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The Comparison of Direct and Indirect
Optimization Techniques in Equilibrium
Analysis of Multibody Dynamic Systems

H. Haddadpour'!, R. D. Firooz Abadi?, M. M. Fotouhi?

The present paper describes a set of procedures to solve nonlinear static-
equilibrium problems in the complex multibody mechanical systems. To find
the equilibrium position of the system, five optimization techniques are used
to minimize the total potential energy of the system. Comparisons are made
between these techniques. A computer program is developed to evaluate the
equality constraints and objective function of a general multi-body dynamic
system in order to find the equilibrium condition. The obtained results from
different approaches are compared together and finally some conclusions are
made considering the existing results of the artificial damping method. It is
seen that the indirect methods may produce more accurate results with faster

convergence.

INTRODUCTION
A mechanism is a multibody system whose components
have rigid-body displacements [1]. The kinematic and
dynamic analyses involve initial position, static equi-
librium position, and also direct and inverse problems
in the case of open-or mixed-chain mechanisms [2-7].

For a mechanism with a large number of degrees
of freedom, there are infinite possible solutions to
the inverse position problem, from among which the
most suitable one must be sought on the basis of
optimization criteria [8]. The methods used to resolve
the position problems, mainly the problem of deformed
position and that of static equilibrium with large
displacements, are also useful in resolving the inverse
problem of open loop mechanisms, as it is described in
Reference [9].

In this study, the procedure used to model the
mechanisms is basically the one described in [2], which
is based on the computational multibody dynamic
modeling techniques. Hence, the subsequent math-
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ematical treatment is based on the Jacobian of con-
straint and the gradient of objective function. Also the
related constraints are of the types of the kinematics
constraints.

In order to find the equilibrium position of a
multibody system, one can use several methods. As
the first approach, the equilibrium analysis is carried
out normally by adding artificial damping (AD) and
solving the equations of motion until the system comes
to rest. The results of AD method are relatively
more precise than the others and can be used as
a comparison criterion, but this method is compu-
tationally expensive and time consuming. However,
this method cannot be used for real-time assembling
and initial position problems. The second widely
used approach employs optimization techniques for
minimization of Total Potential Energy (TPE) of
conservative mechanical systems [3]. In this study
three direct optimization techniques namely Sequential
Linear Programming (SLP), Modified Method of Fea-
sible Directions (MMFD), and Sequential Quadratic
Programming (SQP) and two indirect methods namely
Fletcher-Reeves (FR) method and Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method, are used.

In order to compare these methods together three
test cases are selected. These cases involve three
general mechanisms, namely dual pendulum, slider-
crank and four bar mechanism. The obtained results
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are compared with each other and with the results
obtained by artificial damping approach in order to
select the best method for equilibrium analysis.

KINEMATIC AND DYNAMIC MODELING

OF MULTIBODY SYSTEMS
A rigid body is defined as a system of particles whose
relative distances are forced to remain constant during
the motion. However like the approximation of a rigid
body as a particle, this assumption could not be strictly
true at all. In fact, all bodies deform as they move.
However, the approximation remains acceptable as long
as the deformations are negligible relative to the overall
motion of the body. Therefore, the concept of rigid
body elements should be applicable to most of the
popular practical mechanisms.

Normally each particle in a rigid body is located
by a constant position vector in a reference frame which
is attached to the body and moves along with it. This
point can be located in the global reference frame as
follows;

=Ty + A5 (1)

where as shown in Figure 1, 7 and 7; are the position
vectors that locate a particle and the center of mass
of the body with reference to the origin of the inertial
frame. Also 3, represents the position vector of the
point in the local body-fixed frame and A is the
rotation transformation matrix, which for a planar
system is as fallows;

Ao [cos ¢ —sin ¢] 2)
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Note that in this case 7y and ¢ are generalized coordi-
nates that locate the body in the plane.

A mechanical system or a mechanism is normally
considered as a set of rigid bodies which are connected
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Figure 1. Relation of body and inertial coordinate of a
point.
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by joints, influenced by forces, driven by prescribed
motions, and restricted by constraints. To specify the
configuration of a mechanism with nb rigid members at
any moment, a generalized coordinate system is chosen
as follows;

T
] (3)
where @; is the vector of the generalized Cartesian
coordinates for body i with dimension nd. For a planar
system, this vector can be written as;

g =[vi v ¢ (4)

The physical conditions imposed by the joints can be
expressed as algebraic equations in terms of generalized
coordinates and called the vector of holonomic kine-
matic constraint equations and can be written as;

3@ =[01(@ (D ne (@] (5)

where nc is the number of constraint equations. The
holonomic constraint equations can be constructed by
expression of the imposed conditions between any pair
of bodies connected by joints; i.e. in algebraic form
and in terms of generalized coordinates for any type
of joints like revolute, translational, cam-follower, etc.
Furthermore, the Jacobin matrix of the constraints
can be assembled in a systematic way for each of
them. This matrix that is denoted by ¢z(7) plays an
important role in the following theory and numerical
methods for finding the equilibrium position of each
mechanism.

Combining the Newton-Euler form of constrained
equations of motion with the kinematic (or constraints)
acceleration equations, one can arrive at a set of
algebraic and deferential equations that governs motion
of the system as follows:

6110

where M is the system mass matrix, g is the generalized
force vector, Ais the Lagrange multipliers vector, and
7 can be obtained by twice differentiation of the
constraint equations as follows [2, 3]:

5 = = ($qd) 4 — 2631 — b (7)

The Lagrange multiplier form of the equations of
motion which will be accepted (Eq. 10) is a mixed
system of differential-algebraic equations that must be
solved to determine the dynamic motion of the system.

g=1lad @& ... T

Equilibrium Analysis

A special analysis of a mechanical system that seeks to
find a configuration with zero velocity and acceleration
is called Equilibrium Analysis (EA). There are three
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methods for determining the equilibrium configuration.
The first of them which is called dynamic settling in-
volves integration of the equations of motion of the sys-
tem in time under the action of applied forces, and by
addition of artificial damping, until the system comes
to rest at an equilibrium configuration. It is worth
noticing that for such situations this method is the
only valid method for EA, but in general, this method
is computationally expensive and time consuming [4].
The second approach, which is called the equations of
equilibrium method, is based on the construction of
the equations of motion by assuming zero velocity and
acceleration and also solving the obtained equations
for an equilibrium configuration. This method is not
frequently used due to some difficulties in numerical
solution arising from ill-conditioning of the problem
and existence of unstable configurations. The third
method is based on the principle of minimization of
Total Potential Energy (TPE) for conservative systems.
This principle states that a conservative system is in
stable equilibrium condition if and only if the total
potential energy is at a strict relative minimum. This
method is computationally efficient by using alternate
minimization techniques. In this research work the first
and third methods are used to find the equilibrium
configuration of multibody systems.

The total potential energy of a system involves
two terms; the potential of the set of conservative
external forces which are assumed to be concentrated
at the center of gravity of the members and the elastic
potential of deformable elements.

In general, the related optimization problem can
be stated as follows:

Find 7 which minimizes U(g), subject to:
or (7) =0, kE=1,..1 (8)
The most efficient classical optimization methods need
to calculate the first and in some cases the second
derivatives of the objective functions (TPE) with re-
spect to the generalized coordinate.

In the theory of conservative force systems, the
gradient of total potential energy should equalize the
negative of the generalized applied forces. i.e.:

Uf =-Q* (9)

Now having the constraints vector, the Jacobian matrix
of constraints, and the gradient of objective function,
one can use most of the constrained optimization
techniques for finding the equilibrium configuration of
any mechanical system.

OPTIMIZATION TECHNIQUES
The equilibrium analysis of a multibody mechanism
leads to a constrained optimization problem (with
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Figure 2. Dual pendulum.

equality constraints) which minimizes the TPE of the
system. In general, assuming equality and inequality
constraints, the optimization problem can be stated as
follows:

Find 7 which minimizes U(q), subject to:

(b[\" (q_) :O k: 1,...,[

All the methods, which are available for the solution
of such problems, can be classified into two broad
categories; direct methods and indirect methods. In
direct methods constraints are handled in an explicit
manner whereas in most of the indirect methods the
constrained problem is solved as a sequence of uncon-
strained optimization problem.

Direct Solutions
In this study, three different methods are used for
direct solution, which are Sequential Linear Pro-
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Figure 3. Slider-crank mechanism.
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Figure 4. Four-bar mechanism.

gramming (SLP), Modified Method of Feasible Direc-
tions (MMFD) and Sequential Quadratic Programming
(SQP). In SLP method, one should start with an initial
point (1) (which does not need to be feasible) and solve
a series of linear programming problems by approxi-
mating the nonlinear objective and constraint functions
through the first-order Taylor series expanded around
the current variable vector (g;) [10, 11]. The resulting
LP problem is solved using the simplex method to
find the new variable vector, (F;+1). The SLP method
is an efficient tool for solving convex programming
problems with nearly linear objective and constraint
functions. Each of the approximating problems will be
a LP problem and hence can be solved quite efficiently

20 |
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Figure 5. TPE V.S program iteration for direct methods
for the Dual pendulum case.
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as the dual simplex method can be used. However,
this method may suffer the same limitations as the
simplex method. Prior information during the search
is not used in the subsequent iterations and, therefore,
the convergence rate slows down. For the EA of
mechanisms due to the use of simplex method, poor
search directions may be defined because of the high
nonlinear behavior of the objective function. Search
success is highly dependent on choice of the pattern of
the move limits which is relatively time consuming [10].

In MMFD method we choose a feasible starting
point which satisfies all the constraints and moves to
the new point according to the iterative scheme of
Jix1 = Gi +XiS;, where S; is the direction of movement
and A is the step length. The search direction S; is
found such that a small move in that direction violates
none of the constraints (feasible) and the value of
objective function can be reduced in that direction
(usable). This method is not suitable for equality
constraints and is computationally expensive due to
the addition of the slack variables [10]. One of the
best Nonlinear Programming (NLP) methods is the
SQP method. The quadratic programming problem
involves minimization of a quadratic function subject
to linear constraints. The theoretical base of this
method is related to the solution of a set of nonlinear
equations using the Newton’s method and derivation
of simultaneous nonlinear equations by applying the
Kuhn-Tucker conditions to the Lagrangian form of
the constrained optimization problem [10]. The cor-
responding Lagrange function of the problem has the
following form:

m !
L(@7) = V(@ + Y NG (D +Y Nemr @ (11)
J=1 k=1
Therefore, the original problem can be solved itera-
tively by solving the quadratic programming problem
in each step.

Indirect Methods
In these methods unconstrained optimization tech-
niques are used; nevertheless, it is necessary to convert
the problem to an unconstrained one. For a mechanical
system, we have the vector of nc generalized coordinate
system ¢, and the vector of nh independent constraint
equations ¢(q) = 0. Reference [3] presents a numerical
method for elimination of the dependent variables.
All the unconstrained optimization methods are
of iterative type, which start from an initial trial
solution and proceed toward the optimum point in a
sequential manner. All these methods require an initial
point and the difference between them arises from the
way that the new point in each computational step is
generated. Here, two types of these methods, namely,
Fletcher-Reeves (FR) method, and Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method are used. In the
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Figure 6. TPE V.S program iteration for indirect methods
for the Dual pendulum case.
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Figure 7. TPE V.S program iteration for direct methods
for the slider-crank case.

Fletcher-Reeves method, the first search direction is
obtained from S; = —Vf(X;) and the new point is
found from X, = X; + A7S;, where A is the optimal
step length in the direction S;. Also S; for i>1 is
evaluated from S; = =V f;, + %&_1. Note that
for a quadratic function, this method converges in n
cycles or less, where n is the number of elements of
the vector of the generalized coordinate system. But,
for ill-conditioned quadratics, the method may require
much more than n cycle and to reduce the error it is
necessary to restart the method periodically after any
m step, where it is an optional value.

In the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method, one starts with an initial point
and an n X n positive definite symmetric matrix [B]
as an initial estimate of the Hessian matrix of the
objective function, which is usually taken as the
identity matrix [I]. The search direction in this method
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Figure 8. TPE V.S program iteration for indirect methods
for the slider-crank case.

is obtained from S, = —[B;]Vf(X;) and the new
point from X,;y1 = X; + A}S;. New search directions
are obtained by updating the Hessian matrix as

T T T T
_ g; Bigi did; dig; Bi Bigid;
Bi""l - Bi + [1 + d?gi d?gi - d?g,i - d?g,i ’

where di = /\:SZ and g; — vfi+1 — Vfl

If A} are found accurately, the matrix [B;] retains
its positive definiteness. Otherwise, it might become
indefinite or singular. Therefore, the matrix [B;] may
need to be reset to the identity matrix periodically.

TEST CASES AND DISCUSSION

TEST CASES AND DISCUSSIONS
A set of examples are used to evaluate the performance
of the mentioned minimization methods for equilibrium
analysis. Three classical test cases are presented. A
combination of a general multibody dynamic solver
and an optimization code is developed for this purpose.
Also, the results of the artificial damping (AD) method
are found using this dynamic solver.

The entries of the dynamic code are mass prop-
erties of the members, geometric parameters of the
mechanism, constraints information, specifications of
the spring-damper-actuator sets, and external applied
loads. The mass properties of the mechanisms are
given in Table 1. Since the starting point in MMFD
method must be feasible, a procedure is developed to
find a feasible starting point. The convergence criteria

Table 1. Mass properties of test cases.

Case Member
1

Mass (Kg)

1
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Table 2. Equilibrium analysis results. Case 1.
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Coord | Direct Optimization techniques Indirect OPtimization
Member techniques AD
MFD SLP SQP FR BFGS
X 0.005 0.012 0.00 0.00 0.00 0.00
1 Y -0.502 -0.500 -0.500 -0.50 -0.50 -0.50
¢ -89.426 | -88.610 -89.902 -89.925 -90.024 -90.00
X 0.010 0.034 0.003 0.001 0.001 0.00
2 Y -1.505 -1.500 -1.501 -1.50 -1.50 -1.50
¢ -88.905 | -88.855 -89.815 -89.821 -89.845 -90.00
Function calls: 220 174 101 33 37
Table 3. Equilibrium analysis results. Case 2.
Coord | Direct Optimization techniques Indirect O[?timization
Member techniques AD
MFD SLP SQP FR BFGS
X 0.016 -0.001 0.000 0.00 0.00 0.00
1 Y -0.252 -0.250 -0.250 -0.25 -0.25 -0.25
¢ -86.440 | -90.276 -89.969 -89.887 -89.887 -90.00
X 0.575 0.544 0.546 0.545 0.545 0.545
2 Y -0.252 -0.250 -0.250 -0.25 -0.25 -0.25
[ 24.887 24.674 24.624 24.624 24.624 24.624
Function calls: 321 370 125 20 20

parameters and the initial values are the same for all

given in Table 2.

The second test case is a slider-

direct and indirect methods. The differences between
the results of equilibrium points and the number of
function calls are used for the sake of comparison
between the applied methods. Also, the plots of TPE
versus program iteration for each one of the test cases
are presented in Figures. 5-10. The first test case is
a dual pendulum as it is presented in Figure 2. The
results of the equilibrium analysis of this test case
and their comparison with the analytical solution are

crank mechanism shown in Figure 3. The results of the
equilibrium analysis for this test case are also shown in
Table 3. The third case shown in Figure 4 is a four-bar
mechanism. Table 4 gives the results of the equilibrium
analysis for this test case. It can obviously be seen
that by using the direct methods the best results were
obtained with the SQP technique. Also, the results
show that this method is considerably faster and more
precise than the two other methods. Also it can be
concluded that the indirect methods are superior to the

Table 4. Equilibrium analysis results. Case 3.

Coord Optimization techniques Indirect Optimization
Member techniques AD
MFD SLP SQP FR BFGS
X -0.310 0.437 -0.042 0.00 0.00 0.00
1 Y -0.389 0.244 -0.499 -0.50 -0.50 -0.50
1) 231.375 29.141 -15.084 | -89.977 -89.977 -90.00
X 0.216 1.559 0.917 0.10 0.10 0.10
2 Y -0.226 -0.242 -0.997 -0.10 -0.10 -0.10
1) 33.439 -46.793 | -18.849 0.00 0.00 0.00
X 1.525 2.122 1.958 0.20 0.20 0.20
3 Y 0.163 -0.486 -0.498 -0.10 -0.10 -0.10
1) -18.923 | 104.046 13.565 -90.00 -90.00 -90.00
Function calls: 271 186 163 34 34
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Figure 9. TPE V.S program iteration for indirect methods
for the four-bar case.
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Figure 10. TPE V.S program iteration for indirect
methods for the four-bar case.

direct methods in terms of accuracy and the number
of function evaluation. Note that the results of the
third test case show that the direct methods do not
converge while; the indirect methods converge with
slower convergence rate in comparison with previous
test cases.

CONCLUSIONS
This paper presents a comparison of different ap-
proaches to the nonlinear problem of equilibrium anal-
ysis in multibody dynamic systems. For this purpose
numerous nonlinear direct and indirect optimization
techniques have been applied to the solution of these
types of problems. The total potential energy of the
multibody system is defined as the objective function
for minimization. Three direct methods namely, SLP,
SQP, and MMFD and two indirect methods namely,
FR and BFGS were used. Also using the dynamic
solver without optimization techniques, the artificial

damping method was used in order to find the equilib-

rium point and serve as a base for comparison. Several
examples have been tested in order to compare the
different optimization methods with each other and
with the artificial damping method. They involve
various simple and complex planar mechanical sys-
tems. Because of high nonlinearity of the objective
function and constraint equations, the best results,
were obtained from the indirect methods with faster
convergence rate. Among direct methods the best
results were obtained from the SQP method although
the SLP method produces acceptable results, especially
for simple mechanisms.
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