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Damage Assessment Using an Inverse
Fracture Mechanics Approach

F. Javidrad!, S. Sakhaee?

This paper studies the application of an inverse methodology for problem solving
in fracture mechanics using the finite element analysis. The method was
applied to both detection of subsurface cracks and the study of propagating
cracks. The procedure for detection of subsurface cracks uses a first order
optimization analysis coupled with o penalty function to solve for the unknown
geometric parameters associated with the internal flaw. The objective function
is calculated from normalizing the finite element determined displacements
by the prescribed ones at some arbitrary points of the damaged component.
The technique was also used for determination of both 1-D and 2-D planar
crack growth directions using the well known mazimum strain energy release
rate criterion. In all cases studied, a good agreement is achieved between the
theoretical and/or the experimentally observed crack behavior and the developed

technique.

INTRODUCTION

A structure is susceptible to damage during its service
life because of extreme events. In many applica-
tions, damage in a structural component is defined
as the change in structural performance, which can
be identified in terms of discrete cracks, voids or
a weak zone formation and a consequent stiflness
reduction. Sometimes, undetected and unrepaired
damage may lead to structural failure demanding costly
repair and/or huge loss of lives. Therefore, detecting
internal flaws or cracks appearing within a structural
component at an early stage is currently classified as
an important engineering task. For aged structures,
specifically old aircraft structures, it is necessary to test
the functionality of the structure under design loads. In
these structures, however, the difference between the
present and the original stiffness can be considered as
a measure of structural/material degradation due to
internal damages.

To date, there are only a few articles published in
literature on the subject of inverse fracture mechanics.
In reference [1], a similar idea but with a different ap-
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proach is introduced to simulate fatigue crack growth.
In this article, it is reported that the beam curvatures
would give a fair idea about the location of damage
in beams and so, the compatibility equation obtained
using Grobner bases can serve as a measure to identify
damage from field data of displacement. These data
have been used for fatigue crack growth simulation in 3-
point bend specimens. A crack identification technique
and 1-D self-similar crack growth simulation by inverse
fracture mechanics coupled with a nonlinear sequen-
tial quadratic programming optimization procedure is
introduced in reference [2]. Although the developed
technique is able to perform the task, the computa-
tional effort is high and therefore, may be inefficient
in 2-D planar crack growth simulation problems. An
analytical method based on numerical solution of a
simultaneous set of non-linear equations is presented in
references [3-4] for simulation of planar crack growth in
composite materials. The presented technique is able
to model general 2-D crack growth, but the technique is
tedious and mathematically complicated. Many other
methods for modeling 2-D planar crack growth based
on moving mesh or node release in finite element (FE)
analysis are introduced in literature. All these methods
have limitations and so are applicable only in some
specific problems. A brief review on these methods
can be found in [5].

In this work, an attempt is made to detect
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damage in the form of a discrete flaw, its location
and its orientation within a structure and to simulate
its growth by numerical means. For this reason, a
technique is introduced that searches for the crack
geometry and its location by comparing the FE stiffness
with the experimental evaluations. The procedure
is based on characterizing the defect using several
geometric parameters. These parameters are itera-
tively modified throughout an inverse analysis until
a convergent solution is obtained, ¢.e. the numerical
stiffness matches the experimental evaluation. For this
purpose, an optimization method is used to minimize
a cost function in which experimental and numerical
displacements at certain points are involved [6].

To exhibit applicability and robustness of the
developed technique, three case studies are considered
in this paper. These are:

1. Identification of a crack with variable length and
orientation in a planar domain.

2. Evaluation of mixed-mode crack growth direction.

3. Growth of a planar crack in a double cantilever
beam (DCB) specimen.

For all cases studied, the effectiveness and stability of
the technique are observed.

ANALYTICAL MODEL

Inverse problems, contrary to the direct problems,
are concerned with determination of inputs such as
geometry, material properties, loads, etc. from the
observed output or responses. Presence of a crack in a
body leaves some effects on the body response to the
applied loads. So, the main idea in development of
an analytical model for crack detection and its growth
situation is using these effects in an inverse manner.
In the analytical model introduced in this paper, the
following assumptions are made:

1. Field measurement of displacements at some refer-
ence points is error free.

2. Damage occurs in the form of a discrete crack with
no material degradation around the crack tip.

3. Structures behave linearly elastic before and after
the damaging event.

The displacement of any structural component is a
function of its geometry, material properties and load-
ing distribution. In our inverse model, loading distribu-
tion and material properties as well as the outer shape
and boundaries of the structure are known quantities.
Therefore, the internal geometry of the damaged com-
ponent, i.e. length, location and orientation of a crack,
is determined so that the computed displacements
might match the experimental data (Figure 1).
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The central part of the model is a first order
optimization technique coupled with a standard FE
analysis. The first order optimization technique used
in this study calculates and makes use of derivative
information. The constrained problem statement is
transformed into an unconstrained form using penalty
functions. Derivatives found for the unconstrained
objective function and state variables give the optimum
design search direction. Various steepest descend and
conjugate direction line searches are performed during
each iteration until the convergence is reached.

Different objective functions can be utilized for
crack detection and growth analysis. In case of crack
detection, as stated above, displacements at some refer-
ence points are used and in case of crack propagation,
strain energy release rate (G) may be employed. In
our inverse analysis, for crack detection problem, the
objective function including penalty functions can be
assumed as follows:

0w =3 (T 1) *A@+R@. 0

where U} represents the computed displacement
components in each solution iteration, U; stands for the
prescribed displacement components compatible with
the U}, n is the number of reference displacement
components, and « is the vector of design variables used
in the analysis. It is clear that increasing the number n
would lead to a more accurate result. P, is an exterior
penalty function that applies to design variables and
P; is a penalty function that applies to state variables
constraints. In Eq. (1), P, and P> can be assumed in
the form of:

= Z-Px(xz)a

Crack center
point

Figure 1. A structural component with an internal crack.
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where ¢ is a response surface parameter used for
pushing constraints to their limit values as necessary
when convergence is achieved. P,, P, and P, are
extended interior penalty functions. For example,
for state variables constrained by an upper limit, the
penalty function is defined as [7]:

Py(gi) = (—iﬁ——)Qk, (3)

g; + oy

where ¢g; demonstrates state variables, and a; repre-
sents tolerances associated with each state variable. A
is a controlling exponent and is set to a large number
when the constraints are out of the limit and to a small
integer number if otherwise. Other P functions in P (q)
are also defined in a similar manner.

In each solution iteration, for the global minimiza-
tion of the unconstrained function Q(z, P), a vector of
search direction is calculated. For the first iteration,
the steepest descent direction is used. Thus, further
update of the vector of design variables is performed
by the following equation [8]:

Tjt1 =5 + dej, (4)

where d; is the search direction vector and s; is a step
length (line search parameter). The adjustment of s;
to reach a global optimization uses a combination of a
golden section algorithm and a local quadratic fitting
technique [8]. The variation of s; is limited to:

Smax %
0 <s; < pE5) (5)

where S7 is the largest possible step size for the line
search of the current iteration and S,,.. is the max-
imum percent line search step size [7]. The iterative
equations used in the analysis for determination of
direction vector d; are [8]:

for the first iteration:  d; =. —=VQ(z;,9)|,_; ,
for the subsequent iterations:

d; = =VQ(z;,qr) +1j-1dj—1,

[VQ(x;,9) = VQ(xj-1,9)] "VQ(x;, Q)

where: r;_1 = :

IVQ(z;_1,9)|
(6)

It is worth noting that when ill-conditioning is
detected or convergence is nearly achieved or constraint
satisfaction of critical state variables is too conserva-
tive, restarting is employed by setting 7;_; = 0, forcing
the steepest descent iteration. The gradients in Eq.
(6) are computed by a standard forward difference
technique [9]. The solution iterations are continued
until convergence is attained. Convergence criteria

can be set to situations when either the difference
between two subsequent iteration solutions is less than
a tolerance parameter or the difference between the
iteration solution and the best solution are less than the
defined tolerance. At convergence, one more iteration
at the steepest descent direction is used to recheck the
solution.

CASE STUDIES

Detection of a crack in a finite membrane
The first case study aims at detection of a crack in
a plane strain membrane under unidirectional tension
as well as finding its geometrical parameters such
as length and orientation. The geometry, material
properties and loading condition on the membrane are
considered similar to those analyzed in [2] to make a
baseline for comparison purposes. Due to the lack of
experimental data on this problem, a specific crack
is first assumed to exist and the displacements of
arbitrary reference points are calculated from the FE
analysis. Then, these displacement data are treated as
experimental data and subsequently crack is detected
by the inverse fracture analysis.

The geometry of the membrane is shown in Figure
2 [2]. The initial crack is assumed to lie parallel to =
axis and have a fixed length of 16 mm. The midpoint of
the crack is located at point x = 0.35 m and y = 0.6 m.
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Figure 2. A plane strain membrane with a horizontal
crack.
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Figure 3. Finite element model of the cracked membrane.
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The FE model of the membrane is shown in Figure 3.
At five equidistance points along the loaded edge (AB),
the FE determined upward displacements are used as
reference values. In order to perform iterative FE
analysis for each trial crack location and geometry, an
automatic mesh generator is required. The automatic
mesh generation of the employed software (ANSYS) [7]
is facilitated by defining a circular boundary around
the crack as well as along the membrane boundary
[10]. Solution iterations is started from the trial crack
midpoint location at x = 0.8 m and y = 0.55 m. After
8 iterations, the solution converges to the point (0.351,
0.597) m as the midpoint of the crack. The convergence
rate as shown in Figure 4, shows up practically after a
five iteration solution is reached, which is much better
than 11 iterations reported in [2].

To find out more about the crack detection
capability of the technique, a more general problem
for this plane strain membrane is considered. In this
problem, both crack length and orientation as well as
its location are involved in the analysis. The loading
distribution is also considered to linearly vary traction
form 0 at point B to 10 MPa at point A. Again,
a crack with a specific length and orientation was
assumed to exist at a pre-defined position and the FE
determined displacements were used as experimental
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Figure 4. The convergence rate of the objective function
in case of the horizontal crack detection.
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Figure 5. The convergence rate of the objective function
in case of the angle crack detection.
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data and the inverse problem was solved. The analysis
results together with the assumed initial values appear
in Table 1. The convergence rate of the solution process
is also depicted in Figure 5. The obtained results show
a good stability and robustness of the solution scheme.

Detection of Crack Growth Direction

One of the old problems in fracture mechanics open to
further research is prediction of crack growth direction
in a mixed-mode loading case. Prediction of the angle
at which a crack grows under a certain growth criterion
can be stated as an inverse relation. Many criteria have
been developed for crack growth under mixed-mode
loading. (A brief review of these criteria can be found
in [11-12]). One of the most popular growth criteria
that is compatible well with experiments is based on
total strain energy release rate (Gr). According to this
criterion, cracks grow in a direction of maximum Gr

(Eq. (7)) [13].
Gr =Gr+Grr, (M)

where Gy and G are partitioned strain energy release
rates associated with modes I and II, respectively. In
our proposed model, the objective function for the
inverse problem can be defined as:

— GT ?
f‘|(Gc> !

where G, is the critical mixed-mode I/II strain energy
release rate which is considered to be solely a function
of material properties. It should be noted that, in some
materials, G depends on mixed mode ratio as well as
the material properties. In such cases, the proposed
model employing the objective function of Eq. (8)
is also applicable. If the calculation of crack growth
direction is intended, the objective function f = 1/Gr
may also be used. But, using the Eq. (8) gives the
direction of crack growth at the onset of growth as well
as the loads required to start growth.

The calculation of G is performed using the
modified virtual crack closure method [3-5, 14-15].
In this method, force components generated at nodes
ahead of the crack tip are multiplied by displacement
components of similar nodes behind the crack tip to
produce the energy required to close the crack to a
value of the crack tip element length along the crack
(Aa). This energy, after proper scaling, is assumed to
be equal to the energy required to extend the crack with
the same value, Aa. In this research, a computer code
has been developed and attached to the FE software
(ANSYS) as a post-processor to calculate the required
G for each trial crack geometry and location.

s (8)
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Mized-mode Crack Growth Initiated from the Corner
of a U-shape Component

The first example for the evaluation of crack growth
direction is a cracked U-shape machine element made
of steel (£ = 200G Pa,v = 0.3) subjected to tensile
load [16]. The component geometry and its FE mesh
are shown in Figure 6.

The experimental and numerical studies of the
above component as reported in [16] show that crack
extension started at an angle of about 24° from the tip
of a small horizontal initial crack. Further crack ex-
tension takes place along a curved path with the crack
tip angle approaching 0°. In this mixed-mode crack
growth study, only qualitative results were intended.
Thus, the value of G, was set to unity and then crack
tip angle at growth was determined using Eq. (8)
as the objective function. The upward displacement
applied to the component holes was constant during
the analysis. Our inverse analysis converges (after 13
iterations) to the value of 25.66° for the crack growth
angle at the start (Figure 7). The solution convergence
rate is rapid enough and accuracy of the result is
acceptable. Further crack extensions give a growth
path similar to the experimental observations shown
in Figure 8.

Growth of an Obligue Crack from the Edge of a Plate
under Uniazial Tension
In this problem, a square steel plate (E = 200G Pa,v =
0.3) containing an edge oblique crack under uniform
uniaxial tension is considered. The length to width
ratio (L/W) of the plate is 1.0 and the crack length
to width ratio (a/W) is 0.2. Angle of the crack with
respect to the plate edge is 67.5°. The results of an
analytic solution for a similar case are depicted in
Figure 9, from which the angle of crack growth initiated
from an oblique edge crack in a plate under uniform
tension can be determined [17]. In this specific case 3
is 22.5° and, accordingly based on Figure 9, the angle
of crack growth (#) would be about 23° to 24°. In our
inverse analysis, the objective function for this case can
be adopted as:
1
- & (9)
Finite element model of the plate using 3-node
triangular elements and 6-node triangular singular ele-
ments [7] at the crack tip region is exhibited in Figure
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Figure 6. (a) The U-shape component containing a small
crack at the corner (b) its FE mesh (units in millimeter).

10. The inverse analysis for this problem converged
after 14 iterations with a fair rate to a value of 22.67°,
which is very near to the value determined in Figure 9.

An Interface Crack Growth in a Double
Cantilever Beam Specimen

Double cantilever beam (DCB) specimen, as shown in
Figure 11, is a popular mode-I fracture specimen for

Table 1. The initial and the converged parameters of an angle crack in the finite membrane.

z-coordinate(m) | y-coordinate(m) | Length(m) | Orientation*(deg.)
The assumed crack geometry 0.5 0.7 0.15 100
The initial values given to the inverse analysis 1.5 0.3 0.05 145
The converged values 0.51 0.71 0.15 98.79

%) The orientation angle is defined counterclockwise with respect to the x axis.
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testing interlaminar fracture toughness of composites
[18]. Tt is also used widely for testing adhesives. In this
case study, a DCB specimen made of aluminum with
a fracture toughness of 15000 J/m? is considered. The
interface crack is opened symmetrically by application
of vertical displacements to the loading edges.

The inverse analysis can be used for simulation
of interface crack growth in this specimen. First, a
constant displacement is applied to the loading edges
and then location of crack tip front is searched so that
the G distribution at all points along the crack front
approaches the interface fracture toughness (Gy.). In
this problem, a crack front exists rather than a crack
tip. Therefore, the adopted objective function must be
able to take into account G at several points along the
crack front. Thus, the objective function given in Eq.
(8) is generalized as follows:

( (Gf)i ) : 1
GIC '

Where n is the number of selected points along
the crack front. FE model for one arm of the DCB
specimen was produced using 8-node plate elements
(Figure 12a). Out of plane 7.5 mm displacement was
applied to the arm and G distribution was calculated
using the virtual crack closure method that is extended
for plate elements [12, 15].

The inverse analysis was applied to the model and

converged to the solution after 29 iterations with a
fair rate as shown in Figure 13. Each element along

n

-5

i=1

(10)
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Figure 7. Solution convergence rate of the crack growth
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Figure 8. path of the crack growth initiated from corner
of a U-shape component (a) Experimental observation [16]
(b) Proposed inverse fracture analysis.
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Figure 9. Angle of crack growth from an oblique edge
crack [17].
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Figure 10. FE mesh of the square plate containing an edge
crack.

the front can be moved along direction x until Gy
distribution at all points along the front satisfy the
growth criterion, i.e. the objective function reaches
within the defined accuracy to the global minimum of
0. The initial G; distribution for straight crack front
is minimum at specimen edges and maximum at the
centerline of the specimen, which is in agreement with
findings reported in [3-5]. At convergence, distribution
of G along the crack front is uniform as shown in
Figure 14. Tt has to be noted that to prevent the zig-
zag pattern of crack front that may be produced in each
trial solution, the crack front elements are adjusted to
a smooth cubic spline curve which is passed through
the nodes at the crack front.
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The upper arm af the DCB specimen

Figure 11. An aluminum DCB specimen (L = 150 mm,
B =20 mm, ¢ =50 mm, h =2 mm and §=15 mm).
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Figure 12. FE mesh for the upper arm of the DCB
specimen (a) Initial straight crack front (b) Final converged
crack front.
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CONCLUDING REMARKS
In this paper a numerical procedure is introduced
that can be known as an inverse fracture mechanic.
This method which incorporates finite element method
coupled with an optimization technique can be used
to solve many engineering problems such as crack
detection and 1-D/2-D planar crack growth simulation.

It is shown that this technique is able to find crack
geometry parameters such as length and orientation as
well as its location within a 2-D body provided that
some reference point displacements are known. It is
seen that the adopted optimization technique needs
less computational effort than the sequential quadratic
programming method previously used for the inverse
fracture analysis. It is also shown that the method has
a good stability for crack growth simulation and so, this
technique can be introduced as an effective method for
crack growth modeling purposes.
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