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Computerized Ionospheric Tomography (CIT) is a method to 

reconstruct ionospheric electron density images by computing Total 

Electron Content (TEC) values from the recorded GPS signals. Due to 

the poor spatial distribution of GPS stations, limitations of signal 

viewing angle, and discontinuity of observations in the time and space 

domain, CIT is an inverse ill-posed problem. To solve these problems, 

two new methods are developed and compared with the initial method 

of Residual Minimization Training Neural Network (RMTNN). 

Modified RMTNN (MRMTNN) and Ionospheric Tomography based on 

the Neural Network (ITNN) are considered new methods of CIT. In all 

two methods, Empirical Orthogonal Functions (EOFs) are used to 

improve the accuracy of the vertical domain. Also, Back Propagation 

(BP) and Particle Swarm Optimization (PSO) algorithms are used to 

train the neural networks. To apply the methods for constructing a 3D 

image of the electron density, 23 GPS measurements of the 

International GNSS Service (IGS) with different geomagnetic indexes 

are used. To validate and better assess the reliability of the proposed 

methods, 4 ionosondee stations  have been used. Also, the results of the 

proposed methods have been compared to those of the NeQuick 

empirical ionosphere model. Based on the analysis and comparisons, 

the RMSE of the ITNN model at high geomagnetic activity in DOUR, 

JULI, PRUH, and WARS ionsonde stations are 1.22, 1.46, 1.18 and 

1.19 (1011 ele./m3), respectively. The results show that the RMSE of 

the ITNN model is less than other models in both high and low 

geomagnetic activities and ionosonde stations. 

Keywords: Total Electron Content, 

Tomography, Residual Minimization 

Training Neural Network, Ionospheric 

Tomography based on the Neural 

Network, GPS. 
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Introduction 

In the last two decades, the knowledge of the 

distribution of ionospheric electron density has 

been considered a major challenge for geodesy and 

geophysics researchers. To study the physical 

properties of the ionosphere, Computerized 

Ionospheric Tomography (CIT) indicated an 

efficient and effective manner. Usually, the value 

of Total Electron Content (TEC) is used as an input 

parameter to CIT. Then inversion methods are 
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used to compute electron density at any time and 

space. However, CIT is considered an inverse ill-

posed problem due to the lack of input 

observations and non-uniform distribution of TEC 

data. The ionosphere has temporal and spatial 

variations. Also, it has daily, monthly, and yearly 

frequencies. Due to the different time frequencies, 

ionosphere analysis is extremely important. The 

ionosphere has major importance to us because, 

among other functions, it influences radio 
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propagation to distant places on the earth, and 

between satellites and earth. The ionosphere plays 

an important role in space science, radio 

communication, and satellite positioning. During 

the solar activity periods, it has many variations 

and fluctuations. Therefore, it is very important to 

know how the electron density is distributed as a 

function of time and space. 
Many algorithms and methods are presented to 

model CIT. For the first time, 2-dimensional CIT 

was suggested by [1]. They used Algebraic 

Reconstruction Techniques (ART) to obtain the 

electron density. Kunitsyn et al. (2011) used 

ionospheric radio tomography based on data from 

high-orbital navigation systems [2]. The minimum 

Sobolev’s norm was suggested for finding the 

solution. Pokhotelov et al. (2011) used 4D 

tomography reconstruction to detect ionosphere 

anomalies in the high-latitude polar cap region [3]. 

Wen et al. (2012) presented a new tomographic 

algorithm, termed Two-Step Algorithm (TSA). In 

this method, the electron density is estimated in 

two steps; the Phillips Smoothing Method (PSM) 

is used to resolve the ill-conditioned problem, and 

the PSM solution is input as an initial value to the 

algebraic reconstruction technique [4]. Van de 

Kamp (2013) examined the ionosphere above 

Scandinavia by 4-dimensional tomography using 

the software package MIDAS from the University 

of Bath [5]. Ghaffari Razin (2015) expanded 3D 

ionosphere tomography by combining spherical 

harmonics and empirical orthogonal functions. 

The zero-order Tikhonov regularization is used for 

parameter estimations [6]. Ghaffari Razin and 

Voosoghi (2016) developed a local ionosphere 

tomography model over Iran using SCHs [7]. 

Although the results of all studies indicate the high 

efficiency of CIT, two major limitations can be 

considered to this method: first, due to poor spatial 

distribution of Global Positioning System (GPS) 

stations and limitations of signal viewing angle, 

CIT is an inverse ill-posed problem. Second, in 

most cases, observations are discontinuous in the 

time and space domain, so the density profiles can't 

be at any time and space around the world.     

Artificial Neural Networks (ANNs) are one of the 

new ideas to solve the mentioned problems. ANNs 

are a set of information processing systems that 

have been formed by simple processing elements 

called artificial neurons. Methods of artificial 

intelligence provide a valuable tool that makes it 

possible to model the nonlinear behavior of the 

ionosphere [8]. Ma et al., (2005) demonstrated the 

idea of using aNNs to solve the ipheric 

tomography [9]. They used Standard ANNs 

(SANNs) with a Back-Propagation (BP) algorithm 

to train the network. Also used ionosondee 

observations to improve the vertical resolution. 

After that, Hirooka et al., (2011) used the same 

ANNs to model the ionospheric electron density 

distributions [10]. They used Low Earth Orbit 

(LEO) observations as vertical constraints and 

updated neural weights using these pieces of 

information. Low accuracy in the vertical domain 

is a major disadvantage of these two studies. To 

solve the low accuracy in the vertical domain, 

Ghaffari Razin and Voosoghi (2016) used 

Empirical Orthogonal Functions (EOFs) as 

vertical constraints [11]. Using EOFs improved the 

accuracy of the vertical domain but accuracy in the 

time domain remains a major challenge.  
The goal of this paper is to improve CIT modeling 

using Neural Networks (NNs). Two methods of 

ionospheric tomography using ANNs are 

developed and compared. These methods include 

Modified Residual Minimization Training Neural 

Network (MRMTNN) and Ionospheric 

Tomography based on the Neural Network 

(ITNN). SANNs and Wavelet Neural Networks 

(WNN) have been used as base NNs. Back-

propagation (BP) and Particle Swarm 

Optimization (PSO) algorithms are used for 

training these methods (MRMTNN and ITNN). 

The main problem in previous models is their low 

temporal resolution. Therefore, in this paper, the 

idea of using WNN along with the PSO algorithm 

is proposed to improve temporal resolution. 

Observations of 30 days in 3 different geomagnetic 

activity indexes (Day Of Year (DOY): 354 to 363 

and 44 to 53 in 2013, 67 to 76 in 2012) are selected 

to apply the methods. Kp values less than 3 (𝐾𝑃 <
3) are considered as the quiet day, Kp values 

between 3 and 5 are considered as the medium 

condition, and Kp values greater than 5  are 

considered as the stormy days. The accuracy of the 

results is controlled with 4 ionosondee stations. At 

the ionosondee stations, the accuracy of the 

reconstructed electron density is evaluated. Also, 

all the results have been compared with the 

NeQuick empirical ionosphere model. 

Data and input observations 

The pixel-based tomographic reconstruction is 

implemented by using IGS data from 23 Global 

Navigation Satellite System (GNSS) stations (as 

http://en.wikipedia.org/wiki/Radio_propagation
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shown in Figure 1) for 3 periods with different 

geomagnetic activity (354 to 363 in 2013, 44 to 53 

in 2013, 67 to 76 at 2012). Receiver Independent 

Exchange format (RINEX) observation files with 

a sampling rate of 30 seconds have been 

downloaded from the Crustal Dynamics Data 

Information System (CDDIS) as a global data 

center of IGS [12]. The results are compared with 

the electron density derived from ionosondee data 

[13] and the NeQuick empirical model of electron 

density. As shown in Figure 1, 4 ionosondee 

stations DOUR (50.100N, 4.600E), JULI (54.600N, 

13.400E), PRUH (50.000N, 14.600E), WARS 

(52.200N, 21.200E) are located in the research area. 

So there is the possibility of a more accurate 

evaluation of the three proposed methods.  

 
Fig. 1. Distribution of GPS stations (black stars) and 

ionosondee stations (red circles). 

The spatial resolution along the longitude, latitude, 

and altitude is considered 0.50×0.50×30 (km). 

Thus, the total number of voxels is 40320. Using 

data from space weather prediction centers, these 

days have different geomagnetic activity indices. 

In Figure 2, the green bars indicate Kp values less 

than 3 (𝐾𝑃 < 3), the yellow bars show Kp values 

greater than 3 (5 ≥ 𝐾𝑃 ≥ 3), and the red bar 

demonstrates Kp values greater than 5 (𝐾𝑃 > 5). In 

all of the processing, DOY from 354 to 363, 44 to 

53, and 67 to 76 are considered as the quiet days, 

medium condition, and stormy days, respectively. 

 

 

 

 
Fig. 2. Kp index for 3 observation periods. 

Using ground-based GPS receivers, it is possible 

to compute Slant TEC (STEC). That is one of the 

most important data sources in ionospheric 

research. Carrier phase-derived STEC (STECL) 

and code pseudo-ranges STEC (STECP) are 

calculated with the following equations [14]: 

 

𝑆𝑇𝐸𝐶𝐿 =
(𝑓1𝑓2)2

40.3(𝑓1
2−𝑓2

2)
(𝐿1𝜆1 − 𝐿2𝜆2)                 (1) 

𝑆𝑇𝐸𝐶𝑃 =
(𝑓1𝑓2)2

40.3(𝑓1
2−𝑓2

2)
(𝑃2 − 𝑃1)                          (2) 

where 𝑓1and 𝑓2are signal frequency, 𝐿1and 𝐿2are 

the carrier phase measurements, 𝜆1 and 𝜆2 are the 

wavelengths, 𝑃1 and 𝑃2are the code pseudo-ranges 

measurements. Carrier phase-derived STECL 

depends on the ambiguity parameters while the 

code derived 𝑆𝑇𝐸𝐶𝑃observation is noisy. To 

reduce the multipath and noise level in the 𝑆𝑇𝐸𝐶𝑃, 

the carrier phase measurements are used to 

compute a more precise relative STEC observable. 

In this approach, the continuous arcs of 𝑆𝑇𝐸𝐶𝐿are 

adjusted to the mean value of the corresponding 
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code 𝑆𝑇𝐸𝐶𝑃value. The mean value is computed 

for every continuous arc using the following 

equation [14]: 

  

⟨𝑆𝑇𝐸𝐶𝑃 + 𝑆𝑇𝐸𝐶𝐿⟩ =
1

𝑁
∑ (𝑆𝑇𝐸𝐶𝑃 + 𝑆𝑇𝐸𝐶𝐿)𝑖

𝑁
𝑖=1              

         (3) 

where N is the number of continuous 

measurements contained in the arc. Subtracting eq. 

(1) from (3), the smoothed STEC can be derived 

[14]: 

𝑆𝑇𝐸𝐶𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 = ⟨𝑆𝑇𝐸𝐶𝑃 + 𝑆𝑇𝐸𝐶𝐿⟩ − 𝑆𝑇𝐸𝐶𝐿 =
𝑆𝑇𝐸𝐶 + (𝐵𝑟

𝑃 + 𝐵𝑠
𝑃) + 𝜀𝑃4                                         (4) 

where 𝐵𝑟
𝑃 and 𝐵𝑠

𝑃 is the receiver and satellite code-

delay Inter-Frequency Bias (IFB) in TECU 

respectively and 𝜀𝑃4is the combination of 

multipath and measurement noise on 𝑃1 and 𝑃2 in 

TECU. The STECsmoothed will appear in the 

observation equations as the main constraints.  

Modeling techniques for computerized 

ionospheric tomography 

ANNs have been demonstrated to be a tool for the 

prediction of ionospheric variations (time and 

space dependent), which is by nature highly non-

linear. A main benefit of using ANNs for the 

prediction of ionospheric variations over analytical 

methods is that no previous information on the 

nature of the non-linear relationships is needed. 

The first idea of using ANNs in ionospheric 

tomography was provided by [9]. They used the 

method described by [15] namely Residual 

Minimization Training Neural Network 

(RMTNN). In the next section, this method will be 

explained briefly. After introducing the details of 

the RMTNN method, the two new methods 

(MRMTNN and ITNN) presented in this paper are 

fully explained. The results of these two methods 

are compared and evaluated with the main method 

(RMTNN).   

Residual Minimization Training Neural 

Network (RMTNN) 

STEC as the integrated value of the ionospheric 

and plasmaspheric electron density can be 

calculated using the following equation [16]: 

𝑆𝑇𝐸𝐶𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 = ∫ 𝑁(𝑟, 𝑡)𝑑𝑠
𝑠

𝑟
+ 𝑃𝑟

𝑠                      (5)  

where 𝑁(𝑟, 𝑡) shows electron density at the 

position 𝑟(𝜙, 𝜆, ℎ)and observational time 𝑡, 𝑃𝑟
𝑠 is 

the contribution of the plasmaspheric electron 

density, r, and s indicate the total number of 

receivers and satellites, respectively [9]. The 

computational domain is divided into the 

ionospheric region (100 km to 1000 km) and the 

plasmaspheric region (above 1000 km). With 

discretize of Eq. (5) can be written [9]: 

𝑆𝑇𝐸𝐶𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 ≈ ∑ 𝛽𝑑𝑁(𝑟, 𝑡) + 𝑃𝑟
𝑠𝐷

𝑑=1              (6)  

where D shows mesh points and β corresponding 

weight in the numerical integration. To see the role 

of β in numerical integration, please refer to [17]. 

Using Eq. (6), it can be defined the cost function 

of the ANN model as follows [9]: 

𝐶1 = (∑ 𝛽𝑑𝑁(𝑟, 𝑡) + 𝑃𝑟
𝑠𝐷

𝑑=1 −

𝑆𝑇𝐸𝐶𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑)
2

                                                      (7)    

The most significant drawback of ionospheric 

tomography is the low accuracy in the vertical 

domain. To compute the vertical cost function, 

Empirical Orthogonal Functions (EOFs) are used 

[11]. Using this method, the neural network is 

trained and the vertical cost function is given as 

[11]: 

𝐶2 = ∑ (𝑁𝑔(ℎ) − 𝑁𝑔
𝐸𝑂𝐹)

2𝐺
𝑔=1                                  (8)  

where G is the total number of EOFs, 𝑁𝑔(ℎ) is the 

output of the neural network, and 𝑁𝑔
𝐸𝑂𝐹is the EOFS 

electron density. Thus, the total cost function is 

considered as follows [11]: 

𝐶 = 𝐶1 + 𝛾𝐶2                                                           (9)  

where 𝛾 is the balance parameter between two cost 

functions. To select the value of 𝛾, the amount of 

error in the cost function C is used. If the value of 

cost function C is below 2×1011 (el/m3), the neural 

network is converged to the optimal result. This 

value has been empirically determined. As a result, 

𝛾 = 0.94 is selected as the balance parameter.  

Modified Residual Minimization Training 

Neural Network (MRMTNN) 

In the RMTNN method, SANN is used. The 

standard sigmoid ANNs have a series of 

disadvantages. Typically, the initial weights of the 

ANNs are randomly selected in these networks. 

Randomly chosen initial weights of the network 

are increasing significantly training time. Also, 

when the activation function is sigmoidal type, 

there is always a remarkable change that the 

training algorithm will converge to local minima. 

Finally, there is no logical connection between the 
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activation function, optimal network structure, and 

the complexity of the mathematical model. 

Therefore, instead of using the conventional 

sigmoid activation functions can be used wavelet 

neural network. The WNN employing non-linear 

wavelet basis functions (named wavelets), which 

are localized in both the time and frequency space, 
has been extended as an alternative approach to the 

non-linear fitting problem [18]. In WNN the 

network output is given by the following equation 

[18]: 

𝑔𝜆(𝒙; 𝒘) = 𝑦̂(𝒙) = 𝜔𝜆+1 + ∑ 𝜔𝑗. 𝛹𝑗(𝒙)𝜆
𝑗=1 +

∑ 𝜔𝑖. 𝑥𝑖
𝑛
𝑖=1                                                                (10)  

In this equation, x is the input vector, 𝛹𝑗(𝒙) is a 

multi-dimensional wavelet that is constructed by 

the tensor product of m scalar wavelets, n is the 

number of inputs, λ is the number of hidden units 

and ω shows a network weight. Multi-dimensional 

wavelets can be calculated by the following 

equation [18]: 

𝛹𝑗(𝒙) = ∏ 𝜓(𝑧𝑖𝑗)𝑚
𝑖=1                                               (11)  

where ѱ is the mother wavelet and can be written 

[18]: 

𝑧𝑖𝑗 =
𝑥𝑖−𝑎𝑖𝑗

𝑏𝑖𝑗
                                                             (12)  

In Eq. (12), 𝑖 = 1, . . . , 𝑚 , 𝑗 = 1, . . . , 𝜆 + 1 and 

the weights ω are related to the translation (𝑎𝑖𝑗) 

and the dilation (𝑏𝑖𝑗) parameters. The choice of the 

mother wavelet depends on the applications. The 

activation function can be considered orthogonal 

wavelets or continuous wavelets. In this paper, we 

used the Mexican hat function as a mother wavelet. 
This wavelet has many benefits and also has 

shown satisfactory results in other applications 

[19, 20]. The analytical form of the Mexican hat 

function is as follows [19]: 

𝜓(𝑧𝑖𝑗) = (1 − 2𝑧𝑖𝑗
2 )𝑒−

1

2
𝑧𝑖𝑗

2

                                     (13)  

To optimize the initialization of the wavelet 

parameters, various methods have been proposed 

[21, 22]. The translation and dilation parameters 

are used as follows [23]:   

𝑎𝑖𝑗 = 0.5(𝑁𝑖 + 𝑀𝑖)                                                 (14)  

𝑏𝑖𝑗 = 0.2(𝑀𝑖 − 𝑁𝑖)                                                 (15)  

where 𝑁𝑖 and 𝑀𝑖 are defined as the minimum and 

maximum of input 𝒙𝑖. In the WNN, in addition to 

the network weights, translation and dilation 

parameters are updated.  

Ionospheric Tomography based on the Neural 

Network (ITNN) 

The usually used training algorithm for ANNs and 

WNN is the BP algorithm, which is a gradient-

based method. The BP algorithm easily falls into 

the trap of local minima, especially for complex 

function approximation problems. So the BP 

algorithm is weak to find a global optimal solution. 

Also, the speed of convergence to the optimal 

solution is very low in this algorithm. Other key 

issues in this algorithm can be considered: 

dependence on the initial values of the weights, as 

well as optimal selection of the parameters such as 

the learning rate and the momentum. This 

disadvantage can be removed by an exploration 

ability of the swarm intelligence algorithms such 

as PSO. Unlike BP, PSO is a global search and 

population-based algorithm that has been used for 

training neural networks, finding neural network 

architectures, tuning network learning parameters, 

and optimizing network weights. PSO avoids 

trapping in a local minimum, because it is not 

based on gradient information. The equations used 

in this algorithm are considered as follows [24]: 

𝑣𝑖
𝑡+1 = 𝑤 × 𝑣𝑖

𝑡 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) +

𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡)                                       (16)  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                                                    (17)  

where w is inertia weight, 𝑣𝑖
𝑡 is the velocity of 

particle i at iteration t, c1, and c2 are acceleration 

coefficients, rand is a random number within [0,1], 

𝑥𝑖
𝑡 defines the current location of particle i at 

iteration t, pbesti demonstrates the pbest of factor i 

at iteration t, and gbest is the best solution so far. 

In each iteration, the velocities of particles are 

calculated by Eq. (16). Then, the locations of 

particles are computed by Eq. (17). The particle 

positions will be varied until a stopping condition 

is met. 

Statistical analysis 

In this paper, results were analyzed based on Root 

Mean Square Error (RMSE), bias and correlation 

coefficient. These three indices are calculated as 

follows [25]: 

𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (𝑁𝑅

𝑖 − 𝑁𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒
𝑖 )

2𝑀
𝑖=1               (18) 

𝐵𝑖𝑎𝑠 =
1

𝑀
∑ (𝑁𝑅

𝑖 − 𝑁𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒
𝑖 )𝑀

𝑖=1                         (19) 

𝑅 = 1 −
∑ (𝑁𝑅

𝑖 −𝑁𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒
𝑖 )

2
𝑀
𝑖=1

∑ (𝑁−𝑁𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒
𝑖 )

2𝑀
𝑖=1

                                  (20) 
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where 𝑁𝑅 is the reconstructed value of electron 

density, 𝑁𝑖𝑜𝑛𝑜𝑠𝑜𝑛𝑑𝑒 is the observed value of 

electron density from ionosondee, 𝑁is the mean 

value of electron density and 𝑀is the number of 

sample elements. If the value of the RMSE and 

bias is close to zero, it indicates the high accuracy 

of the model. The correlation coefficient expresses 

the correlation between two variables. In other 

words, this index expresses the changes of two 

variables relative to each other. The value of this 

coefficient is in the range [0, 1]. If the correlation 

coefficient of two variables is close to one, it 

indicates their high correlation. Zero correlation 

coefficient indicates no correlation between two 

variables. 

Results and Discussion 

In the training part of all 3 methods (RMTNN, 

MRMTNN, and ITNN), input space included 4 

observations which are used to train and obtain the 

variations of the ionospheric electron density. 

Therefore, the predicted N is a function of 4 inputs 

and can be simply expressed mathematically 

according to the following expression [24]: 

𝑁𝑅 =
𝑓(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑡𝑖𝑚𝑒) (21) 

Figure 3 illustrates schematic diagrams of the data 

flow for pixel-based ionospheric tomography by a 

neural network with BP and PSO training 

algorithm.  

 
Fig. 3. Schematic diagram of the data flow for pixel-

based ionospheric tomography using neural network 

training with BP algorithm. 

It should be mentioned that in the case of using the 

PSO algorithm, in Figure (3), instead of updating 

the weights, the parameters of the PSO algorithm 

are updated. It should be noted that after extensive 

testing, the 4-18-1 structure was selected as the 

optimum structure for all 3 methods. In this 

structure, 4 represents the number of model inputs, 

18 represents the number of hidden layer neurons, 

and number 1 represents the model output. Figure 

4 illustrates the error curve of 3 methods in terms 

of RMSE at the testing step. 

 
Fig. 4. Error curve of 3 methods in terms of RMSE at 

the testing step. 

According to Figure 4, all 3 methods converge to 

the lowest error with 18 neurons in the hidden 

layer. The performance of the proposed methods 

(RMTNN, MRMTNN, and ITNN) is compared in 

terms of RMSE (1011 ele./m3) in the testing step 

and time of convergence (second) to the optimal 

solution. Table 1 shows this comparison. It should 

be noted that all model computations were done in 

a computer system with similar hardware and 

software. 

Table 1. Comparison of RMSE for the testing step of 

RMTNN, MR,MTNN and ITNN methods for periods 

of 354 to 363, 44 to 53, and 67 to 76. 

DOY 

RMSE in the testing step 

(1011 ele./m3) 

RMTNN MRMTNN ITNN 

354 to 

363 
0.97 0.91 0.84 

44 to 53 1.42 1.21 0.95 

67 to 76 2.14 1.77 1.38 

Table 2. Comparison of times of convergence of 

RMTNN, MR, MTN,N, and ITNN methods for 

periods of 354 to 363, 44 to 5,3, and 67 to 76. 

DOY 

Time of convergence 

(second) 
RMTNN MRMTNN ITNN 

354 to 

363 
529 479 421 

44 to 53 580 524 483 

67 to 76 634 597 533 

Using the results presented in Tables 1 and 2, the 

difference between the methods becomes 

apparent. The time of convergence to the optimal 

solution and RMSE for the testing step in the 

ITNN method is less than the MRMTNN and 
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RMTNN methods. The time of convergence to the 

optimal solution is considerably reduced in ITNN 

method with respect to RMTNN method (original 

method). This result reflects the fact that using 

WNN with PSO training algorithm (ITNN 

method) computational speed is increased. 

Another very important point in Tables 1 and 2 is 

that the RMSE in the testing step at all 3 methods 

has increased in a period of 67 to 76. In other 

words, in periods of high geomagnetic activity, all 

3 methods displayed results with lower accuracy 

compared to the quiet and medium conditions.  

Validation, verification, and reconstruction of 

electron density 

After optimization of neural networks (SANN and 

WNN) in terms of network structure (4-18-1), 

RMSE and time of convergence to the optimal 

solution at the testing step, it is possible to validate 

of accuracy of results for all 3 methods. For this 

purpose, in the geographical positions of 4 

ionosondee stations, electron density was 

reconstructed using 3 methods and compared with 

the corresponding ionosondee electron density. 

This comparison has been done at a height of 100 

to 600 km with 50 km altitude intervals. The 

RMSE and bias statistical indicators are used to 

describe the error values. It should be noted that 

RMSE is often used to verify the reliability of the 

proposed method. All computations were 

performed for 3 different periods of geomagnetic 

activities. Tables 3, 4, 5 and 6 represent 

computations in 4 ionosondee stations (DOUR, 

JULI, PRUH and WARS). 

Table 3. Averaged RMSE (1011 ele./m3) and bias (1011 

ele./m3) in selected heights (100 to 600 km with 50 km 

height interval) over DOUR ionosondee station 

 354 to 

363 

44 to 

53 

67 to 

76 

RMTNN RMSE 1.18 1.32 1.61 

Bias 1.02 1.18 1.44 

MRMTNN RMSE 0.92 1.24 1.49 

Bias 0.81 1.03 1.21 

ITNN RMSE 0.52 0.89 1.22 

Bias 0.43 0.72 0.97 

The results in Table 3 demonstrate that the RMSE 

and bias of the ITNN method are less than the other 

two methods. It means that by using WNN with the 

PSO training algorithm, the accuracy of the 

method is considerably increased. On the other 

hand, in comparison with the original method 

(RMTNN) proposed by [9], the ITNN method is 

improved electron density reconstruction. It 

should be noted that even the MRMTNN method 

is also more accurate than the RMTNN method. In 

other words, by varying the SANN to WNN, 

results improved. Another important point is that 

all 3 methods have a lower accuracy during high 

geomagnetic activity. Table 4 demonstrates the 

results of RMSE and bias analysis in the JULI 

ionosondee station. 

   Table 4. Averaged RMSE (1011 ele./m3) and bias 

(1011 ele./m3) in selected heights (100 to 600 km 

with 50 km height interval) over JULI ionosondee 

station 

 354 to 

363 

44 to 

53 

67 to 

76 

RMTNN RMSE 1.42 1.84 2.03 

Bias 1.21 1.52 1.93 

MRMTNN RMSE 1.23 1.42 1.79 

Bias 1.12 1.26 1.44 

ITNN RMSE 0.88 1.19 1.46 

Bias 0.71 1.11 1.30 

The obtained results in this station represent the 

superiority of the ITNN method with respect to the 

other two methods. Results for the PRUH 

ionosondee station are shown in Table 5. 

Table 5. Averaged RMSE (1011 ele./m3) and bias (1011 

ele./m3) in selected heights (100 to 600 km with 50 km 

height interval) over PRUH ionosondee station 

 354 to 

363 

44 to 

53 

67 to 

76 

RMTNN RMSE 1.09 1.27 1.46 

Bias 0.88 1.09 1.27 

MRMTNN RMSE 0.79 1.06 1.21 

Bias 0.55 0.89 0.94 

ITNN RMSE 0.54 0.81 1.18 

Bias 0.47 0.72 0.93 

In PRUH ionosondee station, the obtained results 

from ITNN method is accurate than the RMTNN 

and MRMTNN methods. In quiet and medium 

conditions, the superiority of ITNN method is 

much clearer than the stormy conditions.   
Table 6. Averaged RMSE (1011 ele./m3) and bias (1011 

ele./m3) in selected heights (100 to 600 km with 50 km 

height interval) over WARS ionosondee station 

 354 to 

363 

44 to 

53 

67 to 

76 

RMTNN RMSE 1.14 1.32 1.58 

Bias 0.91 1.13 1.34 

MRMTNN RMSE 0.97 1.21 1.43 

Bias 0.75 1.03 1.11 

ITNN RMSE 0.79 0.98 1.18 

Bias 0.66 0.94 1.02 
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Another important point that can be interpreted 

from the above tables is that the RMSE of the 

models in the JULI ionosondee station is more 

than the other three stations. Referring to Figure 1, 

it can be seen that this ionosondee station is farther 

from the GPS station than other ionosondee 

stations. This factor has reduced the accuracy of 

modeling in this station. For analysis of the 

accuracy of the methods in ionospheric electron 

density reconstruction, results were compared with 

ionosondee direct measurements. Figure 5 

indicates the scatter plot for RMTNN, MRMTNN, 

and ITNN electron density with corresponding 

electron density from the ionosondee at 3 periods 

with lines of best fit shown for all cases.  

 

 

 
Fig. 5. Scatter plots for ionosondee electron density 

(1011 ele./m3) in vertical axes and corresponding 

reconstructed electron density (1011 ele./m3) in 

horizontal axes using RMTNN (top), MRMTNN 

(middle), and ITNN (bottom) in 3 periods 354 to 363, 

44 to 53 and 67 to 76. 

Using Figure 5, it is visible that the ITNN method 

is highly correlated to ionosondee measurements 

with a correlation coefficient (R) of 0.9588. The 

values of the correlation coefficient between 

MRMTNN and RMTNN with ionosondee 

measurements are 0.8706 and 0.8594, 

respectively. These results again indicate that the 

original ionospheric reconstruction method 

(RMTNN) is improved.  

After assessing the accuracy of the proposed 

methods, it is possible to draw profiles of time-

dependent ionosphere electron density profiles. 

The results of this analysis for the ITNN method 

are shown in Figures 6, 7, and 8. In these figures, 

reconstructed electron density profiles using ITNN 

were compared with the corresponding ionosondee 

profiles and NeQuick empirical ionosphere model 

electron density. All these comparisons have been 

conducted for the height of 350 km at 3 periods of 

geomagnetic activity (354 to 363, 44 to 53 and 67 

to 76). The NeQuick is a quick-run ionospheric 

electron density model particularly designed for 

trans-ionospheric propagation applications. The 

NeQuick gives the electron density for positions in 

the ionosphere with height, geocentric latitude, 

and geocentric longitude as coordinates on a 

spherical earth. The model values depend on solar 

activity (given by monthly-mean sunspot number 

R12 or 10.7 cm solar radio flux F10.7) season 

(month) and time (Universal Time). 

 

Fig. 6. Comparison of daily variation of electron 

density (1011 ele./m3) at 10 days (354 to 363) for 

ITNN, ionosondee, and NeQuick models over PRUH 

ionosondee station at the altitude of 350 km. 

According to the results of Figure 6, ITNN 

reconstructed electron densities on most days are 

very close to the ionosondee electron density 

profiles. It should be noted that the NeQuick model 

has shown better results in some days (358, 359 

and 360). The greatest value of the difference 
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between the ionosondee and ITNN electron 

density (dN=Nionosondee - NITNN) has happened on 

the DOY of 360. According to Figure 2, DOY of 

360 has high geomagnetic activity with respect to 

the other days in this period. Figure 7 represents 

the electron density profiles for the period of 44 to 

53.  

 
Fig. 7. Comparison of daily variation of electron 

density (1011 ele./m3) at 10 days (44 to 53) for ITNN, 

ionosondee, and NeQuick models over PRUH 

ionosondee station at an altitude of 350 km. 

 The results in Figure 7 show the high accuracy of 

the ITNN method. In all days, the ITNN model 

reconstructed electron density better than the 

NeQuick model. The results of the time-dependent 

electron density profile for the period of 67 to 76 

are shown in Figure 8. 

 
Fig. 8. Comparison of daily variation of electron 

density (1011 ele./m3) at 10 days (67 to 76) for ITNN, 

ionosondee and NeQuick models over PRUH 

ionosondee station at an altitude of 350 km. 
 

According to Figure 8, on some days (72, 75, and 

76), the NeQuick model has higher accuracy with 

respect to the ITNN method. In other words, these 

days, the value of dN=Nionosondee – NNeQuick is less 

than the value of dN=Nionosondee - NITNN. Using these 

Figures (6, 7 and 8), it is obvious that the peak of 

electron density occurs between 08:00 to 10:00 UT 

and also temporal variation of ionospheric electron 

density can be seen clearly.    

Discussion and conclusion 
In this paper, voxel-based ionospheric tomography 

is solved using Artificial Neural Networks 

(ANNs). Three methods of ionospheric 

reconstruction were compared and evaluated. 

Residual Minimization Training Neural Network 

(RMTNN), Modified RMTNN (MRMTNN) and 

Ionospheric Tomography based on the Neural 

Network (ITNN) were studied in this paper. In the 

RMTNN method, Standard ANN (SANN) with a 

Back-Propagation (BP) training algorithm is used 

to reconstruct the ionosphere. Wavelet Neural 

Network (WNN) is used as a base network in the 

MRMTNN method. Also, the BP algorithm is used 

to train the network. In the ITNN method, instead 

of the BP algorithm and speeding up the 

convergence to the optimal solution, the Particle 

Swarm Optimization (PSO) algorithm is used. All 

3 methods were evaluated using IGS data in 

central Europe. To evaluate the accuracy of the 

proposed methods, 4 ionosondee stations were 

used. Three time periods (354 to 363, 44 to 53, and 

67 to 76) with different geomagnetic activity 

indexes were used to evaluate the effectiveness of 

the models in different conditions. The time of 

convergence to the optimal solution and RMSE in 

the testing step were compared in the proposed 

methods. These two indexes in the ITNN method 

were less than the MRMTNN and ITNN methods. 

After the optimization of neural networks (SANN 

and WNN) in terms of RMSE and convergence 

speed, the accuracy of the proposed methods was 

investigated in ionosondee stations. RMSE and 

bias values for all 3 methods were computed. The 

obtained results represent that the ITNN method 

was superior to the other two methods. It means 

that by using WNN with the PSO training 

algorithm, the accuracy of the method 

considerably increased. Also the scatter plot for 

ionosondee electron density with corresponding 

electron density predictions from three methods 

computed. In this case, the ionosondee electron 

density is highly correlated to ITNN with a 

correlation coefficient (R) of 0.9588 and the 

lowest correlated with a correlation coefficient of 

0.8594 in RMTNN.  

The results of this paper have shown that the ITNN 

model has a high accuracy in modeling the spatio-

temporal variations of ionospheric electron 

density. Also, this model is more accurate than the 

empirical ionosphere model in the period of high 

geomagnetic activities. The ITNN model has the 

capability of local modeling of electron density 

and provides the density value with high accuracy 

by entering the latitude, longitude, altitude, and 

time parameters. Therefore, it can be an alternative 

to mathematical and empirical ionosphere models. 
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The presented new model has the limitation of not 

considering effective solar and geomagnetic 

parameters in the modeling step as input 

parameters of the model. Therefore, in order to 

continue the research, solar and geomagnetic 

parameters can be considered as input in the 

modeling step. Also, the number of used stations 

can be reduced and the accuracy of spatial 

modeling can be evaluated more accurately. 
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