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This study presents the miss distance analysis of the first-order 

explicit guidance law due to seeker noise using the adjoint method. 

For this purpose, linearized equations are utilized and the adjoint 

model is developed. Then the first-order equations are obtained and 

converted into nondimensional ones. The analysis is carried out for 

different values of the power of the alpha function, defined as the time 

decrease rate of the zero-effort miss distance to unit control input. 

The unity power gives the first-order optimal guidance strategy, 

minimizing the integral of the square of the commanded acceleration 

during the total flight time. The seeker and control system is assumed 

as a fifth-order binomial transfer function. Due to computational 

error and stability consideration, the effective navigation ratio is kept 

constant for very small time-to-go until intercept, and its effect on the 

miss distance is also investigated. Finally, approximate formulas are 

obtained using curve fitting method for rms miss distance due to 

seeker noise. 

 

Nomenclature 

𝐾𝐿 Time-varying coefficient of guidance law 

𝑚 Power of alpha function 

𝑛 Order of the guidance and control system 

nL, nT Interceptor and target accelerations 

N Effective navigation ratio 

𝑁m Effective navigation ratio associated with the 

 power of alpha function 

𝑅𝐴 Reference range 

s Laplace domain variable 

t Time 

𝑡𝑔𝑜 Time-to-go until intercept 

𝑡𝑓 Total flight time of the engagement 

T Equivalent time constant 

𝑇𝑗 Control system time constants 

𝑢𝑁 Line-of-sight angle measurement noise 

𝑢GL Glint noise input 

𝑢FN Range independent noise input 
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𝑢RN Active range dependent noise input 

𝑢RNA Semiactive range dependent noise input 

𝑣𝑐 Missile-target closing velocity 

𝑥𝑗  State variables of seeker and control system 

𝑦 Missile-target separation perpendicular to initial  

line-of-sight 

𝛼 Alpha function 

𝜆 Line-of-sight angle 

𝜏 = 𝑡/𝑇 Normalized time 

𝛷 Power spectral density for noise sources 
 

Superscript: 

(  )̇  Time derivative 

(  )̈  Second derivative with respect to time 

(  )′ Derivative with respect to normalized time 

( ̂ ) Normalized variable 
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Introduction 

The single-lag optimal guidance law (OGL) is 

utilized as an alternative to proportional navigation 

(PN) for the final stage of minimum phase 

interceptors. In order to guide the non-minimum 

phase interceptors, higher-order guidance laws 

may be used [1-3]. 

The first-order OGL can be improved in several 

aspects. One of these aspects is the modification of 

the equivalent navigation ratio in this guidance law 

[4,5]. Considering that the first-order OGL, similar 

to PN, is obtained by minimizing the integral of 

squared commanded acceleration, modification of 

its effective navigation ratio is suggested. The 

optimal effective navigation ratio in PN is 3 when 

minimizing the integral of the squared commanded 

acceleration; however, the value of 3 is not 

necessarily used in the guidance law. The effective 

navigation ratio of PN is usually chosen between 3 

and 5 [7]. 

In the explicit guidance law (EGL) presented in 

Ref. [5], the closed-loop guidance equation was 

obtained using a chosen profile of the acceleration 

command. If the selected profile is chosen 

proportional to the alpha function (the time 

decrease rate of the zero-effort miss to unit control 

input), the OGL is obtained based on the least 

integral square control effort; although, the 

selected profile can be chosen proportional to the 

alpha function to a power greater than zero 

(usually greater than 1) in EGLs. 

Improvements in widely used guidance laws, such 

as PN and single-lag optimal guidance in a way 

that does not change its structure, can be of great 

interest to the industry. This causes most designers' 

analyses of the guidance and control parameters 

are applicable under these guidance laws. One of 

these is proposing a variable navigation coefficient 

[8-12]. If the effective navigation ratio of PN is 

taken as a function of some current state variables 

(such as line-of-sight rate), the guidance gain is 

somehow like a closed-loop design. If the effective 

navigation ratio as the guidance gain is 

chosen/obtained as a function of time (an open-

loop design), the guidance performance depends 

on initial conditions, disturbances, and target 

maneuver. 

Adjoint method is a well-known technique to 

analyze the performance of linear time-varying 

guidance and control systems. It is a powerful tool 

due to its simplicity, accuracy, and relatively low 

computational burden, especially in miss distance 

analysis in the presence of noise [13-17]. In 

addition, normalizing the governing equations and 

their numerical solution can be used for all values 

of the nondimensional parameters by producing 

the results all at once. It has equal importance to 

the problem's analytical solution and will be 

significant from the practical point of view. 

The noise-induced miss distance analytical 

solution is available in literature only for a first-

order control system and special cases [7,18]. In 

Ref. [7], miss distance formulas of PN due to glint 

noise, range independent noise, active/semiactive 

range dependent noise were obtained analytically 

for the first-order control system, only for integer 

effective navigation ratios. In the solution, a 

formula has been provided for each integer 

navigation ratio. The solution to the problem is 

analytically obtained in Ref. [18] using series 

solution for non-integer effective navigation 

ratios, whereas the number of series terms is finite 

for integer effective navigation ratios. In Ref. [19], 

approximate formulas of miss distance of a 

modified PN strategy with lateral acceleration 

feedback was presented for the second-order 

guidance and control system due to seeker noise 

sources and radome effect. 

For practical application, the order of the system 

should be increased, which is considered the fifth 

order in most literature. This issue has been 

investigated in Ref. [20] for the guidance and 

control system up to the 30th order. Also, using 

curve fitting, Ref. [21] has presented the 

approximate formulas of miss distance due to time 

delay for the guidance and control system up to the 

30th order in the worst case in the presence of 

initial heading error, target maneuver, and seeker 

noises. 

In this study, the approximate formulas of the 

normalized steady-state miss distance coefficients 

due to seeker noise sources have been obtained 

under the first-order EGL in terms of the power of 

the alpha function for a fifth-order binomial 

guidance and control system. This work has been 

utilized the adjoint method, plotting the results and 

fitting a polynomial function. In addition, the 

effective navigation ratio is kept constant for a 

very small time-to-go until intercept and its effect 

on noise-induced miss distance under the first-

order EGL is investigated. 
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First-order EGL 

The optimal guidance strategy for a first-order 

control system is given by [7]: 

𝑛𝑐 = 𝑁(𝑣𝑐 𝜆̇ − 𝐾𝐿𝑛𝐿) (1) 

where nc is the acceleration command, vc is the 

missile-target closing velocity, 𝜆̇ is the line-of-

sight (LOS) rate, nL is the interceptor acceleration, 

N is the effective navigation ratio, and KL is a time-

varying coefficient. Here, the optimal effective 

navigation ratio is denoted by N1 and its relation is 

[1]: 

𝑁1 =
6𝑥2(𝑒−𝑥 + 𝑥 − 1)

2𝑥3+3 + 6𝑥 − 6𝑥2−12𝑥𝑒−𝑥−3𝑒−2𝑥
 (2) 

Also, coefficient 𝐾𝐿  is given by [1]: 

𝐾𝐿 =
𝑒−𝑥+𝑥−1

𝑥2   , 𝑥 =
𝑡𝑔𝑜

𝑇
> 0 (3) 

where 𝑡𝑔𝑜 is the time-to-go until intercept. In 

explicit guidance law for a first-order control 

system, the alpha function (the time decrease rate 

of the zero-effort miss distance to unit control 

input) is given by [22]: 

𝛼 = 𝑇(𝑒−𝑥 + 𝑥 − 1) (4) 

If the profile of the commanded acceleration is 

chosen proportional to 𝛼𝑚, the original equation of 

the EGL can be explicitly integrated only for 

integer values of m, and its equations for m=1,2,3 

were obtained in Ref. [22]. If the power of m is not 

an integer, the EGL guidance gain may be 

computed approximately. The diagram of the 

equivalent navigation ratio (𝑁𝑚) corresponding to 

the powers of the alpha function from 1 to 3 is 

shown in Fig. 1 versus the normalized time to go 

until intercept. Here, the approximate equation of 

Ref. [23] is used for computing the guidance gain 

for integer and non-integer values of m. 

𝑁𝑚 = 𝑚𝑁1 −
2(𝑚−1)

1−2𝐾𝐿
  ,   𝑥 > 0.005 (5) 

Approximate Eq. 5 agrees with the formulas of 

EGL guidance gain for integer values of m=1,2,3, 

as seen in Fig. 1. Since Eqs. (2) and (3) are singular 

at x=0, the computing of 𝐾𝐿  and 𝑁1 for very small 

values of x has a huge numerical error, as discussed 

in Appendix A. 

It should be noted that the alpha function for the 

perfect control system is equal to the time-to-go 

until intercept. Therefore, there is a simple 

relationship between the power of the alpha 

function and the effective navigation ratio in PN, 

that is, m=N-2. This implies that the values of 

m=1,2,3 are in accordance to the values of 

N=3,4,5. 

In the following, the approximate formulas are 

obtained for computing the normalized steady-

state miss distance coefficients due to seeker noise 

sources using the adjoint method and plotting the 

normalized steady-state miss distance coefficients 

versus m. 

 

Figure 1. The accuracy of the approximate Eq. (5) for 

the equivalent navigation ratio 

Linearized equations of guidance problem 

The block diagram of the linearized equations of 

the first-order EGL is shown in Fig. 2. This block 

diagram simplifies for the first-order OGL with 

𝑚 = 1 (𝑁𝑚 = 𝑁1 for m=1). In the figure, s is the 

Laplace domain variable. In linearization, the 

interceptor acceleration (𝑛𝐿) and the target 

acceleration (𝑛𝑇) are assumed to be in the direction 

perpendicular to the initial LOS. Also, the LOS 

angle (λ) is approximated by λ=y/vctgo using small 

angle approximation where y is the separation 

between the interceptor and its target along the 
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direction perpendicular to the initial LOS (𝑦̈ =
𝑛𝑇 − 𝑛𝐿). The closing velocity is also assumed to 

be constant. The LOS angle measurement noise is 

denoted by uN and is modeled according to Ref. 

[7]: 

𝑢𝑁 =
𝑢GL

𝑣𝑐𝑡𝑔𝑜

+ 𝑢FN +
𝑣𝑐𝑡𝑔𝑜

𝑅𝐴

𝑢RN

+ (
𝑣𝑐𝑡𝑔𝑜

𝑅𝐴

)
2

𝑢RNA 
(6) 

where 𝑢GL is the glint noise input, 𝑢FN is the range 

independent  noise  input,  𝑢RN  is the active range  

 

Figure 2. Block diagram of the linearized guidance 

problem 

dependent noise input and 𝑢RNA is the semiactive 

range dependent noise input. 

These inputs are assumed as white-noise error 

sources, and the spectral density is denoted by Φ 

with the same subscript as its corresponding input. 

The power spectral density of active/semi-active 

range dependent noise is defined at a reference 

range 𝑅𝐴 [7]. 

The seeker and the noise filter are jointly modeled 

by a first-order transfer function with time constant 

𝑇𝑁. The control system is also modeled by a (n-1) 

order transfer function as follows: 

𝑛𝐿

𝑛𝑐

(𝑠) =
1

∏ (1 + 𝑇𝑗𝑠)𝑛−1
𝑗=1

 (7) 

where 𝑇𝑗 represents the time constants of the 

control system and n is the order of the guidance 

and control system. Assuming that all time 

constants are equal, the equivalent time constant is 

given by: 

𝑇 = (𝑛 − 1)𝑇𝑗 + 𝑇𝑁 ,  (𝑇𝑗 = 𝑇/𝑛) (8) 

Using the block diagram of Fig. 2 and assuming 

that all the time constants of the guidance and 

control system are equal (𝑇𝑗 = 𝑇𝑁), the state 

equations are obtained for n >2 as follows [20]: 

𝑦̇ = 𝑣 (9) 

𝑣̇ = 𝑛𝑇 − 𝑛𝐿 (10) 

𝑥̇3 = 𝑛(𝜆𝑁 − 𝑥3)/𝑇 (11) 

𝑥̇4 = 𝑛(𝑛𝑐 − 𝑥4)/𝑇 (12) 

{

for         𝑗 = 5: 1: 𝑛 + 2             

            𝑥̇𝑗 = 𝑛(𝑥𝑗−1 − 𝑥𝑗) 𝑇⁄  

end                                               

 (13) 

where ،𝑥4 , 𝑥5 ,…, 𝑥𝑛+1 are the state variables of 

the control system transfer function that is 

modeled as the product of (n-1) first-order transfer 

function and 
𝑛𝐿 = 𝑥𝑛+2 (14) 

𝑛𝑐 =
𝑛𝑁𝑚𝑣𝑐(𝜆𝑁 − 𝑥3)

𝑇
− 𝐾𝐿𝑁𝑚𝑛𝐿 (15) 

𝜆𝑁 = 𝑢𝑁 + 𝑦/𝑣𝑐𝑡𝑔𝑜  (16) 

Adjoint model for noise miss distance 

calculation 

By applying the rules of the adjoint method from 

Ref. [7], the adjoint model of the block diagram of 

Fig. 2 is obtained as shown in Fig. 3. The state 

equations of the adjoint block diagram are 

obtained only in the presence of noise as follows 

(n>2): 

𝑥̇2 = 𝑥3 (17) 

𝑥̇3 = 𝑦1 𝑣𝑐⁄ 𝑡 (18) 
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𝑥̇4 = 𝑦1 (19) 

𝑥̇5 = 𝑛(𝑧1−𝑥5) 𝑇⁄  (20) 

{

for         𝑗 = 6: 1: 𝑛 + 3           

             𝑥̇𝑗 = 𝑛(𝑥𝑗−1 − 𝑥𝑗) 𝑇⁄

end                                           

 (21) 

𝑥̇FN = 𝑦1
2 (22) 

𝑥̇RN = (𝑦1𝑣𝑐𝑡 𝑅𝐴⁄ )2 (23) 

𝑥̇RNA = 𝑦1
2 (𝑣𝑐𝑡 𝑅𝐴⁄ )4 (24) 

𝑥̇GL = (𝑦1 𝑣𝑐𝑡)⁄ 2
 (25) 

where 

𝑦1 = (𝑁𝑚𝑣𝑐𝑥𝑛+3 − 𝑥4) 𝑇𝑁⁄  (26) 

𝑧1 = −𝑥2 − 𝐾𝐿𝑁𝑚𝑥𝑛+3 (27) 

In the adjoint model of Fig. 3, 𝑥5, 𝑥6, …, 𝑥𝑛+3 are 

the state variables of the control system, which are 

modeled as the product of (n -1) first-order transfer 

function, and the state variables, 𝑥FN, 𝑥RN, xRNA 
and  𝑥GL  are related to the seeker noise sources. For 

numerical solution, the initial values of the adjoint 

state variables are set to zero, except for 𝑥3(0) =
1. According to Fig. 3, the standard deviation of 

the miss due to noise is calculated as follows: 

𝜎𝑗 = √Φ𝑗𝑥𝑗(𝑡𝑓)   j =GL, FN, RA, RNA 
(28) 

Using the following change of variables: 

𝑥̂2 = 𝑥2 𝑇⁄  , 𝑥̂3 = 𝑥3 , 𝑥̂4 = 𝑥4 𝑇𝑣𝑐⁄  (29) 

𝑧̂1 =
𝑧1

𝑇
 , 𝑥̂𝑗 =

𝑥𝑗

𝑇
 , j=5, 6, … n+3 (30) 

𝑥̂GL = 𝑇𝑥GL ,  𝑥̂FN =
𝑥FN

𝑇𝑣𝑐
2 

(31) 

𝑥̂RN =
𝑅𝐴

2

𝑇3𝑣𝑐
4 𝑥RN , 𝑥̂RNA =

𝑅𝐴
4

𝑇5𝑣𝑐
6 𝑥RNA (32) 

the adjoint equations are normalized as follows: 

𝑥̂2
′ = 𝑥̂3 (33) 

𝑥̂3
′ = 𝑦̂1 𝜏⁄  (34) 

𝑥̂4
′ = 𝑦̂1 (35) 

 

Figure 3. Block diagram of adjoint model of 

linearized EGL with seeker noise sources 

𝑥̂5
′ = 𝑛(𝑧̂1 − 𝑥̂5) (36) 

{

for     𝑗 = 6: 1: 𝑛 + 3            

   𝑥̂𝑗
′ = 𝑛(𝑥̂𝑗−1 − 𝑥̂𝑗)

end                                            

𝑛 > 2 (37) 
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𝑥̂FN
′ = 𝑦̂1

2 (38) 

𝑥̂RN
′ = 𝑦̂1

2𝜏2 (39) 

𝑥̂RNA
′ = 𝑦̂1

2𝜏4 (40) 

𝑥̂GL
′ = 𝑦̂1

2 𝜏2⁄  (41) 

where  

𝑦̂1 = 𝑛(𝑁𝑚𝑥̂𝑛+3 − 𝑥̂4) (42) 

𝑧̂1 = −𝑥̂2 − 𝐾𝐿𝑁𝑚𝑥̂𝑛+3 (43) 

where (  )′ is the derivative with respect to 

normalized time 𝜏 = 𝑡/𝑇. By numerically solving 

the adjoint equations, the normalized miss distance 

coefficients due to seeker noise sources as in 

reference [20] are obtained by substitution Eqs. 

(31) and (32) into Eq. (28), that is, 

𝐾GL(𝜏𝑓) =
𝜎GL

√ΦGL 𝑇⁄
= √𝑥̂GL(𝜏𝑓) (44) 

𝐾FN(𝜏𝑓) =
𝜎FN

𝑣𝑐√𝑇ΦFN

= √𝑥̂FN(𝜏𝑓) (45) 

𝐾RN(𝜏𝑓) =
𝑅A𝜎RN

ΦRN
0.5𝑇1.5𝑣𝑐

2
= √𝑥̂RN(𝜏𝑓) (46) 

𝐾RNA(𝜏𝑓) =
𝑅A

2𝜎RNA

ΦRNA
0.5 𝑇2.5𝑣𝑐

3

= √𝑥̂RNA(𝜏𝑓) 
(47) 

in which 𝜏𝑓 = 𝑡𝑓/𝑇. The mentioned normalized 

coefficients are namely the normalized miss 

distance coefficient due to glint noise (𝐾GL), the 

normalized miss distance coefficient due to range-

independent noise (𝐾FN), the normalized miss 

distance coefficient due to semi-active range 

dependent noise (𝐾RN), and the normalized miss 

distance coefficient due to active range dependent 

noise (𝐾RNA). 

Results and Discussion 

By using the adjoint equations of the previous 

section, the normalized miss distance coefficients 

due to seeker noise sources under the first-order 

EGL are obtained for different values of the power 

of alpha function, m, for a fifth-order guidance and 

control system. The numerical solutions of the 

normalized miss distance coefficients due to 

seeker noise sources are plotted in Fig. 4 versus the 

normalized final time under the first-order EGL for 

m = 1, 2 and 3. As seen in the figures, the 

normalized miss distance coefficients almost reach 

steady-state values at least after 5 to 6 times of the 

equivalent time constant of the guidance and 

control system; however, the values of the 

normalized steady-state miss distance coefficients 

are, here, picked out at 𝑡𝑓/𝑇 = 10. 

At the end times of the flight, or in other words, for 

very small values of 𝑡𝑔𝑜, the value of x tends to 

zero. The value of 𝐾𝐿 tends to 0.5 when 𝑥 → 0 

according to Eq. (3), and according to Eqs. (2) and 

(5), the value of the effective navigation ratio, 

which is a function of x, is singular at x=0. This 

problem is investigated in Appendix A. In order to 

avoid the problem and stability considerations, the 

effective navigation ratio in the final moments is 

limited to a certain value as shown in Eq. (48). 

According to this equation if 𝑡𝑔𝑜/𝑇 becomes less 

than a designed value for 𝑥𝑁𝑐, the effective 

navigation ratio is limited to the value of 

𝑁𝑚(𝑥𝑁𝑐𝑇). For this case, the value of 𝑁𝑚 in Eq. 

(49) is replaced for adjoint Eqs. (26), (27), (42) and 

(43). 

𝑁𝑚 = {
𝑁𝑚(𝑡𝑔𝑜)       for     𝑡𝑔𝑜 ≥ 𝑥𝑁𝑐𝑇

𝑁𝑚(𝑥𝑁𝑐𝑇)   for     𝑡𝑔𝑜 < 𝑥𝑁𝑐𝑇
   (48) 

𝑁𝑚 = {
𝑁𝑚(𝑡)              for      𝑡 ≥ 𝑥𝑁𝑐𝑇

𝑁𝑚(𝑥𝑁𝑐𝑇)      for     𝑡 < 𝑥𝑁𝑐𝑇
   (49) 

It should be noted that the graphs in Fig. 4 are also 

drawn for 𝑥𝑁𝑐 = 0.02. 
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Figure 4. Normalized miss distance coefficients due to 

seeker noise sources versus normalized final time 

Figure 5 shows the normalized steady-state miss 

distance coefficients due to seeker noise sources 

under the EGL versus the power of the alpha 

function. As seen in the figure, increasing the 

power of the alpha function from m = 0.2 to 4, the 

steady-state miss coefficients increases for 

xNc= 0.02 and 1 for a fifth-order system. The 

steady-state miss coefficients for 𝑥𝑁𝑐 = 1 are 

greater than those for 𝑥𝑁𝑐 = 0.02. In order to 

investigate the matter more closely, the steady-

state miss coefficients are plotted in Fig. 6 versus 

𝑥𝑁𝑐. As an important point, the steady-state miss 

coefficient has a maximum at 𝑥𝑁𝑐 = 1 ± 0.25 for 

m = 1,2,3 as seen in Fig. 6. 

From a practical point of view, an optimum value 

of  𝑥𝑁𝑐 is determined by using the graphs of the 

miss distance due to initial heading error, target 

maneuver and seeker noise sources (similar to Fig. 

6). 

In the following, the Monte Carlo simulation is 

used to verify the results of the numerical solution 

of the adjoint model. Figure 7 shows the 

convergence of the results of the normalized 

steady-state miss coefficient due to glint using 

Euler method with an integration time step of 

0.001 s. Therefore, in the Monte Carlo simulation, 

2000 runs are made to calculate the steady-state 

standard deviation of the miss distance from the 

equations of the direct method, i.e., Eqs. (9-13). 

The results of the Monte Carlo simulation can be 

seen with asterisk or circle marks in Figs. 6 and 8, 

which show the agreement of the results with the 

adjoint solutions. It should be noted that the results 

of the present study have been obtained without 

acceleration limit and with the noise model 

according to Eq. (1). Applying acceleration 

saturation causes nonlinearity and does not permit 

using the adjoint model. 

In the following, the approximate formulas of the 

normalized steady-state miss distance coefficients 

due to seeker noise sources in terms of m are 

obtained for 𝑥𝑁𝑐 = 0.02 using the curve fitting 

(0.5 < 𝑚 < 4): 
𝐾GL = 0.14𝑚2 + 0.31𝑚 + 2.2 (50) 

𝐾FN = 0.12𝑚3 − 0.35𝑚2 + 1.3𝑚

+ 1.2 
(51) 

𝐾RN = 0.4𝑚3 − 1.2𝑚2 + 3𝑚 + 0.74 (52) 

𝐾RNA = 1.6𝑚3 − 5.5𝑚2 + 11𝑚 − 2.7 (53) 

It is worth noting that a lower degree polynomial 

is preferred in order to obtain an explicit relation 
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for the extremum value of m from the total miss 

distance equation. 

 
Figure 5. Normalized steady-state miss distance 

coefficients versus m 

 

  

 
Figure 6. Effect of limiting the effective navigation 

ratio on normalized steady-state miss distance 

coefficients under EGL (𝑥𝑁𝑐 ≥ 0.01) 
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Figure 7. Convergence of steady-state miss coefficient 

in Monte Carlo simulation (m = 3) 

 

Figure 8. Adjoint solutions agree with Monte Carlo 

simulation 

The approximate function of the second degree for 

0.8 < 𝑚 < 2.5 can be obtained as follows: 

𝐾GL = 0.056𝑚2 + 0.62𝑚 + 1.93 (54) 

𝐾FN = 0.28𝑚2 + 0.21𝑚 + 1.76 (55) 

𝐾RN = 0.97𝑚2 − 0.69𝑚 + 2.7 (56) 

𝐾RNA = 3.3𝑚2 − 3.8𝑚 + 5.6 (57) 

The accuracy of the preceding approximate 

formulas can be seen in Fig. 9. 

Conclusions 

This study presents the miss distance analysis of 

the first-order EGL due to seeker noise sources, 

including glint noise, range independent noise, 

active range dependent noise and semi-active 

range dependent noise using the linearized 

equations. The present analysis has been performed 

 
Figure 9. Accuracy of the approximate formulas for 

normalized steady-state miss coefficients due to seeker 

noise sources 
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for different values of the power of the alpha 

function, the time decrease rate of the zero-effort- 

miss to unit control input for the four mentioned 

seeker noise sources. It should be noted that the 

first-order EGL simplifies to the first-order 

optimal strategy when the power of the alpha 

function is set to 1. 

In our analysis, the seeker and control system is 

modeled by a fifth-order binomial transfer 

function. Due to the error of numerical solution 

and stability considerations, the effective 

navigation ratio has been kept constant for the final 

moments of the engagement and its effect on the 

miss distance has been investigated. The 

appropriate time interval for applying restrictions 

to the effective navigation ratio can significantly 

affect the miss distance when the power of the 

alpha function increases. In order to verify the 

simulation results of the adjoint model, the Monte 

Carlo simulation has been utilized. 

Finally, the approximate equations for rms miss 

distance due to four seeker noise sources have 

been obtained using curve fitting in terms of the 

power of the alpha function in the two forms of the 

quadratic and cubic polynomial functions. The 

quadratic interpolation has less accuracy but 

simplifies the relation of miss distance budget to 

obtain the optimal values of the parameters. 

Appendix A 

As mentioned earlier, at the final moments of the 

engagement, for very small values of 𝑡𝑔𝑜, the value 

of 𝑥 = 𝑡𝑔𝑜/𝑇 tends to zero. Therefore, according 

to Eq. (3), the value of 𝐾𝐿  approaches 0.5 when 

𝑥 → 0. Figure 10 shows the numerical error in KL 

for very small values of x. According to Eqs. (2) 

and (5), the effective navigation ratio is singular at 

x=0. In Fig. 11, the values of 𝑁𝑚 are plotted 

according to the equations of Ref. [22] and 

compared to approximate Eq. (5). The numerical 

error of the effective navigation ratio becomes 

very large for very small values of x. The 

sensitivity of the numerical error for very small 

values of x increases with the increase of the value 

of m as seen in Fig. 11. Hence, the effective 

navigation ratio is computed for x > 0.005 using 

Eqs. (2) and (5). 

 

Figure 10. Sensitivity of  𝐾𝐿 to very small values of x 

 
Figure 11. Sensitivity of Nm for very small values of x 
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