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This paper investigates the buckling behavior of functionally 

graded nanocomposite beams reinforced by nano clay. Accordingly, 

the specimens were prepared, and the experimental tensile and 

buckling tests were carried out. The Young's modulus of epoxy/clay 

nanocomposite for functionally graded and uniformly distribution 

nano clay are estimated through a model based on the genetic 

algorithm approach. Also, the first-order shear deformation beam 

theory is applied for a simply supported beam, and the governing 

equations are derived using the Hamilton principle. Moreover, the 

influence of nanoparticles on the buckling load of a beam is 

presented. A comparison study is conducted to assess the efficacy and 

accuracy of the present analysis. A comparison of theoretical 

analysis with the experimental results demonstrated high accuracy. 

 

Introduction 

Nanocomposite structures exhibit superior 

properties such as high strength/stiffness to weight 

ratio and greater resistance to environmental 

degradation compared to conventional metallic 

materials. Hence, they are widely used in 

aerospace, naval, civil, and mechanical 

engineering applications. The use of high-strength 

materials in such applications leads to slender 

sections, thus making buckling a primary mode of 

failure of the member when subjected to axial 

compressive forces. In addition to the filler 

properties, the material properties of polymer 

nanocomposites are largely dependent on the 

interface area and intensity of intermolecular 

interaction between the filler and matrix. 

However, in recent years polymer matrix-based 
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nanocomposites have been attracting researchers' 

attention by offering properties significantly better 

than those of conventional particulate or fibrous 

polymeric composites [1-2]. This greater interest 

is due to the fact that some types of nanoparticles 

are being incorporated into polymeric resins to 

fabricate materials with increased performance. 

The nanoscale particles possess enormous surface 

area. Hence, the interfacial area between the two 

intermixed phases in a nanocomposite is 

substantially larger than in traditional composites, 

which results in increased bonding between the 

particles and the matrix. As such, several 

nanocomposites' mechanical, thermal, and 

electrical properties are observed to be better than 

those of conventional micro composites or neat 

matrix resin [3–10]. The functionally graded 

material (FGM) is a novel type of composite 
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material whose mechanical properties smoothly 

and continuously vary in a preferred direction [11-

14]. 

With a reasonable graded distribution, the 

dispersion of nanofillers in the polymer matrix can 

effectively use reinforcements. To address the 

effects of nanofiller distributions on the 

mechanical behaviors of functionally graded (FG) 

polymer-based nanocomposites, different types of 

distributions have been introduced and employed 

in the literature, such as the uniform distribution 

(UD), FG-V shape, FG-O shape, and FG-X shape 

[15-20]. All existing functions to describe the 

nanofiller distribution law are not adjustable since 

no adjustable parameter is included. The 

distribution law with adjustable parameters can 

lead to continuously graded mechanical properties 

for the nanofiller-reinforced polymer 

nanocomposites. However, no such law has been 

reported yet. An adjustable distribution is believed 

to have great potential for introducing a novel type 

of nanocomposite and can be used to optimize the 

mechanical performances of the nanofiller-

reinforced structures. 

This work studies the mechanical buckling of 

functionally graded (FG) nanocomposite beams 

reinforced by nano clay. To this end, the 

specimens were prepared, and the experimental 

tensile and buckling tests were carried out. 

The Young's modulus of epoxy/clay 

nanocomposite for functionally graded and 

uniformly distribution nano clay are estimated 

through a model based on the genetic algorithm 

approach. Also, the first-order shear deformation 

beam theory is applied for a simply supported 

beam, and the governing equations are derived 

using the Hamilton principle. Moreover, the 

influence of nanoparticles on the buckling load of 

a beam is presented. A comparison study is 

conducted to assess the efficacy and accuracy of 

the present analysis. A comparison of theoretical 

analysis with the experimental results 

demonstrated high accuracy. 

Experimental Procedure 
The specimens were tested according to ASTM 

D638 with three repeats. The tension tests were 

carried out using a Gotech universal testing 

machine (Model GT-AI5000L) with a crosshead 

speed of 50 mm/min. 

 

 

Materials 

The polymer matrix used in this study was an 

Epoxy with the trade name PR7000 made by AL 

TANNA Co. (Germany), with a density of ρ =
2.25g/ml. The hardener was mixed in a ratio of 

10:1. The nanofiller was US7810 made by U.S. 

Research Nanomaterials Inc., USA. 

Mechanical properties 

The material compositions of the nanocomposites 

for uniform distribution are listed in Table 1. In 

this table, wt. % is considered as the weight 

percent. 

Table 1: Sample compositions 

Sample 

No. 
Epoxy (wt%) 

Nano Clay 

(wt%) 

1 100 - 

2 97 3 

3 95 5 

4 93 7 

 

For FG distribution, the preparation procedure for 

uniform distribution was done for samples with 1 

mm thicknesses. The thickness of each sheet was 

1 mm and four sheets with different nano particles 

weight percent (pure, 3 wt%, 5 wt%, and 7 wt%) 

were used to make FG nanocomposite. The values 

of the nanocomposites’ Young’s modulus for FG 

and uniform distribution of nano clay are shown in 

Fig.1. 

 
Figure 1: Young’s modulus of nanocomposites with 

different distributions of nanoparticles 

It is shown that Young's modulus begins to 

increase up to 5 wt% of nano clay and then 

decreases. Therefore, Young's modulus is 

generally larger for FG distribution than the 

corresponding values for uniform distribution of 

https://en.wikipedia.org/wiki/Young%27s_modulus
https://en.wikipedia.org/wiki/Young%27s_modulus
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nano clay. The agglomeration of nano clay 

particles on a 7 wt% percentage of nano clay can 

be seen in epoxy/clay nanocomposite. This effect 

verifies the decrement of Young's modulus 

compared with other specimens. 

Mechanical Buckling Tests 

The mechanical buckling tests were carried out on 

columns made from FG and uniformly distribution 

nanocomposite using a beam apparatus from TQ, 

England (Model SM1005). The test specimens had 

a rectangular cross-section 0.02m × 0.004 m and 

a length of 0.2m with simply supported at both 

ends.  

Mathematical Modeling 

In computer science and operations research, 

genetic algorithm (GA) is a metaheuristic 

inspired by the process of natural selection that 

belongs to the larger class of evolutionary 

algorithms (EA). Genetic algorithms are 

commonly used to generate high-quality 

solutions to optimization and search problems 

by relying on bio-inspired operators such as 

mutation, crossover, and selection. The GA 

method searches for the best alternative (in the 

sense of a given fitness function) through 

chromosome evolution [21]. The basic steps in 

the GA analysis are shown in Figure 2. 

 
 

Figure 2: High-level description of the GA 

As shown above, an initial population of 

chromosomes is randomly selected firstly. Then 

each chromosome in the population is evaluated in 

terms of its fitness (expressed by the fitness 

function). Next, a new population of chromosomes 

is selected from the given population by giving a 

greater chance to select chromosomes with higher 

fitness, called the reproduction operation. The new 

population may contain duplicates. If given 

stopping criteria are not met, including no chance 

in the old and new population and specified 

computing time, some specific genetic-like 

operations are performed on chromosomes of the 

new population. These operations produce new 

chromosomes called offspring. The same steps of 

this process, evaluation and reproduction 

operation, are then applied to the chromosomes of 

the resulting population. The whole process is 

repeated until the given stopping criteria are met. 

The best chromosome expresses the solution in the 

final population. In this paper, the “1 − Radj
2 “ is 

introduced as a fitness function that is to be 

minimized. “Radj
2 ” is the accuracy criterion of an 

arbitrary mechanical property function (such as 

Young’s modulus). “Radj
2 ” is defined as a process 

that is demonstrated below. The mechanical 

property is the function of a nano clay weight 

percentage and “Radj
2 ” is a function of coefficients 

which are introduced below. Mi is considered as 

the mechanical properties and “W” as the nano 

clay weight percentage. The Mi is expressed as a 

polynomial function of “W” as follows:  

Mi =  ∑ ajiW
j

4

j=0

 
(3.1) 

Now, the coefficients aji are found by maximizing 

the accuracy of a polynomial function. The 

equations can be written as:  

Radj
2 = 1 −

VARE

VART
 

(3.2) 

in which   

VARE = SSErr (n − k − 1)⁄  (3.3) 

VART = SSTot (n − 1)⁄  (3.4) 

SSTot = ∑(yi − y̅)2

n

i=1

 (3.5) 

https://en.wikipedia.org/wiki/Young%27s_modulus
https://en.wikipedia.org/wiki/Computer_science
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https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Search_algorithm
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
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SSErr = ∑(yi − Mi)
2

n

i=1

 (3.6) 

y̅ =
1

n
∑ yi

n

i=1

 (3.7) 

Mi(W) = a0i + a1iW + a2iW
2

+ a3iW
3 

(3.8) 

In the GA, the configuration chosen was as 

follows: n = 4 is the number of experiments and 

k = 0 is the number of duplicated experiments and 

yi shows the experimentally measured mechanical 

properties. The crossover probability was equal to 

0.8, and the probability of mutation was equal to 

0.2 in equations. After minimization of “1 − Radj
2 “ 

using MATLAB, factors aji are obtained after 

approximately 40 generations as the number of 

iterations. The initial values of  aji which have 

been selected randomly are initial populations. 

Obtaining the  aji coefficients, Young’s modulus 

can be expressed as functions of nano clay weight 

percentage as follows: 

E = −25.145w + 14.276w2

+ −1.432w3

+ 115.108 

(3.9) 

Where, w is the nano clay weight percentage. To 

investigate the validation of the present results, 

comparison studies are carried out for the Young 

modulus of uniform distribution nanocomposites 

as presented in Table 2. 

Table 2: Comparison of Young’s modulus for uniform 

distribution nanocomposites 

Nano clay 

weight 

percentage 

Theoretical 

predictions 

(Mpa) 

Experimental 

Results 

(Mpa) 

pure 115.108 115.108 

3% 129.493 129.486 

5% 167.283 167.258 

7% 147.441 147.379 

The compression between theoretical predictions 

and experimental data shows the high accuracy of 

the present analysis. Equation 3.9 can be used to 

derive the suitable relation for Young’s modulus 

of functionally graded distribution. The specimen 

with functionally graded distribution consists of 

four perfectly bonded sheets with a total thickness 

of 4 mm. Each sheet has 1 mm thickness with 

different nanoparticles weight fractions (pure, 3 

wt.%, 5 wt.% and 7 wt.%). The Young’s modulus 

can be written as: 

E(z) = −25.145(2[z] + Sgn[z])
+ 14.276(2[z]
+ Sgn[z])2

+ −1.432(2[z]
+ Sgn[z])3

+ 115.108 

(3.10) 

As mentioned before, the Young modulus is 

assumed to vary as a function of the thickness 

coordinate z. After a simple variable change as z =
z̅ + 2, the coordinate z̅ changes within −2 ≤ 𝑧̅ ≤
2. Equation 3.10 can be verified by employing the 

buckling analysis of functionally graded 

nanocomposite beams under axial compressive 

load. 

Theoretical Formulation 

The formulation is presented based on the 

assumptions of the first-order shear deformation 

beam theory. According to this theory, the 

displacement field can be written as [22]: 

),(),(

)(),(

0 zxwzxw

xzzxu

=

= 

 

 

(4.1) 

Given the displacement field in Equation 4.1, the 

strain displacement relations are given by [22]: 

dx

dw

x

w

z

u

dx

d
z

x

u

xz

xx

+=



+




=

=



=






 

 

 

(4.2) 

A functionally graded beam with rectangular 

cross-section is shown in Figure 3.  

 
Figure 3: Schematic of the problem studied. 

The thickness, length, and width of the beam are 

denote by , , Lh and b  , respectively. The yx −  

plane coincides with the midplane of the beam and 

the z̅-axis located along the thickness direction. 
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The Young modulus E  is assumed to vary as a 

function of the thickness coordinate variable 

z̅ (−2 ≤ 𝑧̅ ≤ 2). The constitutive relations for the 

functionally graded beam are given by [23]: 

xzxz

xxxx

zG

zE





)(

)(

=

=

 

 

(4.3) 

Where, )(E, , zxzxx   and )(G z are the normal 

stress, shear stress, and the Young and shear 

modulus, respectively. The shear modulus can be 

written as [24]: 

)1(2

)(
)(

+
=

zE
zG             (4.4) 

Where,   is the Poisson ratio, estimated with the 

aid of the equation [25]: 

)1(6

21





+

−
=

E

y
           (4.5) 

Where, y is the yield strength and equals to 

29.725 Mpa based on the tensile test result. In fact, 

The total yield strength for all functionally graded 

samples can be obtained from the tensile test and 

calculated using machine software like Young's 

modulus for functionally graded samples. Also, 

the Poisson ratio is assumed to be constant through 

the thickness of a beam [26]. So, equation 4.5 can 

be used to estimate the Poisson ratio for all 

samples. Also, u and w  are the displacement 

components in the −x  and z -directions, 

respectively.  

The potential energy can be expressed as [22]: 

 +=

v

xzxzxxxx vU d )(
2

1
                (4.6) 

After substituting Equation (4.2) and Equation 

(4.3) with Equation (4.6) and neglecting the 

higher-order terms, we obtain 

dv
dx

dw

dx

dw
zG

dx

d
z

dx

d
zzEU

v

)]))()((())()([(
2

1
+++








=  



(4.7) 

The width of a beam is assumed to be constant, 

which is obtained by integrating along y over .v

Then, Equation (4.7) becomes 

 ++
+

+







=

L

dx
dx

dw

dx

dwA

dx

d
DU

0

22
2

)]2)((
)1(2

[
2

1





 

(4.8) 

Where, 



+

−

=

2

2

d)(

h

h

s zzGbKA 

+

−

=

2

2

2
d)(

h

h

zzEzbD         (4.9) 

Where, A , D  and sK  are the shear rigidity, 

flexural rigidity and shear correction factor, 

respectively. The beam is subjected to the axial 

compressive load P  as shown in Figure 4. The 

work done by the axial compressive load can be 

expressed as [22]: 

x
x

w
PW

L

d
2

1
2

0













=                                    (4.10) 

We apply the Hamilton principle to derive the 

equilibrium equations of beam as follows [23]: 

 =+−

t

tWUT

0

0d )(        (4.11) 

Where, T  is the kinetic energy. Substituting 

Equation (4.8) and Equation (4.10) into Equation 

(4.11) leads to the following equilibrium equations 

of the functionally graded beam based on the first-

order shear deformation theory 

0)()(
2

2

=−−
dx

d
A

dx

wd
AP


                (4.12) 

0)()(
2

2

=+−
dx

dw
A

dx

d
D 


                (4.13) 

Stability Analysis 

The boundary conditions for the simply supported 

column are given by: 

Lxandxat
dx

d

dx

wd
w ==== 0,

2

2 
      (5.1) 
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By differentiating Equation (4.13) and then using 

Equation (4.12), we obtain  

)()(
2

2

3

3

dx

wd
P

dx

d
D =


                   (5.2) 

Equation (4.12) can be solved for 
dx

d
 

)(
)(

)(
2

2

dx

wd

A

AP

dx

d −
=


                    (5.3) 

By substituting Equation 5.3 into 5.2 and applying 

the boundary conditions, the smallest value of the 

critical buckling load of the nanocomposite beam 

is derived as follows, which gives a simple 

buckling mode and shape:  

AK

D

L

D
Lp

s

cr
2

2

)(1

)(





+

=       (5.4) 

Where, sK  can be expressed as [26]: 

( )( )22116

5

VV
K s

 +−
=         (5.5) 

Where, 1  and 2  are Poisson’s ratios of the nano 

clay and the epoxy, respectively. Whereas, 1V  and 

2V  are the nano clay and the epoxy volume 

fractions, respectively. The quantity of 
)( 2211 VV  + for present nanocomposite is 

infinitesimal and the shear correction factor can be 

assumed to be 6/5=sK [27]. 

Results and Discussion 

This paper investigates the mechanical buckling of 

the simply supported functionally graded 

nanocomposite beams based on the first-order 

shear deformation theory. The material 

compositions of the nanocomposite beam and 

Young's modulus are listed in Tables 1 and 2, 

respectively. Also, the effect of nanoparticles with 

different weight fractions on the Theoretical 

buckling load is shown in Figure 5. It is noticed 

that buckling loads for the beams with uniform 

distribution of nanocomposite are generally lower 

than the corresponding values for the beams with 

the functionally graded distribution of 

nanocomposites. Also, it is seen that increasing 

nanoparticles' weight percentage up to 5 wt% leads 

to an increase in the buckling loads for the beams 

with uniform distribution of nanoparticles. 

However, an increase in the amount of nano clay 

up to more than 5 wt% leads to a decrease in the 

buckling load.  

 
Figure 4: The effect of nanoparticles with different 

weight fractions on the buckling load 

The comparison between theoretical and 

experimental data of buckling load for uniform and 

functionally graded distribution nanocomposites is 

shown in Table 3. As observed, there is good 

agreement between the results. Thus, the presented 

approach for analysis of mechanical buckling of 

uniform and functionally graded distribution 

nanocomposites has high accuracy. 

Table 3: Compression between theoretical and the 

experimental data of buckling load 

Nano 

clay 

(wt%) 

Theoretical 

Buckling 

Load (N) 

Experimental 

Buckling 

Load (N) 

Percentage 

of Error 

(%) 

pure 2.95 3.1 4.8 

3% 3.38 3.5 3.4 

5% 4.38 4.7 6.8 

7% 3.78 4.2 10 

FG 5.27 5.8 9.1 

The results presented in Table 3 show that the 

percentage of errors between the theoretical and 

experimental results is acceptable. This difference 

is due to various factors, including the error related 

to Young's modulus modeling and the assumptions 

related to the displacement field. 

Conclusions 

This study investigates the mechanical buckling of 

epoxy/clay nanocomposite columns with uniform 

and functionally graded (FG) distributions of nano 

clay. Young's modulus for the FG distribution of 

nano clay was generally more significant than the 

corresponding value for the uniform distribution of 

nano clay. After increasing the nanoparticles' 

weight fractions, Young's modulus increased up to 

https://en.wikipedia.org/wiki/Young%27s_modulus
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5 wt.% nano clay. Also, increasing the amount of 

nano clay up to more than 5 wt% leads to a 

decrease in Young's modulus. Results show that 

GA can be considered an acceptable optimization 

research technique to identify Young's modulus of 

nanocomposites with maximum accuracy. The 

buckling load for the uniform distribution 

nanocomposite beam was generally lower than the 

corresponding value of FG distribution. The 

buckling load for uniform nanoparticles 

distribution of beam increased by increasing 

nanoparticles weight percent up to 5 wt%. Also, an 

increase of more than 5 wt% in nano clay leads to 

a decrease in the buckling load.  
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