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The composite lattice cylindrical shells are analyzed in this research while they are
subjected to transient dynamic loading. The equilibrium equations for the composite
cylindrical shell are expressed in terms of classical shell theory. Additionally, due to the
discontinuous distribution of stiffness and shell mass between reinforcing ribs and their
proximity to one another (empty or filled with filler material), this issue has been expressed
using an appropriate distribution function. On the basis of Lowe's first approximation
theory, the strain-displacement and curvature-displacement relationships are considered.
The Galerkin method is used to calculate the natural frequencies and shapes of structural
modes for the boundary conditions, as well as the transient dynamic response of the
composite cylindrical lattice shell to lateral impulsive loading applied extensively and
uniformly on a specific rectangular surface. The convolution and a method for summing
the effects of the modes are also obtained, and the obtained results are validated using
references and ABAQUS finite element software. The effects of various parameters on free
and forced vibrations are investigated, including geometric ratios, material properties,
cross-sectional dimensions and distances, and lattice configuration. Finally, the effect of
strengthening the cylindrical shell with lattice structures is investigated.
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Introduction

Composite structures are widely used in a variety of
industries, including aerospace, marine, missile, and
pressure vessel construction, due to their high
Strength-to-weight ratio, resistance to moisture and
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corrosion, and  other unique  properties.
Nevertheless, designers have considered composite
shells as a frequently used structure for many years.
Suzuki, Shikanai, and Chino [1] investigated the
vibrations of composite circular cylindrical tanks in
1990 using power series and minimum Lagrangian
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techniques. The frequency increases proportionately
to the ratio of the inner-to-outer radius of a circular
plate. The frequency of the outer circular plate
increases as the length-to-outer radius ratio of the
cylinder increases, and also the frequency decreases
as the length-to-outer radius ratio of the cylinder
increases. Lam and Loy [2] investigated the effect of
boundary conditions on a thin-walled rotating
cylindrical shell in their paper. Lowe's theory and
the Galerkin method are applied in this study.
Validation of the analysis is accomplished by
comparing the results to those previously published
by other researchers. The cylindrical shell under
investigation is a three-layer shell with a [0/90/0]
composition. The frequencies decrease initially and
then increase as the number of peripheral waves
increases. In 2001, Zhang [3] used the wave
propagation method to analyze the vibrations of
composite cylindrical shells under various Crass-ply
boundary conditions. Saunders' theory is applied.
He compared his findings to those of Lam and Loy,
who obtained favorable results. In 2003, Lee et al.
conducted an analytical and experimental analysis
of the free vibration of a layered composite
cylindrical shell. This theory makes use of the
energy principle derived from classical plate (or
shell) theory and Lowe's thin-shell (or plate) theory.
To validate the original formulation, numerical
results are compared to experimental results and a
finite element analysis. It is worth noting that this
research investigated the effects of the length-to-
radius ratio, the radius-to-shell thickness ratio, and
the angle of fiber placement on the natural
frequencies of composite layered cylindrical shells
using a parametric study [4].

In 2007, Ciavalek conducted a numerical study of
the free vibrations of cylindrical and conical shells
using the first hypothesis of Lowe's thin-shell theory
and its solution via the discrete singular loop
method. The effects of peripheral wave number and
layer count on dynamic properties are discussed in
this study. According to the application and results,
this numerical method is appropriate, simple, and
accurate [5]. Qatu and Asadi conducted a
comprehensive study of shallow shell vibrations in
2012, examining 21 different boundary conditions.
This study was conducted using thin-shell theory,
and precise results for natural frequencies were
obtained. The Ritz method is used to determine the
natural frequencies of the shell under various
boundary conditions, which results in the
presentation of the natural frequencies of the shell
under various curvatures [6].
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Finally, in 2013, Ghavanloo and Fazelzadeh
investigated shallow orthotropic shells with two
curvatures and their free vibrations. In this study, the
Novozhilov shallow shell theory is used, with the
primary assumption being that the shell has a simply
support condition. The cylindrical shells and
hyperbolic parabolic spheres were presented in this
study, and the results were compared numerically
[7].

Finally, it's worth noting that both impregnation and
finite element modeling methods for lattice
structures have a number of constraints and, in
addition to numerous errors, present researchers
with optimization challenges. Additionally, a dearth
of research on forced vibrations in all lattice
structure geometries and the behavior of cylindrical
panels subjected to impulsive loading has been
noted.

As a result of the discontinuous distribution of the
stiffness and mass of the shell between the
reinforcing ribs and the distance between them
(empty or filled with filler), this issue has been
expressed in this study using an appropriate
distribution function. In the case of integrated and
lattice cylindrical shells, the results were validated
against those of other researchers and also against
those of numerical solutions obtained using
ABAQUS software.

Methodology

Analytical modeling of reinforced composite
structures

On the basis of prior research and the benefits of
reinforced composite structures, it is entirely
appropriate to consider reinforced structures as
plates and shells with component distribution on the
surface. In other words, the empty spaces formed by
these structures can be treated as elastic components
with a zero modulus. Indeed, both empty spaces and
those filled with fillers can be regarded as integrated
components analytically [8]. Reinforced shells are
regarded in this research as sandwich structures
composed of a lattice core (reinforcement), lower
and upper (reinforced) surfaces, as illustrated in Fig.
1. The deformation of the sandwich shell is too low
to satisfy the assumptions of Kirchhoff's classic
theory. The next section extracts the equations and
relations regulating cylindrical shells.
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Fig. 1. Facing view Sandwich shell configuration
consisting of core (amplifier) and external and internal
procedures.

Strain-displacement and stress-strain relations

The mechanical displacement field for cylindrical
shells in a cylindrical coordinate system can be
represented as follows according to the selected
shear deformation theory:

gg =e)+Tkg, ex =5+ Tk, Yox = Vo +77T (1)

Where the strain and curvature variations in the
middle layer is as follows:
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In which Be and Bx are as follows:
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The general stress-strain relation for &A™ layer of

composite multi-layer with fixed Stiffness matrix Q;
as follows:

1 [ Qe Q) [*
| = Q12 sz Qze Ex (10)
Opxdy Qs Qs Qe k Woxdy
The preceding relation is presented for the general
case in which the principal coordinates axes do not
coincide with the material principal axes. Stiffness
matrix of the material ﬁi]. (8,%) in the cylindrical
coordinate system and in the direction of the
coordinate axes x and 6 are varying for the
reinforced sandwich shells. In this case, the fixed
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stiffness matrix ﬁij is written in terms of x and 0 as
Q].(G,x) for k™ layer. As illustrated in Fig. 2, the

aforementioned relation is reformulated as follows
for the lattice shell, which exhibits discontinuity in
material properties in the direction of ribs, knots,

and voids (or fillers).
Og

GX
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Q0% Q,0.x) Q6] [
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Fig. 2. Schematic and configuration of the orthogonal
lattice shell.

Two-zone modeling (rib and empty space) and four-
zone modeling (zero-degree rib, ninety-degree rib,
knot, and empty space) were presented for the
analysis of lattice shells. The stiffness matrices of
the ribs and knots are the same and distinct from
those of the vacant spaces in two-zone modeling (or
filler materials). While the material is parallel to the
zero- and ninety-degree ribs in four-zone modeling
for characteristics and stiffness matrix, it is not
parallel to the empty spaces (or filler materials).
Additionally, the entire stiffness matrix of zero rib
and ninety-degree rib is applied at the knot in this
modeling such that the knot portions are more rigid
than the ribs.
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Fig. 3. a) Modeling of two areas (green: ribs - white:
empty or filling areas) b) Modeling of four zones (green:
90-degree rib - milk: zero-degree rib - red: knot - white:

empty areas or fillers).
As a result, the distribution function for the
functional attributes of the two models was shown
as follows:

Q;;(6,%,2) = Q;;(8,%)
= Q1 — HP°GOHP®(®)]  (12)
+Q;, HPOGOHP?°(0)

The subscript k refers to k™ layer of the composite
and the superscripts 1 and 2 refer to the property
matrices of ribs and empty areas (or fillers),
respectively.

Four areas (twisted string):

Qij(8,%,2) = Qi (6,%)
= Qil1 - HP°(x)]
ruu-npney (Y
+ Q2 HP°(x)HP*°(6)

Where Q7. Q3. and Qfy refer to property matrix
in the same direction as zero-degree rib, ninety-
degree rib, and empty areas (or fillers).
The density distribution function is same for
both models and is defined as follows.

Pijk(8,%) = pij[1 — HP°(x)HP?(6)]
2 Hqpo 90 (14)
+ pijiHP" (x)HP"(8)

The subscript k refers to k™ layer of the composite
and the superscripts 1 and 2 refer to the property
matrices of ribs and empty areas (or fillers),
respectively.

The distribution function HP in x and 8 direction is
defined as follows:

HP°(x)

_ (1, Outer zone of the zero — degree rib

B { 0, Zones on the zero — degree rib
HP®°(x)
_ (1, Outer zone of the ninety — degree rib
- { 0, Zones on the ninety — degree rib
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The distribution function for the orthograde lattice
shells is expressed using the Heaviside unit step
function in HP.

HP?°(8) and HP?(x) for the modelling in Fig. 3 are
defined as follows:

nx
hbx;j
HP(x) = 12 H(x—x]- _T)
=1
mg

hbbi

HP% (0) = Z H(0 -6, +?) ~H(0-8, {13)
T hoe
- T)

n, is the number of hollows along the axis x, and my
is the number of hollows in the peripheral direction
of the shell. The total number of the hollows is equal
to ny X mg. Additional parameters are depicted in
Fig. 2. Forces and moments are calculated using the
following equations based on the aforementioned

relationships:

Ng h/2 [Oe
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The following equation was obtained by
incorporating the stress-strain relationships into the
latter equation and integrating them over the
thickness of the sandwich shell:
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The A(8,x), B(6,x), and D(0,x) matrices, which are

functions of x and 0, are referred to as axial stiffness,

flexural stiffness (also called flexural rigidity), and

coupling stiffness, respectively, and are equal to
(A(8,%),B(8,x),D(6,x))

nj Ik
= Z aijk(e' x)(1,r,r¥)dr (19)
k=1rg_,

n; is the number of different layers on the sandwich
shell thickness, and r¢ and rx.; are the distance
between the outer and the inner £ surfaces of the
middle layer, respectively.
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Equations of motion

The primary method for obtaining the governing
equations on the sandwich panel is to calculate
changes by minimizing the total energy stored in the
body and the work done by external forces entering
the body. The primary relationship between this
method and the Hamilton equation is as follows:

8f(U+V—T)dt=0 (20)

In which U Denotes the structure's stored potential
energy, V is the total energy from the work of
external forces on the structure, T is kinetic energy
which is equal to zero, and § is the First-order shift
operator. As a result of the variation equation and
the corresponding equations, the extraction motion
equations for the lattice sandwich shell are as
follows [10]:
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Zx = 21
ox TR 9 TEThgp @1
aNgx 1 Ngg Qgr a Ug

— = 22
x TR 90 TR T ThGe 2)
9Qxr 1 9Qgr _M _ %uy
ax + FEaNT) R tar =1 a2 (23)

Where qy.qg, , and qyare the external load in
peripheral, axial, and radial directions, and Q.. Qg
and I, are equal to

oM, 1 OMs,

= — 24
Q™o TR o
Qor =55+ 7% 5o (25)

B
=2 pdr (26)

2
px is the volumetric mass related to each layer.
Substituting the Equations (18) in (22), (23), and
(24) results in the following equilibrium equations,
where L;; is the differential operator.

Ly Lz Lyz]pu
Lot Laz Los [V]

L31 L32 L33
—Qx
=|"qe
—qr

Fully Simply Supported boundary conditions

@7

The following defines the Fully Simply Supported
boundary conditions for a cylindrical shell in (x =
0,1,)and (68 = 0,y):
v=w=N,=M; =0
u=w= Ng = Me =0

x=01, (28
0=0,y 29)
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To ensure that the assumed modes satisfy the
boundary conditions u, v, and w, they are defined as
the following double Fourier series [10]:

- mnx _ nmf
u= Z Apn €0S—— sin—— T, (t)  (30)
L Y
nm6
v= Z Bn sm COST Ton(®) (31
- mmx nmf
z Con Sin—— sin—— T, (t)  (32)
] L 14

Where A.,, Bn,., and C,, are the fixed
coefficients of the mode shape, m is the is the
number of longitudinal half-waves, n is the
number of peripheral waves, and T, (t) is the
time-based function.

Results and Discussion

Natural frequency validation
references and ABAQUS software

using

The natural frequencies of the sandwich panel with
fully simply boundary conditions for an integrated
cylindrical shell of isotropic material were
compared to the Lam and Loy research results. Lam

and Loy presented their findings using the @
frequency parameter as follows:

w* = Rw,/p(1 —Vv?)E (33)

Where w (rad/s) is the natural frequency, R is the
cylindrical shell radius, p density, v Poisson's ratio,
and E is the Young’s modulus.

Fig. 4. Geometry and naming the characteristics of the
cylindrical shell in the reference.

The frequency parameter values for a cylindrical
shell with geometric characteristics h/R 0/001 ,
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@p=10and m=1 in Loy's research [10] are
compared to the current research and finite element
numerical analysis in Table 1. In all cases, finite
element analysis was performed using the industry-
standard ABAQUS software and the SC8R
hexagonal element from the family of continuum
shell elements. m and n are the number of axial- and
peripheral- half sine waves, respectively.

Table 1. Comparing the frequency parameter present
research and modeling (m = 1) ABAQUS.

= n= n= n= n= =
Lamand | o5)0, 0 038776 19184 23878 3.5408
Loy [10]
Present | 12347 | 004957 | 039948 | 190798 | 231865 | 3.60526
research
ABAQUS | 0.12342 | 004751 | 039477 | 1.89946 | 2.30416 | 3.58239
Lamand | 6e367 | 077551 | 0.41837 1.1531 2.7245 09286
Loy [10]
Present | 70308 | 090411 | 056502 | 111087 | 252843 | 3.81677
research
ABAQUS | 070281 | 090316 | 056292 | 1.10632 | 2.52053 | 3.80351

The paper by Kalita and Halder was used to evaluate
the results in the hollow state. The results for a flat
sheet with a central hollow and fully simply
supported boundary conditions, as illustrated in Fig.
5, were compared to the results from the current
study on the shell. In fact, the flat sheet is a
cylindrical shell with an infinite curvature radius of
curvature R —» oo and an aperture angle @ —» 0 close
to zero.

|
\
I
| |

Fig. 5. Geometric sheet geometry studied in the study
of Calita and Halder [11].

The frequency parameter and shape of the mode
drawn in this study using the finite element solution
in ABAQUS and the reference [11] are summarized
in Table 2.
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Table 2 The dimensionless frequency parameter w* =
wa?,/ph/D,, for sheet with simply support and central
cavity conditions b/a=1.h/a=0.01, m=n= g

Mode Mode Mode Mode
number number number number
1 2 3 4
Solution
Method Total Mode ] ] 1 i
SWRI Ty 19.98 47.87 47.87 76.25
Parameter
ABAQUS f,’eq“e“y 19.28 47.649 47.649 76.9
arameter
Lresent iy 204 493 493 77.6
research Parameter

The low percentage difference between the present
results of the theory and those of ABAQUS and the
reference [11] demonstrates that the present theory
behaves correctly and logically in both the flat sheet
and hollow states.

Parametric studies of free vibrations

The primary scheme is depicted in Figs. 1 and 2,
along with the names of the various geometric
variables for parametric analysis. As a result, all of
the parameters examined are based on the name of
this scheme, and the frequency parameter of

representation of results, w* = wb?,/p/(E,, X h?).
The frequency properties of sandwich cylindrical
shells were investigated in this study. Table 3 shows
a variety of integrated, reinforced, and unreinforced
lattice shell geometries and materials with isotropic
and orthotropic properties. It plotted the frequency
parameter in terms of the wave numbers on both the
outside and inside of the shells.

Table 3. Mechanical properties of isotropic and
orthotropic materials used in parametric studies.

E11GPA E22GPA vi2 GI12GPA PN
isotropic 200 200 0.3 - 7800
orthotropic 60.7 24.8 0.23 12 1780

Figs. 6 and 7 illustrate the frequency analysis results
for a cylindrical shell integrated with isotropic and
orthotropic mechanical properties, respectively,
where h/R =0/01y.=90"and 1, = 1. Asshown in
Fig. 8, the result of the same analysis for a
unidirectional orthotropic cylindrical shell with no
surface is 10*10 equal-sized hollows with a volume
fraction of 10% (such as Figs 4 and 5). The
cylindrical shell depicted in Fig. 10 also has a 10*10
lattice core and an orthotropic outer surface with the
thickness of hg, = 0/1h. Fig. 11 illustrates the effect
of having two identical-thickness surfaces, hg, =
hyg = 0/1h ,at the top and bottom of the
unidirectional lattice reinforcement.
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Fig. 6. Integrated isotropic cylindrical shell frequency
parameter, according to the number of semicircular (n)
and axial (m) semiconductor waves.
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Fig. 7. The frequency parameter of the integrated
orthotropic cylindrical shell, according to the number of
semicircular (n) and axial (m) semicircular waves.

As illustrated in Figs. 6 and 7, the integrated shell
with orthotropic properties, in addition to being

significantly lighter than the same shell made of

isotropic material, also has a higher natural
frequency. Additionally, the fundamental frequency
occurs when m=n=4 for the isotropic state and when
m=1 and n=3 for the orthotropic state. Comparing
the ABAQUS results for isotropic and orthotropic
materials demonstrates the appropriate precision of
the integrated geometry theory.
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Fig. 8. Results of three- point bending test for
composite plate
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Fig. 9. Frequency Parametric Cylindrical Frequency
Parameter (10*10) Single-directional orthotropic, in
terms of the number of semicircular (n) and axial
sinusoidal waves (m).
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Fig. 10. One-way orthotropic frequency grid crust
parameter frequency parameter (10*10) has an external
procedure, in terms of the number of peripheral (n) and

axial sinusoidal half-wave (m).
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parameter
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equency

e SN - ¢ T

3 s ]
Circumferential half-wave numbers n

Fig. 11. Single-pole (10 10 10) single-direction
orthotropic cylindrical shell frequency parameter has
two approaches, in terms of the number of half-
circumferential (n) and axial (m) axis sinusoidal waves.

As illustrated in Figs. 9, 10, and 11, when the shell
geometry is changed from integrated to lattice, some
differences occur as a result of the strong gradient of
properties between the shell and the empty spaces,
as well as the more pronounced effect of
interlaminar shear. The difference between the
results obtained with the present theory and those
obtained with ABAQUS increases in the absence of
the surfaces and decreases in their placement.
Indeed, by positioning the surfaces both externally
and internally to the lattice core, the interlaminar
shear effect is reduced.

In orthotropic twisted string modeling (four zones),
the fibers in the zero-degree ribs (longitudinal) have
a zero-degree direction, while the fibers in the
ninety-degree ribs (peripheral) have a ninety-degree
direction (the orientation of the fibers is in the
direction of longitudinal and peripheral ribs).
However, in unidirectional orthotropic modeling
(two-zone), the material of the lattice panel is only
in one direction, and the rib concept does not apply.
As illustrated in Fig. 12, a cylindrical lattice shell
with 10*10 hollows configuration is considered for
studying fiber modeling in the direction of the ribs.
Figs. 13, 14, and 15 show the frequency parameter
in terms of m and n for a lattice shell with no surface,
a single surface, and a double surface, respectively.
Each surface has a thickness of hy = 0.1h.
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Ninetv-desree ribs
zero-desree ribs -

Ribs Intersections m

Fig. 12. Geometric shell geometry studied in screw
orthotropic modeling.
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|

Circuméerential half-wave numbers n

Fig. 13. The frequency parameter of the reticular
cylindrical shell (10 10 10) of the aortic string
orthotropic, in terms of the number of radial and axial
radius (n) semiconductor waves.

= — - o -

Circumferential half-wave numbers n

Fig. 14. The frequency parameter of the mesh
cylindrical shell (10*10) of the orthotropic screw string
has an external procedure, in terms of the number of
half-wave radii (n) and axial (m).
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Circumnferential half.wave numbers n

Fig. 15. The frequency parameter parameter of the mesh
cylindrical shell (10 x 10) of the two-way screw
orthotropic coil, in terms of the number of semicircular
(n) and axial sinusoidal half-wave (m).

When the results of Figs. 13, 14, and 15 for twisted
string modeling are compared to the results of Figs.
8, 10, and 11 for unidirectional modeling, it is clear
that the difference between the results of the present
theory and ABAQUS is greater for the twisted string
mode than it is for the unidirectional model. This is
because the gradient of material properties between
the ribs and between the ribs and the knot increases,
in addition to the gradient between the shell and the
empty spaces, which increases shear between the
layers. Additionally, the frequencies derived from
twisted string modeling are greater than those
derived from unidirectional modeling. This means
that composite lattice shells formed using the
twisted string method have a higher frequency than
unidirectional lattice shells.

The effect of lattice shell aperture opening and panel

length-to-chord ratio of lX/b on unidirectional

orthotropic and twisted material has been
investigated for lattice shell with parametric
characteristics of h/R =0.01y.=90".1,=1 and
10 x 10 number of hollows with 10% of volume
fraction. The fundamental frequency results for the
surface-less mode are shown in Figs. 18 and 19,
while those for the single-surface lattice shell are
shown in Figs. 16 and 17, and those for the lattice
shell with bi-surfaces of each hf = 0.1h thickness
are shown in Figs. 17 and 18. In each case, the
modeling results were compared to those obtained
using the ABAQUS finite element model.
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L
P
-X

Fig. 16. The fundamental frequency of orthotropic
lattice cylindrical shells (10*10 holes) single-way

l
according to changes in the ratio of v/ g and L / b

Fig. 17. The fundamental frequency of orthotropic lattice
cylindrical shells (10 *10 holes) is one-way, with a

l
procedure based on changes in the ratio of L / p and v/ R

nal Frequency (Rad/s)

N

Fig. 18. The fundamental frequency of orthotropic
lattice cylindrical shells (10 x 10 cavities) is one-way,
with two procedures according to the changes in the

ratio of lV/R and l"/b
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3000,

Fig. 19. The fundamental frequency of orthotropic
lattice cylindrical shells (10 x 10 holes) of the coil,

l
according to the changes in the ratio of v/ g and L / b

According to Figs. 17, 18, and 19, the fundamental
frequency variations for both cylindrical lattice

panels with a length-to-chord ratio of (lx/b =

1 and lx/ b begin with an insignificant aperture angle

y = 1/5 Rad value and converge to a specific value.
Additionally, the natural frequency of the panel with

l"/b = 1 ratio is roughly four times that of the ]X/b =
5 mode for the same amount of y.

Shape drawing in three-dimensional mode

There are three natural frequencies (bending,
torsional, and longitudinal) for each m and n, and
each of these frequencies has a distinct mode shape.
By examining the three-dimensional image of the
shape of modes such as each and every one of them,
it is possible to determine which of these natural
frequencies this mode shape belongs to based on the
relative deformation of the shell shape [10]. The
orthotropic lattice panel y=3rad ly =3m
10 x 10 and R = 1m in Fig. 20 has a hollows
volume fraction ratio to the total volume of the panel
of V.= 20% and a thickness of h = 0.01 m. Fig.21
depicts the mode shapes of this panel, including the
fundamental frequency, as determined by
ABAQUS, while Figs. 22 and 23 depict the mode
shapes determined by the present theory.
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Fig. 20. Geometry of orthotropic lattice panel Number
of cavities 10¥10 and V = 20%.

Fig. 21. The basic bending frequency mode shape of the
retractable panel is obtained from ABAQUS.

Fig. 22. The shape of the basic bending frequency mode
of the lattice panel is obtained from the present study.

Fig. 23. The basic frequency frequency curve shape of
the lattice panel is obtained from the present study (view
from above).
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Investigation of the results of forced shell
vibrations with simply support conditions

The number of modes considered (m*n) in computer
code is used to obtain the response (30*50). The
values of m and n should be chosen in such a way
that we arrive at the correct answer [13].
Coordinates of the load imposing location 6, x; and
the point on the shell where the response is

calculated when the shell is in position Y/ 2 lX/ 2

Pulsation phenomenon

The pulsation phenomenon occurs as a result of the
shell being subjected to an impulse load. Pulsation
is a type of oscillation in which the amplitude of the
oscillation increases and then decreases periodically
[14]. We can observe this phenomenon by plotting
diagrams of vibration amplitude variations in the
radial direction to times many times larger than the
normal period of the shell. The shell with fully
simply supported boundary conditions 1y = 1m,
y=°90.R=1m and h = 0.01m, demonstrates
this phenomenon in Fig. 24.
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Fig. 24. Display the pulse phenomenon in the time
response of the integrated panel with simple supportal
and orthotropic properties, pulse type: sinusoidal f; =

—0.1 MPa and load area 8; = 39°,0, = 51°) and x; =
0.4m,x, = 0.6m).

Shell frequency response using Fourier
transform

Vibrations detected from a structure are typically
complex signals composed of several vibration
signals of varying frequencies. Frequency analysis,
alternatively referred to as Fast Fourier Transform
(FFT) analysis, is a signal processing technique used
to determine the frequency content of a vibrating
signal. The horizontal axis of FFT-curves represents
the frequency, while the vertical axis represents the
amplitude of the vibration.
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Occasionally, it is difficult to determine the number
of natural frequencies present on a temporal
response diagram of a vibrating system. The Fourier
transform can be used to convert the time-domain
response of a vibrating system to the frequency
domain, yielding the system's frequency response
spectrum and allowing for discussion of the system's
natural frequencies [14]. Figs. 24 and 25 illustrate
the studied frequency response of the shell. This
method allows for the formation of frequencies
excited by the impulse load applied to the shell. The
dominant excitation frequency is equal to 180.7 Hz,
as shown in this figure. The natural frequencies of
this shell are illustrated in Fig. 26 in terms of the
number of distinct longitudinal half-waves and the
number of peripheral waves. As illustrated in this
figure, the second frequency of the shell is 180.4 Hz
and occurs at m=1 and n=3. Indeed, external
excitation at a frequency close to one of the natural
fundamental frequencies of the shell results in
increased excitation of that frequency, such that the
effect of other frequencies on the time-domain
response can be considered negligible in comparison
to that frequency's effect.

Fig. 25. Frequency response of the studied shell in Fig.
23.
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Fig. 26. The natural frequencies of the crust examined in
Fig. 23.

Parametric studies of forced vibrations

As previously stated, geometric parameters such as
the thickness-to-radius ratio h/R and the aperture

angle ratio of the panel to the radius Y/R have an
effect on the natural frequencies of the shell. As a
result, they will affect the time-domain response of
the shell. The effects of isotropic and orthotropic
properties under step and triangular pulses on an
integrated shell with geometric properties I, = 1m ,

Yy =°90.R=1mand h =0/01m are illustrated in
Figs 27 and 28.

Radial Displacement (m)

-

0 0.002 0.004 0,008 0.008 0.01 0012
Time (sec)

Fig. 27 Investigate the time response of the integrated panel

with isotropic and orthotropic properties of pulse type: stairs

fo = —0.1 MPa load area (6, = 42° 6, = 48°) and (x, =
0.45m,x, = 0.55m)
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Fig. 28 Investigating the time response of the integrated
panel with isotropic and orthotropic properties of pulse
type: triangular (f = —0.1 MPa) load area (6; =
42°,6, = 48°) and (x; = 0.45,x, = 0.55)

The duration of the imposing load is t,=0.01s in the
modeling of Figs. 1 and 2, and as can be seen, the
amplitude of the response of the shell with isotropic
properties is significantly less than that of the shell
with orthotropic properties for both loading pulses.
Additionally, the overlap of the results from
ABAQUS modeling and the present theory
demonstrates the appropriate accuracy of the theory
for the integrated shells.

The effect of the aperture angle-to-shell radius ratio
on the variations in radial displacement over time for
an orthotropic shell was investigated, and the results
are shown in Fig. 29. The center of the panel in each
of these shells is defined by the load center and the
point at which displacement is plotted over time.
Additionally, the area of the load imposing areas is
one-sixteenth of the panel's area (I; =1,). The
amplitude of the vibrations at the aperture angle y =
1 rad is the smallest and closest to zero after the load
is imposed t; = 0.01 s.

= = = %2(Rad) ABAQUS

L L
).005 o 0015
Time (sec

Fig. 29 Check the parameter y on the time response of
the panel with the orthotropic properties of the pulse
type: sinusoidal f, = —0.1 MPa MPa, [, = ym,R=1m
andh=0.0lm
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Another study examined the effect of panel
thickness when the aperture angle was l, = 2m and
y =3rad. The location and area of the load
imposing area are identical for all shells in this
study, as shown in Fig. 30, and are located in the
center of the panel. The output plotted represents the
same point. Other geometry and load parameters
remain unchanged.

Time (sec

Fig. 30. Investigate the h/Rparameter on the panel
response time with orthotropic properties. Pulse type:
sinusoidal f, = —5000 Pa.

Conclusion

The natural frequencies of an integrated and lattice
composite cylindrical shell are affected by a variety
of parameters, including the volume fraction of
hollows, the configuration of the hollows, the
thickness-to-radius ratio, and the length-to-radius
ratio. The following text summarizes the effect of
these parameters:

While the orthotropic panel is lighter in weight than
the isotropic panel, it also has a higher fundamental
frequency for the same geometry (as shown in Figs.
6and7.)

The percentage difference between the responses
obtained from the present theory and ABAQUS is
slightly increased for unidirectional and twisted
orthotropic modeling. This percentage difference
between twisted string modeling and modeling
without a surface is greater than the percentage
difference between unidirectional modeling and
modeling with internal and bi-surfaces. By locating
the surface on the outer or inner surface of the lattice
panel, the effect of interlaminar shear is mitigated,
and theoretical and numerical results become more
comparable (as shown in Figs. 8 to 15.)

While orthotropic lattice panels made in the twisted
method have the same mass matrix as unidirectional
lattice panels, they have a higher rigidity, and thus
have higher natural frequencies. The fundamental
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frequency of lattice cylindrical shells with smaller
aperture angles is greater, and as the panel aperture
angle increases, the fundamental frequency
decreases until it is approximately constant near 1.5
radians. The fundamental frequency of the sandwich
shell can be increased by locating one or two
surfaces on the lattice panel (as shown in Figs. 18
and 19.)

For both unidirectional and twisted lattice modeling,
the trend toward increasing the fundamental
frequency is greater than the trend toward increasing
the thickness of shells with a smaller aperture angle,
and the thicker the panel.

The transient dynamic response of a composite
cylindrical shell with fully simple boundary
conditions is dependent on a number of parameters,
including the thickness-to-radius ratio, the length-
to-radius ratio, the material's isotropic and
orthotropic properties, and the loading mode. These
parameters have the following effect:

When the excitation frequency is close to the natural
frequencies of the shell, the pulsation phenomenon
manifests itself in the time-domain response of the
shell. It is possible to investigate the dominant
frequencies in the shell response by examining
temporal responses in the frequency domain.

When two shells of identical geometry are loaded,
the shell with isotropic properties exhibits a lower
amplitude response than the shell with orthotropic
properties.

The amplitude of the shell vibration decreases as the
thickness-to-radius ratio increases, and the
maximum amplitude of the shell vibration occurs
earlier.

By and large, increasing the fundamental frequency
value decreases the maximum value of the shell
vibration amplitude and accelerates the time-domain
response of the shell. As the fundamental frequency
decreases, the maximum value of the vibration
amplitude of the shell increases, the time-domain
response of the shell becomes slower, until it reaches
the fundamental frequency. The increase or decrease
in fundamental frequency can be attributed to a
variety of factors, including variations of the length-
to-radius ratio, thickness-to-radius ratio, and etc.
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