: MADL of a Flexible Mobile Robot
Manipulator with a Circular Path of
End-effector

In this simulation, the computation of the MADL for a
two-link planar manipulator mounted on an XY table
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(Figure 11) is presented. The link parameters and
inertia properties of the manipulator were given in
Table 2. In the inertial reference frame, the XY table is
capable of moving 1000 mm along the X-axis and 200
mm along the Y-axis. Base velocity is V, = 0.5t. Also,
it is assumed that the load must move along a circular
path. The centre of the circular path coordinates with a
radius r = 50cm, is at (z. = lm;y, = lm) with origin
at the lower-left corner of the XY table (Figure 12).
The angular velocity of the end-effector is 180 deg/s
with an overall time of the motion 1.5 s. With this
initial condition (given time and angular velocity) only
3/4 of a full circle will be tracked.

The base work space (BWS) was discretised into
20 equal distance points in both traversing directions
and into 40 points in the load trajectory. The maxi-
mum allowable error-bound at each point of the desired
path must lie on a sphere with the radius of 5 cm.

The obtained path which is tracked with the flex-
ible robot manipulator was compared with the desired
path and is shown in Figure 12. The graph shows that,
the accuracy constraint is violated between ¢ = 0.8s
and t = 1.38s. It can be concluded that the assumed
value for miy,qq is more than the robot allowable
dynamic load and so another value for m,,q must be
chosen. After correcting this value, the obtained load
trajectory satisfies the precision constraint.

Joint angles of rigid and flexible links were shown
in Figures 13 and 14, for the final motion. The

T T T T

02 \Maximdm Load That Robot (;:an Carry

L i i i L L
0 0.5 1 1.5 2 2.5 3 3.5
Time(Sec)

Figure 10. Maximum Allowable Dynamic Load (MADL).

Table 2. Link parameters and inertia properties of two-
arm planar flexible manipulator.

Parameter Value Unit
Length of Links Li=Ls=1.2 m
Mass m1=0.80, m2=0.80 Kg
Moment of Inertia I1=I>=5.5¢e-4 Kg.m?
Spring Constant Ki1=17, Ko=12 N.m

Actuator Stall Torque Ks1=12,Ks2=30 Nm.s/rad

| XY Table

‘Actuator 1

(a)

Figure 11. Schematic view of the flexible link planar
manipulator with mobile base.

equivalent MADL at the each instant of time is shown
in Figure 15. In this case, the maximum dynamic load
is found to be equal to 0.54 kg.

CONCLUSIONS

The main objective of this study was to formulate
the MADL and determining the “maximum load” for
flexible-link manipulators with a pre-defined trajectory,
using the finite element method. This was achieved
by imposing actuator torque capacity and end-effector
deformation constraints upon the problem formulation.

In these simulation studies, a two arm planar
manipulator mounted on a mobile base is considered
for carrying a load on two predefined trajectories and
is examined in two test cases.

In the first case, none of the joint motors is
required to move at its full capacity until just before
t=2.5 s, whose torque in joint 1 increases and ap-
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proaches the upper bound (Figure 8). It can be con-
cluded that actuator torque capacity is the dominant
constraint for determining the maximum allowable
load of the motion because the elastic trajectory is
almost far from the bounds in Figure 5, and precision
constraint is not a determiner in this case then.

Another point is that, the response of the first
joint (Figure 6) is oscillating around the response of
inelastic-link system, but response of the second joint
is less oscillatory and a bit far from the response
of the rigid state. Presence of deviation in A3 from
inelastic state in comparison with 6; is because of the
elasticity in the first link and consequently gathering
some accumulative errors at the end of this link. The
motion of the second link is disturbed by these errors,
which in turn increase the amplitude of oscillation
(Figure 7). Lesser frequency for response in joint 2
is because of smaller inertia in this joint.

In the second case, the maximum dynamic load
is determined to be 0.54 kg in t = 0.9s. In the first
attempt, the accuracy of the end-effector is violated
(Figure 12). As mentioned in the procedure for finding

1.6 P e
____________ . | — Desired Path
- | /v Flxible robot path
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14p = ===+ Upper Bound
1.2 i 4 v
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\
4
s
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0_ L L L L 1 i 1 ]
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Figure 12. Comparison of flexible joint robot path with
respect to desired path.
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Figure 13. Joint responses of theta; for Rigid and flexible
Links.
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Figure 15. Maximum allowable dynamic load.

the MADL, either m,qq can be modified in the second
try or the base trajectory can be changed without
changing the end-effector trajectory. Therefore, in the
mobile base manipulator there is a better chance for
carrying more loads in comparison to fixed base robots.

APPENDIX
A-1: Model Development for a Two-Link

Manipulator

Consider a two-link flexible manipulator as depicted in
Figure 16 The mobile base can move in XY plane, but
for the sake of simplicity and avoiding massive compu-
tations only the motion in z direction is considered as
the only degree of freedom of the base in the following
computations.

Consider link 1 to be divided into elements
117012700157, .., "Ing’ of equal length {1, and link
2 to be divided into elements ‘21°,°22’,....27",...,2ns’
of equal length [5. Let us define the following notation
where subscript ¢ refers to link ¢, and subscript ¢5 refers
to the jth element of link 4:

OXY is the inertia system of coordinates, O;X,Y; is
body-fixed system of coordinates attached to link 4.
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Figure 16. Schematic of a two-link flexible mobile
manipulator.

u9;_1 flexural displacement at the common junction of
elements 1(7 — 1) and 17 of link 1. us; flexural slope at
the tip of common junction of elements ‘1(y — 1)’ and
‘17" of link 1. This slope is measured with respect to
axis O1Xy. wa;_1, we; flexural displacement and slope
at the common junction of elements ‘2(5 — 1)’ and ‘25’
of link 2. This slope is measured with respect to axis
0-2X> and n1, no are the numbers of elements of links
1 and 2, respectively.

A-2: Kinetic Energy Computation

Kinetic Energy for an Element 15’ of Link 1

The kinetic energy T3; for the jth element of link 1 may
be computed as:

1 [h ar™T or
le = 5/0 ma |:8—ta—t:| dl’lj (A].)

It is convenient to express the vector 7, in terms
of a vector 7 in the body-fixed system of coordinates
01 X1Y7 and 75 in inertia reference frame.

F=7+T, 7 (A.2)
e To = (] - 1)l1+ T1j 1
h = ’ — T =
where 7j {O} 71 [ " p
cosfy —sint 6 s the foint ansle between
sinf; cosf; a 1 18 the jo angle betwee

01X, and OX. The displacement y; can be described
in terms of shape functions of a beam element ¢ (x1;)
as:

4

yij(z15,t) = Z¢k($1j)u2j—2+k(t) (A.3)

k=1

¢r(21;) can be found in FEM context. From Eqs. (A.2)

and (A.3), we have:

orT or
bl
[ [#]
T [%] or oOr Or or .
g [8“2:—1] [8—a:0 a6, Qugj_1  Ougjto “
_[8u2:+2] i
(A.4)

where Z; = [l’() 91 U2j—1 U2; U2;54+1 u2j+2]T. Thus, from
Egs. (A.1) to (A.4), the kinetic energy T3, of element
‘17" may be expressed as:

1

Ty = 52J-TM1jéj (A4.5)
where
: T Ao
. 1 or or
My;(i, k) = /0 my (Wﬂ) ijdl’u ,
i k=126 (A.6)

and zj;; is the ith element of z;. It can be shown that
Mlj is:

My;(1,1)  My;(1,2) M,;(1,6)

Mi;(2,1) My;(2,2) M,;(2,6)
My; = .

My;(6,1) My;(6,2) P;;

where P;; is the general mass matrix of beam element
which can be found in FEM contexts. Other elements
of My; can be calculated using Eq. (A.6) as follows:

Mlj(]., ].) = m1L1

5 .
My;(1,2) = my (—51 -(G-1 zf) sin 6y

oL 2o 21"
—mlcoselwlj |:§1 1—12 51 —ﬁ]

(A.8)

with t1; = [ugj—1 U2; Uzjr1 Ugjt2]. Other elements
of My; can be found completely in [13].
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Total Kinetic Energy of Link 1

As link 1 is divided into n; elements, the total kinetic
energy of link 1 is computed by adding the overall
elements ‘15" of link 1,

ZTU = Z Z; M2 =

Jj=1

qHTMqu (4.9)

where:
~ ST
q1 = [.’17(),61,7,/)1] B
T
U2n1—1 U2ny U2n1+41 U2n1+2]

(A.10)

¢1=[U1 Uz U3 Ug -

M is a generalized inertia matrix that is assembled from
n mass matrices of n elements for link 1.

Kinetic Energy for an Element 25’ of Link 2

The kinetic energy T5; for jth element of link 2 may
be computed using Eqs. (A.3) and (A.6) by considering
an appropriate 7 vector as below:

7= {”g)} + T, [ L ] + T2 [(3 _I)ZQ]
U2ny4+1 Y24

where Ty was described in Eq. (A.2). T} is the
transformation matrix between the body-fixed system
of coordinates, O1 X1Y; and O3 X2Y5 which is attached
to the first and the second links with angle of 85 +
Uzn1+2 , (Figure 16) and ys; may be computed as:

Z@

From Eqs. (A.11) to (A.12), it can be concluded
that 7 is independent of w; for i = 1,2,...,2n;. With
mathematical simplifications and the assumption that
q = 02 + u,,+2 and using extended transformation
matrix, the position of each point on jth element in
the second link can be written as:

cos(01+¢q) —sin(g+61) =0 (j—].)lg-i-l’gj
7= |sin(¢g+61) cos(¢g+61) O Y25
0 0 1 1

(A.11)

ygj Z, t WQJ Q_H(t) (A].2)

L1 COSs 91 — U2n; +1 sin 91

+ | Ly sinby + uay, 41 cosby (A.13)
0
Then, T3; in Eq. (A.5) may be expressed as:
To; = %ijszzj, (A.14)
where
ZJT = [xg 01 U2n,+1 Uan,+2 O ngj],
and
Py; = [waj—1 wa; wajty Wajpa. (A.15)
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Hence, the mass matrix Ma; is a (9 x 9) matrix whose
elements can be routinely computed by the following

equation:
/h[af]T or
2 2 o
2 0 8zj¢ 82’j}¢ 2

i k=1,2,..,9

sz(i, k) =m
(A.16)

where zj; is the ith element of z;.

Total Kinetic Energy for Link 2
The kinetic energy TI5 for link 2 is computed by
summing over all elements ‘2j’ of link 2, i.e.,

1.p -
Zsz = 21 54iMajz; = §QQTM2q? (A.17)
J
where q~2 = [l’() 91 U2nq,+1 U2nq+1 92 lﬁg]T, and 1&2 =

[wl Wz ... Wany+1 w2n2+2]T~

A-3: Potential Energy Computation

The potential energy for the overall system is obtained
by computing the potential energy for each element of
the assemblage and adding up all the elements.

Potential Energy for o Single Element ‘15’ of Linkl
Considering OX as the reference, the potential energy
Vi; of element ‘15" of link 1 comprises two components,
Va1 due to gravity and Vey; due to elasticity. Consid-
ering that the mobility in z direction does not have
any effects on Vi;, the potential energy of element ‘15’
of link 1 becomes:

Vig = Vo + Veyy

I ‘
= myg [01]T3 [(‘7_

1) 11 + $1j:| dd?l‘
J
0

Y1y

1z

By substituting for y1; from Eq. (A.3) and taking in-
tegration with respect to time, the elemental potential
energy becomes:

1
Vi = §¢1Tjk1j¢1j

(G-3)8

+maig[0 1T}
’ U217+ 12“2J+%u2j+1_

I

5
1o U25+2
(A.19)

where ; is defined in (A.8), and Kj; is stiffness
matrix of beam element.
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Total Potential Energy for Link 1

Since link 1 comprises 71 elements, its total potential
energy is:

S ot

i=> Vi,=migl0 117} |2
j;lj 19[ ]0 R()wl

Lo o
] + §¢1TKl¢1
(4.20)

where 1, is defined in Eq. (A.10) and Ry is obtained
as follow:

U,
form =1, Ro= |2 A 1 ~4
oEmEL TS 19 9 12
G lh =13
for ny = 2, Roz__l1_12[1 511_21]
G lh =13
for N1 :3, R() = -51 1—12 11 0 11 51 1—21:| (A21)

Elements of K, the general stiffness matrix can be
found in [13].

Potential Energy for a Single Element 25’
Considering again OX as the reference, the potential
energy Vo; of the jth element of link 2 is the sum of
two components. One is due to gravity and the other
due to elasticity of the system, i.e.

2

L
yA— 1 1
Vo; = | mag [0 1] [To [U2m+1]

LTiT? [(3 — 1)ls + $2j”dx2j
Y2i
1 [
= | EI
+ 2/0 2

L
=mag[0 1] [Tol [u%l“] l2

aQij

2
dl’g‘

2 J

das;

+Ty T?

; 1y72
(J—3)8
5 . 5 4 b . 13 .
3 W2j-1 F 13W25 T FWaj41 = 3 W22

1 -
+3 035 Koj o (A.22)

where 955 is given in Eq. (A.15).

Total Potential Enerqy for Link 2
Summing up all elements ‘257 of Link 2, the total
potential energy of this link becomes:

1

ng .
L1 —n~212
V=S Vo =mag[0 1]|T} l+T1T2[2 242
JZ:; 2=mag | ][ 0 [u2n+1]n2 ZTION Ry

1 - .
+ §¢2T (2902 (A.23)
where zﬁgz[wl Wy -+ Wanyto] and, Ry is obtained of
Eq. (A.21) by replacing [2 instead of /1. The elements
of K5 can be found in [13].

A-4: Boundary Condition

In this simulation, it is assumed that first joint of link
1 is constrained to have no displacement or angular
displacement due to body-fixed axis O;X;. It means
that, boundary variables u; and ws must be zero i.e.
u1{t) = 0 and wus(t) = 0. First joint in link 2 has
similar constraints and has no displacement or angular
displacement due to O2X5. Hence, constraint variables
wy and w2 must be zero t.e. wi(t) = 0 and wa(f) = 0.
It must be considered that both links have angular
displacements #; and #s with thier body-fixed axis.
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