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Comparison Between Minimum and

near Minimum Time Optimal Control

of a Flexible Slewing Spacecraft
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In this paper, minimum and near-minimum time optimal control laws are
developed and compared for a rigid space platform with flexible links during an
orientating maneuver with o large angle of rotation. The control commands
are considered as typical bang-bang with multiple symmetrical switches, the
time optimal control solution for the rigid-body mode is obtained as a bang-
bang function and applied to the flexible system after smoothening the control
inputs to avoid stimulation of the flexible modes. This will also reflect practical
limitations in exerting bang-bang actuator forces/torques due to delays and
non-zero time constants of existing actuation elements. The smoothness of
the input command is obtained by reshaping its profile based on consideration
of additional derivative constraints. the optimal control problem is converted
into parameter optimization problem. The steps of the solution procedure and
numerical algorithm to obtain the time optimal control input are discussed
next. The developed control law is applied to a given satellite during a
slewing maneuwver. The simulation results show that the control input with
just a few switching times can significantly lessen the vibrating motion of the
flexible appendage, which reveals the merits of the developed control law. The
modified realistic optimal input compared to the bang-bang solution goes well
with the practical limitations and alleviates the vibrating motion of the flexible

appendage, which reveals the merits of the new developed control law.

INTRODUTION
Space robotic systems are expected to play an impor-
tant role in future, e. g. in servicing, construction, and
maintenance of space structures in orbit. Before long,
coordinated teams of robots might deploy, transport,
and assemble structural modules for a large space
structure [1]. In order to control such systems, it is
essential to develop proper kinematics/dynamics model
for the system. This has been studied under the
assumption of rigid elements, [2-4], and elastic elements
[5-8]. There have also been various studies on the
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control problem of such systems with both rigid and
flexible elements [9-13].

Due to maneuver time limitations in space, the
optimal control with a time minimization constraint is
of main concern. It should be noted that high speeds,
in turn, may stimulate the system flexible modes, which
may drastically affect the control system performance.
Space projects involving large structures and satellites
with antennas or solar panels in general as well as
robotic manipulators are examples where one should
consider achieving rapid maneuvers without stimulat-
ing flexible modes [14]. Therefore, the minimum-
time optimal control for the rigid mode and n flexible
modes has become the focus of several articles [15-
18]. Robust time-optimal control problems for slewing
spacecraft have recently received a lot of attention [19-
24]. In this paper, a minimum-time optimal control
law for a flexible spacecraft during a slewing maneuver
with a large angle of rotation is developed without
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solving the state and co-state equations. The control
commands are considered as typical bang- bang with
multiple symmetrical switches. The obtained control
law for the rigid-body mode is applied to the flexible
system after smoothening the control inputs to reflect
practical limitations in exerting bang-bang actuator
forces/torques. Smoothness of the input command is
obtained through reshaping its profile with the first
and second time derivative constraints. The steps
of the solution procedure and numerical algorithm to
obtain the time optimal control input will be discussed
next. The developed control laws are applied to a given
satellite during a slewing maneuver, where the first five
modes are considered in the simulated model, whereas
a single torque actuator is located on the central rigid
body. The simulation results show that the control
input can significantly cope with the end-point motion
of the flexible appendage with just a few switching
times. the developed realistic optimal input compared
to the bang-bang solution goes well with the practical
limitations and can successfully control the end-point
motion of the flexible appendages.

PROBLEM FORMULATION
Considering a linear model of a flexible spacecraft with
one rigid-body mode and n flexible modes during a
slewing maneuver, the system can be represented as:

Mi+ Kqg=Gu (1)

where M and K are the so-called mass and stiffness
matrices, respectively, and G represents the control
input distribution. The system described by Eqgs. (1)
can be transformed into the decoupled modal equations
using the eigenvalue and eigenvector information:

i + wiq; = ®u i=1,,n (2)

where q; (t) is the i-th modal coordinate, w; is the i-th
modal frequency (i-th diagonal element of eigenvalue
matrix), and scalars ¢; are defined by:

T
[®1 @2 -+ @, =AG (3)
where A is an n X n matrix whose columns are the
corresponding eigenvectors, and n is the number of
modes considered in the control design. The control
input u (t) is a single bounded one:

—Umax S U(t) S Umax (4)

where Unq, is the maximum value of control input. It
is desirable to convey the system described by Eqgs. (2)
from the initial conditions ¢(0) =, to final conditions
g(ty) = subjected to the control constraints (4) in
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minimum time. Therefore, the performance index can
be defined as:

tf
J:/ dt =ty ()
0

where the initial time t, is set equal to zero and ty is
the final time of the maneuver.

TIME OPTIMAL CONTROL DESIGN
From the optimal control theory and Ponteryagins
minimum principle,[25], it is known that the solution
of the above time optimal control problem is in the
form of bang-bang control input with (2n-1) switches
symmetric about ¢ = ¢7/2. A bang-bang input with
(2n-1) switches can be represented as:

u(t) = Umax Y bl(t —t;) (6)
7=0

where b; defines the magnitude coefficient at t;, 1(¢)
defines unit step function, and ta, =ty . To obtain the
switching times t;, one should obtain the constrains
of the problem. Considering the rigid body mode
equation with w; = 0 yields:

g1 = ®1u (7a)
with the following initial conditions:

@(0)=0, qlty) =0

@0) =0, qfty)=0 (7b)

Substituting Eq. (6) into Eq. (7-a) and integrating
with respect to time twice, using initial conditions, we
obtain:

2n
@1umax
0y =—— > bylty —t5)° (8)
=0
which describes the constraint for the rigid body
motion mode. Next the flexible modes should be
considered:
jitwia=%u i=2,--,n (9)
where all related initial conditions are set equal to zero.
Substituting Eq. (6) into Eq. (9), and following a
similar procedure we obtain:

2n
(Pi max .
qi(t) = —#ij cosw;(t — t;) 1>2 (10)
i =0

This equation can be rewritten as:

(Piumax [ =i
gi(t) = — — 2 [coswi(t —tn) Z bj cosw;(t; —tn)
7 ]:O
2n
—l—sinwi(t —tn)ij sinwi(tj — tn) (11)
Jj=0
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Note that the sine function is an odd one and t; is
symmetric about t,, which is equal to t; /2, hence the
second term vanishes, and the following holds for any
bang-bang input:

2n
> bysinwi(t; —ta) =0 (12)
7=0

therefore, to have ¢;(t) = 0 for ¢ > t, i.e. no
residual structural vibration, the following flexible
mode constraints is obtained:

2n
D bjcoswi(t; —t,) =0 i>2 (13)
7=0

This equation gives the necessary constraints for solv-
ing this problem.

REALISTIC NEAR MINIMUM TIME
OPTIMAL CONTROL DESIGN
According to Eq.(6), the optimal control input for

rigid-body mode will be obtained as:

1 (8) = Umax [L(8) — 2[1(t — t1)] + 1(t — ts)] (14)
10}
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In this Section, this control input profile is
approximated by a smooth and continuous profile
throughout the entire maneuver, with the saturation
limits of £u,qs Furthermore, this will reflect
practical limitations in exerting bang-bang actuator
forces/torques in reality, due to delays and non-zero
time constants of existing actuation elements. There-
fore, a realistic optimal (near-minimum time) control
law is found that eliminates the jump-discontinuities
of the input torque in order to reduce structural vibra-
tions. By this near optimal approach, we can “tune”
the control profile in such a way that systematically
trades off residual vibration with the maneuver time.
To this end, the time derivative constrains of the
control input can be used. In the following, two
cases are considered as employing the first and second
derivatives for reshaping the control input profile.

Case I. First derivative constraint of control
input

The bang-bang input for rigid body mode obtained
in the previous section is shown in Figure (la). An
approximated control input that is smoother than the
bang-bang input is shown in Figure (1c¢). This control
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Figure 1. Control input profiles: (a)Bang-Bang, rigid body mode solution, ui(t), (b) Bang-Bang, first flexible mode

solution, us(t), (c) Case I, us(t), (d) Case II, us(t).
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Figure 2. Control input derivatives: (a) First rate of uz(t), (b) Second rate of u4(t).

input is obtained by adding another state variable to
the first time optimal control problem which describes
the first time derivative of control input, along with
an additional constraint that confines the magnitude
of this derivative to a given value. Consequently, the
degree of smoothness of the generated control input
is controlled by choosing an appropriate value for
the maximum value of the input first time derivative.
Considering the new Hamiltonian for the three state
variables, and using Ponteryagin’s minimum principle,
as will be discussed in next section, the modified control
input is obtained as:

5
U3(t) :aumaXZblj(t—tj)l(t —tj) (15)
3=0

where by=[1,-1,—1,1,1,—1], 1(t-tj) defines the unit
step function, t0=0, t5=tf , and “a” is the slope of
the inclined lines that is the maximum value of the
input first time rate, and controls the smoothness of the
modified input u=(t). The rate of this control input is
shown in Figure (2a), which certainly satisfies the given
limits.

Case II. Second derivative constraint of control
input

To make the control input smoother than the one
computed in the previous case, one could add a fourth
state variable to the previous time optimal control
problem which describes the second time derivative of
control input, along with an additional constraint that
confines the magnitude of the second rate to a given
value, Figure (1d). Following a similar procedure as
described above, the modified control input in this case
is obtained as:

10
aumax
Uy = —5 D bt — )71t —t5) (16)
Jj=0

where bo=[1,-1-1,1,1,-1,-1,1,1,-1], 1(t-tj) defines the
unit step function, t0=0, t3=tf , and “a” is the
maximum value of the input second time rate. The
second rate of uz(t) is shown in Figure (2b).

PARAMETER OPTIMIZATION PROBLEM
To solve the minimum and near minimum time op-
timal control problem, we have to determine (2n-1)
unknown switching times such that the final time t;
is minimized. This can be formulated as a constrained
parameter optimization problem, i.e. minimization of
the performance index of Eq. (5) subjected to the
following constraints:

fl(t17t27”’ 7tj7’“ ,th) =
O 2n
1 %max p
0y — =1 Syt — 1) = 0 (17a)
7=0

fi(t17t27”’ 7tj7’“ ,th) =

2n

ij COSu)i(tj —tn) =0 i:2,...,n (17b)
=0

To satisfy the necessary and sufficient condition for
optimality, the Hamiltonian can be introduced as:

H:tf-i-/\l'fi 1=1,..,n (18)

where A; are defined as Lagrange multiplier. Setting up
the following equations, a set of 3n equations, can be
solved to determine 3n unknowns, i.e. (2n-1) switching
times, one final time t;, and n Lagrange multipliers:

OH
= =0 5=1,2,---,2
gj at] J s Sy , 21
OH
gkza/\i:O k=2n+1,---,3n (19)

This set of equations are often coupled and nonlinear,
which can be solved employing numerical methods[26].
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Figure 3. Mode responses: (a) First flexible mode response to ui(t), (b) First flexible mode response to uz(t), (c) Second
flexible mode response to us(t), (d) First flexible mode response to uz(t), (e) First flexible mode response to ua(t).

SOLUTION ALGORITHM
Collecting g; functions defined by Eq. (19)in a (3nx 1)
vector as:

=010 gan -+ gsnl” (20)

the steps of the solution procedure and numerical
algorithm to obtain the time optimal control and
robust time optimal control inputs are given below.

1. Determine the numbers of flexible modes (n).

2. Define the bang-bang input with (2n-1) switches.
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3. Apply this control input function for rigid body
mode and flexible modes to obtain constraints of
problem with performance index, J=t;. At this
step, the time optimal control problem is converted
into parameter optimization problem. Parameters
of this problem can be reduced by consideration
of time symmetry property of bang- bang input
function.

4. Form vector g, using Eqgs. (17)- (20).

Form a (3n x 1) vector h for unknowns:

h:[tlv”’thna Alv’“vAn]T (21)

Asgsume some starting values for h as hg.

Calculate the (3n x 3n) Jacobian matrix:

91 ... O d; .. dm
Q1 dtay, a1 AN,
a2 - 942 992 A g2
dg dt1 Dtzn O\ N
J = — = .
Oh
993w ... Og93n  9g3n .. QOdsu
atq Oty oM\ 2R vS
(22)
where J;; = dg;/0h; are calculated using the
current values of h.
A=J"g (23)

8. Update the unknown variables
h=h.- A (24)

where h. denotes the current value of h.
9. Repeat Steps 7-9 until:

llgll < e (25)

where ||...|| refers to Euclidean norm, and € is a
chosen threshold.

10. The unknown variables are obtained as
h =h, (26)

Next, to illustrate the developed optimal control law
and described numerical procedure, the slewing ma-
neuver of a given satellite is simulated.

SIMULATIONS
The system parameters and maneuver specifications
are listed in Table 1. To see the inherent behavior
of the system, the first five modes are retained in the
developed model in the simulation routine prepared
in MATLAB environment, in which a single torque
actuator is located on the rigid central body to control
the maneuver. The task is to control the satellite
orientation during a rest-to-rest maneuver in minimum
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time. Table 2 shows the natural frequencies w;, in
radian per second , and the components of ¢; in Eq.
(2) , for the first five modes. For the first trial, just the
rigid body mode is considered, i.e. n=1, and so there
exists just one switching time and the control torque
will be defined as Eq.(17). By applying the presented
algorithm, the middle and final time, t; and ty , are
obtained as shown in Table 3. The input amplitude
is given U,,.,=20N.m as shown in Figure (1a). To
find the vibration of the end point of appendages
(solar panels), due to this input torque, if we solve the
equation:

o+ wiys = By (27)

and transform the solution back to the physical coordi-
nate, the end point vibration will be obtained as Figure
(3a). As seen, the amplitude is considerably large
and may cause significant damage to the spacecraft.
Therefore, at least the first flexible mode, i.e. n=2,
should be considered. To consider the first flexible
mode (n=2), in order to apply the control input us(t),
three switching times will be introduced as:

U/Q(t) = umax{i(t) - 2[1(t - tl)]
+ 2[1(t — t2)] — 2[1(t — t3)] + 1(t — t4)} (28)

According to the presented algorithm, the switching
and final times are obtained as shown in Table 3, and
the control input is illustrated in Figure (1b).

The response of the flexible appendage is shown
in Figure (3b). As shown in Figure (3b), by applying
us(t), the vibration of the appendage in its first flexible
mode does completely vanish; however, it seems that
the second flexible(n=3) mode is excited. Therefore,
to investigate this, the amplitude of vibrations for the
second flexible mode is shown in Figure (3c). As seen
in the figure, the amplitude is about 32 mm, which
is reasonably small.  Application results of realistic
modified control input uz(t) and us(t), obtained in the
case I and I, are shown in the Figure (3d-e). Compar-
ison of vibrations of the endpoints of appendages show

Table 1. System Parameters and Maneuver Specifications

I 132 Kgm?
Central body inertia I, r Kgm2
I3 135 Kgm?
Solar panels Length L 4m
Solar panels Thickness t 0.02 m
Solar panels Width w 0.50 m
Solar panels material stiffeness EI 20.10 Nm?2
Solar panels material density P 0.81 Kg/m?
Maximum torque avilable u 20 N.m
Total mass of spacecraft M 800 Kg
Total slewing angle 0 45 deg
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Figure 4. Attitude of end point of solar array for: (a) input uy(t) and uz2(t), (b) us(t), ua(t).

Table 2. Flexible Modes Specifications.

i wi @i

1 0 0.0628
2 | 1.2355 | -0.0328
3 6.9311 0.0092
4 | 19.3320 0.0043
5 | 38.2100 | -0.0026

Table 3. Switching and final maneuver times (sec.).

uy (t) uz(t) us(t) ug(t)
t1=3.155 t1=2.446 t1=1.000 t1=1.000
ty=6.311 t2=3.474 to= 2.690 | ta= 2.000
t3=4.502 t3=4.694 t3=2.310
ty=6.9486 t4=6.389 t4=3.310
tr=7.389 t5=4.310
t6=5.310
t7=6.310
t8=6.620
tg=7.620
t7=8.620

that by application of uz(t), the amplitude of vibration
compared to that of uy(t) has reduced by 2 cm. For
more reduction, one can increase the value of ”a” that is
taken equal to one so far , but this results in a trade off
between maneuver time and amplitude of the vibration.
Application of uy(t) is a better approach for vibration
suppression and maintaining the maneuver time near
its minimum value. To this end, switching times and
the final maneuver time are obtained as shown in Table
3.

The attitudes of the appendages are illustrated
in Figure (4a) for uy(t) and uo(t), and in Figure (4b)
for us(t) and uy(t), and the vibration of the endpoint
of appendages are shown in Fig. (3d-e). As seen, the
amplitude has reduced to 5.3 cm, which shows a drastic

suppression of the endpoint vibration under application
of us(t). Comparing the maneuver duration in these
cases, it can be seen that application of us(t) results in
2.309s increase of maneuver time where tf=6.311sis the
minimum duration obtained for u;(t), while reduces
the amplitude of appendages vibration by 55%. It
should be noted that the vibration amplitude has been
decreased by 99% due to ua(t), compared to that of
uy(t), whereas the maneuver time has increased by
31%.

CONCLUSIONS

In this paper, minimum and a near-minimum-time op-
timal control law for a rigid space platform with flexible
links during an orientating maneuver with large angle
of rotation was developed. The time optimal control
solution for the rigid-body mode was obtained as a
bang-bang function, and applied to the flexible system
before and after smoothening the control inputs to
reflect practical limitations and flexible modes ignoring
in exerting bang-bang actuator forces/torques. The
first flexible mode consideration reduced the amplitude
of vibration very well. The modified control input
was obtained by adding additional state variables to
the original time optimal control problem to describe
derivatives of control input, along with additional con-
straints that confine the magnitude of the derivatives
to given values. The steps of the solution algorithm
as converting of time optimal control problem to
parameter optimization problem to obtain the switch-
ing and final times of control profiles were discussed
next. The developed control law was applied to a
given satellite consisting of two elastic panels during
a slewing maneuver.

REFERENCES
1. Jacobsen, S.; Lee, C.; Zhu, C.; and Dubowsky, S.,

“Planning of Safe Kinematics Trajectories for Free



142

10.

11.

12.

13.

Flying Robots Approaching an Uncontrolled Spinning
Satellite”, Proc. Of ASME 2002, Design Engineering
Technical Conferences, Montreal, Canada, (2002).

Vafa, Z. and Dubowsky, S., “On The Dynamics of
Manipulators in Space Using The Virtual Manipulator
Approach”, Proc. of IEEE Int. Conf. on Robotics and
Automation, PP 579-585(1987).

Moosavian, S. Ali A. and Papadopoulos, E., “On
the Kinematics of Multiple Manipulator Space Free-
Flyers”, Journal of Robotic Systems, 15(4), PP 207-
216(1998).

Moosavian, S. Ali A. and Papadopoulos, E., “Ex-
plicit Dynamics of Space Free-Flyers with Multiple
Manipulators via SPACEMAPL” | Journal of Advanced
Robotics, 18(1), (2004).

Baillieul, J. and Levi, M., “Rotational Elastic Dynam-
ics”, Journal of Physica, 27D, PP 43-62(1987).

Mah, H. W., Modi, V. J., Morita, Y., and Yokota,
H., “Dynamics During Slewing and Translational Ma-
neuvers of the Space Station Based MRMS”, Journal
of the Astronautical Space Sciences, 38(4), PP 557-
579(1990).

Cyril, X., Angeles, J., and Misra, A., “Dynamics
of Flexible Multibody Mechanical Systems”, Transac-
tions of the CSME, 15(3), PP 235-256(1991).

Kuang, J. L., Kim, B. J., Lee, H. W., and Sung D.
K., “The Attitude Stability Analysis of a Rigid Body
with Multi-Elastic Appendages and Multi-Liquid-
Filled Cavities Using The Chetaev Method”, Journal
of the Astronautical Space Sciences, 15(1), PP 209-
220(1998).

Joshi, S. M., Alberts, T. E., and Kakad, Y. P., “Ad-
vances in Dynamics and Control of Flexible Spacecraft
and Space-Based Manipulators”, DCS, ASME, NY,
(1990).

Carusone, J.; Buchan, K. S.,; and D’Eleuterio, G. M.
T., “Experiments in End-Effector Tracking Control
for Structurally Flexible Space Manipulators”, IEEE
Transactions on Robotics and Automation, 9(5), PP

553-560(1993).

Papadopoulos, E. and Moosavian, S. Ali A., “Dynam-
ics & Control of Multi-arm Space Robots During Chase
& Capture Operations”, Proc. Of IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, Munich, Germany,
(1994).

Papadopoulos, E. and Moosavian, S. Ali A., “Dy-
namics & Control of Space Free-Flyers with Multiple
Arms”, Journal of Advanced Robotics, 9(6), PP 603-
624(1995).

Moosavian, S. Ali. A. and Rastegari, R., “Force
Tracking in Multiple Impedance Control of Space

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A. Ebrahimi, S. A. A. Moosavian, M. Mirshams

Free-Flyers”, Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Takamatsu, Japan,
(2000).

Scrivener, S. and Thompson, R. C., “Survey of Time-
Optimal Attitude Maneuvers”, Journal of Guidance,
Control, and Dynamics, 17(2), PP 225-233(1994).

Meirovitch, L. and Sharony, Y., “Accommodation of
Kinematic Disturbances During Minimum- Time Ma-
neuvers of Flexible Spacecraft”, Journal of Guidance,

Control, and Dynamics, 14(2), PP 268-277(1991).

Singh, G., Kabama, P. T., McClamroch, “Planar
Time-Optimal Rest-to-Rest Slewing Maneuvers of
Flexible Spacecraft”, Jouwrnal of Guidance, Control,

and Dynamics, 12(1), PP 71-81(1989).

Bassam A. A., “Optimal Near-Minimum-Time Control
Design for Flexible Structures”, Journal of Guidance,

Control, and Dynamics, 25(4), PP 618-625(2002).

Ebrahimi, A., Moosavian, S. Ali A., and Mirshams, M.,
“Minimum-Time Optimal Control of Flexible Space-
craft for Rotational Maneuvering”, Proc. Of IEEE Int.
Conf. on Control Applications, Taipel, Taiwan, (2004).

Fontes, F'. A., and Magni, L., “Min-Max Model Predic-
tive Control of Nonlinear Systems Using Discontinuous
Feedbacks”, IEEE Transactions on Automatic Control,
48(10), PP 1750-1755(2003).

Boskovic, J. D.; Ming, L. S.; and Mehra, R. K., “Ro-
bust Adaptive Variable Structure Control of Spacecraft
Under Control Input Saturation”, Journal of Guid-
ance, Control, and Dynamics, 24(1), PP 14-22(2001).

Singh, S. N,
Uncertain Elastic Spacecraft”, IEEE Transactions on
Aerospace and Electronic Systems, 24(2), PP 114-
123(1988).

Liu, Q., and Wie, B., “Robust Time-Optimal Con-
trol of Uncertain Flexible Spacecraft”, Journal of
Guidance, Control, and Dynamics, 15(3), PP 597-
604(1992).

Ebrahimi, A., Moosavian, S. Ali A.,; and Mirshams,
M., “Robust Optimal Control of Flexible Spacecraft
During Slewing Maneuvers”, Journal of Aerospace

Science and Technology, JAST, 2, PP 37-43(2005).

Baldeli, D. H., Mazzaro, M. C. , and Pena, S. S.,
“Robust Identification of Lightly Damped Flexible
Structures by Means of Orthonormal Bases”, IFEFE
Transactions on Conirol Systems Technology, 9(5), PP
696-707(2001).

Kirk, D. E., Optimal Control Theory, an Introduction,
Prentice- Hall, Englewood Cliffs, NI, (1970).

Gerald, C. F. and Wheatley, P. O., Applied Numerical
Analysis, 6Ed., Addison- Wesley, (1999).

“Rotational Maneuver of Nonlinear



