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In this research, new adaptation law for updating parameters of the model reference 

adaptive control and the model reference adaptive control with feedback integrators for a 
specific class of nonlinear systems with additive parametric uncertainty are presented. The 
innovation presented in this paper is the consideration of a new form for Lyapunov functions 
candidate to prove the stability of the closed-loop system. In general, Lyapunov functions 
candidate, which is used to prove stability and to derive rules for updating control parameters, 
include two sets of quadratic expressions. The first quadratic expression contains the trajectory 
tracking error and the second category includes the error of estimating the controller 
parameters. In this research, it is proved that by selecting quadratic expressions including the 
variable of trajectory tracking error in the form of power series, a new adaptation law is 
obtained that includes quadratic expressions in terms of the variable of tracking error in the 
form of power series. This type of adaptation law can be considered as an adaptation law 
derived from quadratic Lyapunov functions, except that the gain adaptation matrix parameters 
vary with time. It has been shown that by using an adaptive controller with a feedback 
integrator, the tracking error tends to zero faster and the flying object roll angle tracks the 
reference trajectory after a shorter time. In order to evaluate the control performance of the 
designed controllers, the system of one degree of freedom of the Wing Rock phenomenon has 
been used. 

Keywords: Model reference adaptive control, Model reference adaptive control with 
feedback integrator, Quadratic Lyapunov functions in the power series, New adaptation law, 
Wing Rock phenomenon. 

Introduction1234 

The model reference adaptive controller or MRAC 
is one of the effective algorithms in controlling 
uncertain dynamical systems. Whitaker first 
introduced MRAC in the 1950s with the goal of 
controlling high-performance aircraft [1]. At the 
same time, several attempts were made to design 
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adaptive systems for fighter aircraft autopilots, 
which led to the development of these algorithms 
in the 1960s. The state space model of dynamic 
systems and the Lyapunov stability criterion were 
introduced in this decade, which led to the 
introduction of several adaptive algorithms in the 
1970s based on the Lyapunov stability method. 
The MRAC structure is such that the closed-loop 
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system includes the system, reference model, state 
feedback controller, and adaptation laws to update 
the controller parameters. The derivation of 
adaptation laws and proving the stability of the 
closed-loop system is done by considering the 
Lyapunov quadratic function. The structure of 
most quadratic Lyapunov functions used in the 
design of adaptive controllers consists of two sets 
of quadratic expressions. The first category is a 
quadratic expression in terms of state-tracking 
error variables, while the second category contains 
quadratic expressions containing the error of 
estimating the controller parameters. Quadratic 
functions (in terms of parameters or variables) 
have a special place in control science due to 
having some properties. The quadratic functions 
are convex, which makes it easier to calculate 
derivatives, which has increased the popularity of 
this type of cost function in linear and nonlinear 
control science. The Lyapunov stability method 
has been extensively studied for designing 
adaptive systems, however, very little variation 
has been shown in the choice of these quadratic 
structures. In some studies, by selecting the 
quadratic expression, including the error of 
tracking in the logarithmic form, the rules of 
adaptation to the normalized form have been 
obtained [2-3]. This variation of choice in 
Lyapunov functions is further observed in the 
analysis of nonlinear systems, which are 
mentioned in some of these studies. A study on 
piecewise quadratic Lyapunov functions as a 
convex optimization problem with respect to linear 
matrix inequalities is presented in the reference 
[4]. Composite quadratic Lyapunov functions 
based on a set of quadratic functions are presented 
by [5] and also the stability analysis of nonlinear 
systems with polyhedral Lyapunov functions is 
reviewed by references [6-7]. In reference [8] with 
quadratic Lyapunov function, an adaptive 
controller is designed to examine the status of a 
spacecraft. What led to the writing of this article is 
the introduction of the new Lyapunov functions 
candidate in the form of the power series as well 
as the introduction of new adaptation rules derived 
from the proposed Lyapunov functions, and it is 
shown that numerous different adaptation rules 
can be obtained from the proposed Lyapunov 
function. It is also shown that by using an adaptive 
controller with a feedback integrator, the tracking 
error converges to zero faster and a faster transient 
mode performance is achieved than a conventional 
adaptive controller. 

Design of model reference adaptive control with 
quadratic Lyapunov function - power series  
In this part, based on Lyapunov stability method, 
the model reference adaptive control using 
Lyapunov function in the power series is designed. 
System (1) shows the state space of a certain class 
of nonlinear systems with additive parametric 
uncertainty [9]: 

ẋ(t) = Ax(t) + BΛ൫u(t) + g(x(t))൯         (1) 

In equation (1), x is the system state vector, u is the 
control signal, B is the control matrix and is 
known, and A and Λ are fixed matrices and are 
generally unknown. Λ is a diagonal matrix with 
strictly positive entries and it is assumed that both 
matrices of A and BΛ are controllable. g(x(t)) is 
the additive uncertainty of the system, which is 
assumed to be written in the form of a linear 
combination of N Lipschitz functions: 

g൫x(t)൯ = θ୘(t)ψ൫x(t)൯   (2) 

In equation (2), θ is the matrix of unknown 
parameters and ψ(x(t)) is the regressor vector that 
its components are functions of x: 

ψ൫x(t)൯ =

ቀψଵ൫x(t)൯،ψଶ൫x(t)൯،ψଷ൫x(t)൯، … ،ψ୒൫x(t)൯ቁ
୘

       (3) 

The reference model in the form of equation (4) is 
considered: 
ẋ୫(t) = A୫x୫(t) + B୫r(t)                           (4) 

In (4) Am is the Hurwitz matrix and r(t) is the input 
command bounded signal. According to the 
definition of tracking error are: 

x෤(t) = x(t) − x୫(t)                                          (5) 

The purpose of designing a model reference 
adaptive control is so that ensures that the tracking 
error tends to zero over time. In other words: 

lim
୲→ஶ

‖x(t) − x୫(t)‖ = 0                                  (6) 

Without the presence of parametric uncertainties 
in the system, which indicates that the matrices A, 
θ, Λ are fixed and known, the control law with 
feedback and feedforward gain in the form (7) is 
considered: 

u(t) = K୶
୘x(t) + K୰

୘r(t) − θ୘ψ൫x(t)൯              (7) 
By placing (7) in (1) the result is: 

ẋ(t) = Ax(t) + BΛ[K୶
୘x(t) + K୰

୘r(t)]  = ൫A +

BΛK୶
୘൯x(t) + BΛK୰

୘r(t)                                 (8) 



  
 
 /13Model Reference Adaptive Control Using a New Adaptation Law  …. Journal of  Aerospace Science and Technology 

Vol. 14 / No. 1 /Winter – Spring 2021 

Assumption: Considering state matrix A and 
control matrix B with full rank, matrices Kx and Kr 
are available such that the equation (9) holds: 

ቊ
A + BΛK୶

୘ = A୫

BΛK୰
୘ = B୫

                                            (9) 

Now, considering the parametric uncertainty in the 
system, the input control signal u is considered in 
the form (10): 

u(t) = K෡୶
୘(t)x(t) + K෡୰

୘(t)r(t) − θ෠୘(t)ψ൫x(t)൯  (10) 

In (10),  and  are estimates of the 
ideal gain rates kx , kr and θ and that must be 
updated on line. By placing (10) in (1) the result is: 

ẋ(t) = ቀA + BΛK෡୶
୘(t)ቁ x(t) + BΛ(K෡୰

୘(t)r(t) −

൫θ෠(t) − θ൯
୘

ψ൫x(t)൯                                       (11) 

Subtract equation (4) from (11) and dynamics of 
the tracking error becomes (12): 

x෤̇ = ൫A + BΛK෡୶
୘(t)൯x(t) + BΛ(K෡୰

୘(t)r(t)  −

൫θ෠(t) − θ൯
୘

ψ൫x(t)൯ − A୫x୫(t) − B୫r(t)    (12) 

Using (9) tracking error dynamics is converted to 
form (13): 

x෤̇(t) = A୫x෤(t) + BΛ[൫K෡୶(t) − K୶൯
୘

x(t) +

൫K෡୰(t) − K୰൯
୘

r(t)  − ൫θ෠(t) − θ൯
୘

ψ൫x(t)൯]   (13) 

By defining parameter estimation matrices to 
relation form: 

ቐ

θ෨(t) = θ෠(t) − θ

K෩୶(t) = K෡୶(t) − K୶

K෩୰(t) = K෡୰(t) − K୰

      (14) 

By placing relation (14) in (13), the dynamics of 
the tracking error in the form (15) is obtained: 

x෤̇(t) = A୫x෤(t) + BΛ[K෩୶
୘(t)x(t) + K෩୰

୘(t)r(t) −

θ෨୘(t)ψ൫x(t)൯]                                         (15) 

Lyapunov's function is now considered a candidate 
in the quadratic form - power series (16): 
 
V൫x෤(t)،K෩୶(t)،K෩୰(t)،θ෨(t)൯ = ∑ α୧(x෤୘(t)Px෤(t))୧୬

୧ୀଵ +

tr൫ൣK෩୶
୘(t)Γ୶

ିଵK෩୶(t) + K෩୰
୘(t)Γ୰

ିଵK෩୰(t) +

θ෨ ୘(t)Γ஘
ିଵθ෨(t)൧Λ൯            .     α୧ ∈ Rା                  (16)                                                                                                                                                        

In relation (16),  are 
adaptation gain and P = PT > 0, the Lyapunov 
algebraic equation answer is: 

A୫P + PA୫
୘ = −Q                                         (17) 

The time derivatives of the Lyapunov function 
candidate are: 

V̇ = ൫x෤̇୘(t)Px෤(t) +

x෤୘(t)Px෤̇(t)൯ ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ  +

 2tr(ቂK෩୶
୘(t)Γ୶

ିଵK෩̇୶(t) + K෩୰
୘(t)Γ୰

ିଵK෩̇ ୰(t) +

θ෨୘(t)Γ஘
ିଵθ෨̇(t)ቃ Λ)                                            (18) 

The time derivative of the above Lyapunov 
function is evaluated along the dynamics of the 
tracking error (15): 

V̇ = − ቀx෤ ୘(t)Qx෤(t)ቁ ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ +

2x෤୘(t)PBΛK෩୶
୘(t)x(t) ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ +

2x෤୘(t)PBΛK෩୰
୘(t)r ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ −

2x෤୘(t)PBΛθ෨୘(t)ψ(x(t)) ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ +

2tr(ቂK෩ ୶
୘(t)Γ୶

ିଵK෩̇୶(t) + K෩୰
୘(t)Γ୰

ିଵK෩̇ ୰(t) +

θ෨୘(t)Γ஘
ିଵθ෨̇(t)ቃ Λ)                                       (19) 

Using the identity that exists between the effect of 
a matrix and the constituent vectors of that matrix, 
the relation (20) is used: 

x෤୘(t)PBΛK෩୶
୘(t)x(t) ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ =
tr(K෩୶

୘(t)x(t)x෤ ୘(t)PBΛ ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ )  

x෤୘(t)PBΛK෩୰
୘(t)r(t) ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ =

tr(K෩୰
୘(t)r(t)x෤ ୘(t)PBΛ ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ )  
x෤୘(t)PBΛθ෨୘(t)ψ൫x(t)൯ ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ =

tr൫θ෨୘(t)ψ൫x(t)൯x෤୘(t)PBΛ ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ ൯(20) 

Using (20), relation (19) turns to the form of 
relation (21): 

V̇ = −x෤ ୘(t)Qx෤(t) ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ +

2tr ቀK෩୶
୘(t)x(t)x෤୘(t)PBΛ ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ +

K෩୶
୘(t)Γ୶

ିଵK෩̇୶(t)Λቁ +

2tr ቀK෩୰
୘(t)r(t)x෤ ୘(t)PBΛ ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ +

K෩୰
୘(t)Γ୰

ିଵK෩̇୰(t)Λቁ +

2tr ቀθ෨୘(t)ψ൫x(t)൯x෤୘(t)PBΛ ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ −

θ෨୘(t)Γ஘
ିଵθ෨̇(t)Λቁ                                                  (21) 

Set the expressions inside the effect matrix of 
relation (21) to zero: 
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K෩୶
୘(t) ቀx(t)x෤ ୘(t)PB ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ +

Γ୶
ିଵK෩̇୶(t)ቁ Λ = 0    

K෩୰
୘(t) ቀr(t)x෤୘(t)PB ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ +

Γ୰
ିଵK෩̇୰(t)ቁ Λ = 0  

θ෨୘(t) ቀψ൫x(t)൯x෤ ୘(t)PB ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ +

Γ஘
ିଵθ෨̇(t)ቁ Λ = 0                                                (22) 

Finally, the rules of adaptation to form (23) are 
obtained: 

K෩̇୶(t) = K෡̇୶(t) − K̇୶ = K෡̇୶(t) =
−Γ୶x(t)x෤ ୘(t)PB ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ   

K෩̇୰(t) = K෡̇୰(t) − K̇୰ = K෡̇୰(t) =
−Γ୰r(t)x෤ ୘(t)PB ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ   

θ෨̇(t) = θ෠̇(t) − θ̇ = θ෠̇(t) =

Γ஘ψ൫x(t)൯x෤୘(t)PB ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ     (23) 

The time derivative of the Lyapunov function is 
simplified as follows: 

V̇ = −x෤୘(t)Qx෤(t) ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ ≤ 0 (24)                                           

Therefore, it can be concluded that 
 are uniformly bounded. Since the 

signal r(t) is bounded and the matrix Am is stable, 
it can be concluded that xm(t) is a bounded signal, 
so the system state vector x is also bounded 

. We also know that θ is a fixed vector 
and   is therefore uniformly bounded. 
As a result, ψ(x(t)) is also bounded and from the 
dynamics of the system (1), it can be concluded 
that is also bounded. Now we calculate the 
second derivative of the Lyapunov function: 

V̈ = −ൣx෤ ୘(t)൫A୫
୘ Q + QA୫൯x෤(t) +

2x෤୘(t)PBΛK෩୶
୘(t)x(t) + 2x෤ ୘(t)PBΛK෩୰

୘(t)r(t) −
2x෤୘(t)PBΛθ෨୘(t)ψ൫x(t)൯൧ ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬

୧ୀଵ −

x෤୘(t)Qx෤(t)[x෤ ୘(t)൫A୫
୘ P + PA୫൯x෤(t) +

2x෤୘(t)PBΛK෩୶
୘(t)x(t) + 2x෤ ୘(t)PBΛK෩୰

୘(t)r(t) −
2x෤୘(t)PBΛθ෨୘(t)ψ(x(t))] ∑ i(i −୬

୧ୀଵ

1)α୧(x෤ ୘(t)Px෤(t))୧ିଶ                                     (25) 

Equation (25) is bounded because all its variables 
and parameters are bounded, so the second 
derivative of Lyapunov's function is also bounded: 
V̈ < ∞                                                            (26) 

Therefore, it can be concluded that  is 
continuously uniform, and since V is bounded 
from below and , therefore, Barbalat's lemma 
[10] can be used and it concludes: 

lim
୲→ஶ

V̇ = 0                                                    (27) 

Since Lyapunov function candidate is radially 
unbounded, it can be concluded that the error 
generally and radially and asymptotically 
converges to zero: 
lim
୲→ஶ

‖x(t) − x୫(t)‖ = 0                             (28) 

Note: System (1) is also controlled by the 
adaptation law (29) by considering the control law 
(10) [9]: 

K෡̇୶(t) = −Γ୶x(t)x෤ ୘(t)PB 

K෡̇୰(t) = −Γ୰r(t)x෤ ୘(t)PB 

θ෠̇(t) = Γ஘ψ൫x(t)൯x෤ ୘(t)PB                              (29) 

Table 1 presents some examples of the adaptation 
laws derived from the Lyapunov function in the 
power series. 

Table 1- Some examples of the adaptation laws 

corresponding to Lyapunov functions in quadratic - 
power series form 

 
Lyapunov function 
candidate 

Corresponding 
adaptation laws 

V
= x෤ ୘(t)Px෤(t)

+ tr([K෩୶
୘(t)Γ୶

ିଵK෩୶(t)

+ K෩୰
୘(t)Γ୰

ିଵK෩୰(t)

+ θ෨୘(t)Γ஘
ିଵθ෨(t)]Λ) 

𝐊෡̇ 𝐱(𝐭) = −𝚪𝐱𝐱(𝐭)𝐱෤𝐓(𝐭)𝐏𝐁 

𝐊෡̇ 𝐫(𝐭) = −𝚪𝐫𝐫(𝐭)𝐱෤𝐓(𝐭)𝐏𝐁 

𝛉෡̇(𝐭)

= 𝚪𝛉𝛙൫𝐱(𝐭)൯𝐱෤𝐓(𝐭)𝐏𝐁 

V
= x෤୘(t)Px෤(t)

+ ൫x෤୘(t)Px෤(t)൯
ଶ

+ 
+tr([K෩୶

୘(t)Γ୶
ିଵK෩୶(t)

+ K෩୰
୘(t)Γ୰

ିଵK෩୰(t)

+ θ෨୘(t)Γ஘
ିଵθ෨(t)]Λ) 

𝐊෡̇ 𝐱(𝐭)
= −𝚪𝐱𝐱(𝐭)𝐱෤𝐓(𝐭)𝐏𝐁(𝟏
+ 𝟐𝐱෤𝐓(𝐭)𝐏𝐱෤(𝐭)) 

𝐊෡̇ 𝐫(𝐭)

= −𝚪𝐫𝐫(𝐭)𝐱෤𝐓(𝐭)𝐏𝐁൫𝟏

+ 𝟐𝐱෤𝐓(𝐭)𝐏𝐱෤(𝐭)൯ 

𝛉෡̇(𝐭)

= 𝚪𝛉𝛙൫𝐱(𝐭)൯𝐱෤𝐓(𝐭)𝐏𝐁(𝟏

+ 𝟐𝐱෤𝐓(𝐭)𝐏𝐱෤(𝐭)) 

V
= x෤ ୘(t)Px෤(t)
+ (x෤ ୘(t)Px෤(t))ଶ

+ (x෤ ୘(t)Px෤(t))ଷ

+ tr([K෩୶
୘(t)Γ୶

ିଵK෩୶(t)

+ K෩୰
୘(t)Γ୰

ିଵK෩୰(t)

+ θ෨୘(t)Γ஘
ିଵθ෨(t)]Λ) 

𝐊෡̇ 𝐱(𝐭)

= −𝚪𝐱𝐱(𝐭)𝐱෤𝐓(𝐭)𝐏𝐁 ቀ𝟏

+ 𝟐𝐱෤𝐓(𝐭)𝐏𝐱෤(𝐭)

+ 𝟑൫𝐱෤𝐓(𝐭)𝐏𝐱෤(𝐭)൯
𝟐

ቁ 

𝐊෡̇ 𝐫(𝐭)
= −𝚪𝐫𝐫(𝐭)𝐱෤𝐓(𝐭)𝐏𝐁(𝟏
+ 𝟐𝐱෤𝐓(𝐭)𝐏𝐱෤(𝐭)
+ 𝟑(𝐱෤𝐓(𝐭)𝐏𝐱෤(𝐭))𝟐) 

𝛉෡̇(𝐭)

= 𝚪𝛉𝛙൫𝐱(𝐭)൯𝐱෤𝐓(𝐭)𝐏𝐁(𝟏

+ 𝟐𝐱෤𝐓(𝐭)𝐏𝐱෤(𝐭)
+ 𝟑(𝐱෤𝐓(𝐭)𝐏𝐱෤(𝐭))𝟐) 
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Design of model reference adaptive control 
with feedback integrator with Lyapunov 
function in the power series 

In this part, the purpose of designing a model 
reference adaptive control is to track the input 
signal of the reference model with less tracking 
error than simple MRAC controller. In this section, 
a class of unknown nonlinear systems in form (30) 
is considered [9]: 
ẋ୮(t) = A୮x୮(t) + B୮Λ ൬u(t) +

θ୘(t)ψ ቀx୮(t)ቁ൰            (30) 

In equation (30)  is system state vector, 
is system control signal, is 

system control matrix and is considered as known, 
and  and  are considered to be 
unknown fixed matrices. Λ is a diagonal matrix 
with strictly positive elements and the matrices 
(Ap, BpΛ) are assumed to be controllable, θ(t) ∈ 
RN×m  is a matrix of unknown parameters and ψ(xp 

(t)) ∈ RN is a regressor vector and known that its 
entries are functions of xp. The purpose is to design 
u in such a way that the output of the system (31) 
follows the command signal r(t) ∈ Rm. 

y(t) = C୮x୮(t) ∈ R୫                                   (32) 

In equation (31) the Cp matrix is known and 
constant. By definition: 
x෤୷(t) = y(t) − r(t)                                      (33) 

In equation (32)  is the system output tracking 
error. Integration of (32) results in: 
By synergizing equations (30) and (33), the 
developed open-loop dynamics are obtained: 

ẋ(t) = Ax(t) + BΛ ൬u(t) + θ୘(t)ψ ቀx୮(t)ቁ൰

+ B୫r(t) 
y(t) = ൣ0୫×୫C୮൧x(t) = Cx(t)                       (34) 

In equation (34)  is the system 
vector of the developed system and n = np + m. The 
developed system matrices are: 

A = ቈ
0୫×୫ C୮

0୬౦×୫ A୮
቉              .  B = ൤

0୫×୫

B୮
൨ 

 

B୫ = ൤
−I୫×୫

O୬౦×୫
൨                  . C = ൣ0୫×୫C୮൧       (35) 

The purpose is to design a state feedback controller 
for the developed dynamic system (36).  

ẋ(t) = Ax(t) + BΛ ቀu(t) + θ୘(t)ψ൫x୮(t)൯ቁ

+ B୫r(t) 
y(t) = Cx(t)                                            (36) 

Assumption: There exists a fixed matrix Kx ∈ Rn×m 
such that: 

A୫ = A + BΛK୶
୘                                      (37) 

Using Equation (37), Equation (36) turns to (38): 
ẋ(t) = A୫x(t) + BΛ(u(t) − K୶

୘x(t) +
θ୘(t)ψ൫x୮(t)൯ + B୫r(t)                            (38) 

The control law in the form (39) is considered: 
u(t) = K෡୶

୘(t)x(t) − θ෠୘(t)ψ൫x୮(t)൯             (39) 

In equation (39), and  matrices are estimates of 
feedback gains and regressor vector parameters. 
placing (39) in (38) results in: 

ẋ = A୫x + BΛ ቀK෩୶
୘x + θ෨୘ψ൫x୮൯ቁ + B୫r(t)   (40) 

The model reference is considered to be form (41): 
ẋ୫ = A୫x୫ + B୫r(t) 
y୫ = Cx୫                                                (41) 

According to the definition of state tracking error: 
e(t) = x(t) − x୰ୣ୤(t)    (42) 

Subtract the equation (41) from (40) yields: 

ė(t) = A୫e(t) + BΛ ൬K෩୶
୘(t)x(t) −

θ෨୘(t)ψ ቀx୮(t)ቁ൰    (43) 

Lyapunov function is now considered to be the 
quadratic- power series form: 

V ቀx෤(t)،K෩୶(t)،θ෨(t)ቁ = ∑ α୧(x෤୘(t)Px෤(t))୧୬
୧ୀଵ +

tr൫K෩ ୶
୘(t)Γ୶

ିଵK෩୶(t)Λ൯ + tr൫θ෨୘(t)Γ஘
ିଵθ෨(t)Λ൯،α୧ ∈

𝑅ା      (44) 

In equation (44)  is the 
adaptation gain and P = PT> 0 is the unique answer 
of algebraic Lyapunov equation with Q = QT > 0: 

PA୫ + A୫
୘ P = −Q    (45) 

Evaluate the time derivative of the Lyapunov 
function along the dynamics of the tracking error: 

 

V̇൫x෤(t)،K෩୶(t)،θ෨(t)൯ = ቂ−x෤୘(t)Qx෤(t) +

2x෤୘(t)PBΛ ቀK෩୶
୘(t)x(t) −
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θ෨୘(t)ψ൫x୮(t)൯ቁቃ ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ +

2tr ቀK෩୶
୘(t)Γ୶

ିଵK෡̇୶(t)Λቁ + 2tr ቀθ෨୘(t)Γ஘
ିଵθ෠̇(t)Λቁ (46) 

Use the identity between the vectors and the matrix 
effect provided in Form (47): 

u୘v = tr(vu୘)      (47) 

Equation (46) turns to (48): 
V̇൫x෤(t)،K෩୶(t)،θ෨(t)൯ =

−x෤୘(t)Qx෤(t) ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ +

2tr ቀK෩୶
୘(t){Γ୶

ିଵK෡̇୶(t) −

x(t)x෤୘(t)PB ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ }Λቁ +

2tr ቀθ෨୘(t){Γ஘
ିଵθ෠̇(t) −

ψ ቀx୮(t)ቁ x෤୘(t)PB ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ }Λቁ   (48) 

By selecting the adaptation laws in the form of 
(49): 

K෡̇୶(t) = −Γ୶x(t)x෤ ୘(t)PB ෍ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ

୬

୧ୀଵ

 

θ෠̇(t) =

Γ஘ψ ቀx୮(t)ቁ x෤୘(t)PB ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ  (49) 

The first time derivative of the Lyapunov function 
candidate turns to form (50): 
V̇൫x෤(t)،K෩୶(t)،θ෨(t)൯ =

−x෤ ୘(t)Qx෤(t) ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ ≤ 0    (50) 

Equation (50) guarantees uniform boundedness of 
: 

V(x෤(t)،K෩୶(t)،θ෨(t))  ≤ V(x෤(0)،K෩୶(0)،θ෨(0))  (51) 
Use equation (44): 
x෤୘(t)Px෤(t) =

ଵ

஑భ
V ቀx෤(t)،K෩୶(t)،θ෨(t)ቁ −

∑
஑౟

஑భ
(x෤୘(t)Px෤(t))୧୬

୧ୀଵ −
ଵ

஑భ
tr൫K෩୶

୘(t)Γ୶
ିଵK෩୶(t)Λ൯ −

ଵ

஑భ
tr൫θ෨୘(t)Γ஘

ିଵθ෨(t)Λ൯     (52) 

From equation (52) it can be concluded: 

x෤୘(t)Px෤(t) ≤
ଵ

஑భ
V ቀx෤(t)،K෩୶(t)،θ෨(t)ቁ  (53) 

Inequality of eigenvalues of quadratic expressions 
used: 

λ୫୧୬(P)‖x෤(t)‖ଶ ≤ x෤୘(t)Px෤(t) ≤ λ୫ୟ୶(P)‖x෤(t)‖ଶ 
(54) 
Using (53) and (54), inequality (55) results in: 

λ୫୧୬(P)‖x෤(t)‖ଶ ≤
ଵ

஑భ
V ቀx෤(t)،K෩୶(t)،θ෨(t)ቁ ≤

ଵ

஑భ
V ቀx෤(0)،K෩୶(0)،θ෨(0)ቁ   (55) 

Inequality (55) results in: 

‖x෤(t)‖ ≤ ඨ
୚ቀ୶෤(଴)،୏෩౮(଴)،஘෩(଴)ቁ

஑భ஛ౣ౟౤(୔)
     (56) 

Inequality (56) confirms that the tracking error 
norm is bounded: 
‖x෤(t)‖ ∈ Lஶ     (57) 

From the time derivative of Lyapunov function it 
can be concluded that: 

− ∫ V̇ ቀx෤(t)،K෩୶(t)،θ෨(t)ቁ
୲

଴
dt =

V ቀx෤(0)،K෩୶(0)،θ෨(0)ቁ − V(x෤(t)،K෩୶(t)،θ෨(t))    (58) 

From (50), (54) and (58) result in: 

αଵλ୫୧୬(Q) ∫ ‖x෤(t)‖ଶ୲

଴
dt ≤ ∫ x෤ ୘(t)Qx෤(t)dt

୲

଴
≤

∫ x෤୘(t)Qx෤(t) ∑ 𝑖𝛼௜(x෤ ୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ dt

୲

଴
≤

V ቀx෤(0)،K෩୶(0)،θ෨(0)ቁ      (59) 

Considering the first and last expression in 
inequality (59), inequality (60) results: 

∫ ‖x෤(t)‖ଶ୲

଴
dt ≤

୚ቀ୶෤(଴)،୏෩౮(଴)،஘෩(଴)ቁ

஑భ஛ౣ౟౤(୕)
   (60) 

Relation (76) confirms that: 
‖x෤(t)‖ ∈ Lଶ     (61) 

Using (57) and (61), relation (62) concludes: 

‖x෤(t)‖ ∈ Lଶ ∩ Lஶ   (62) 

Since V(t) is bounded and (r(t) ∈ L∞), it can be 
concluded from (41)  that xm(t) is bounded and 
subsequently it results from the definition of the 
tracking error: 

x෤(t) = x(t) − x୫(t)    (63) 

It is clear that x ∈ L∞. The ideal feedback gain and 
regressor parameters are unknown and fixed, and 
from the definition of parameter estimation error, 
we have : 

K෩୶(t) = K୶ − K෡୶(t)  
θ෨(t) = θ − θ෠(t)    (64) 

Therefore, the estimated parameters are bounded 
or . Since x(t) ∈ L∞  subsequently is 
xp(t) ∈ L∞, so the regressor vector functions are 
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bounded. From (39) it can be concluded that u(t) ∈ 
L∞ and also from (56) it can be concluded that 

. The second time derivative of the 
Lyapunov function candidate becomes 

V̈ ቀx෤(t)،K෩୶(t)،θ෨(t)ቁ = − ቀx෤̇ ୘(t)Qx෤(t) +

x෤୘(t)Qx෤̇(t)ቁ ∑ iα୧(x෤ ୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ −

x෤୘(t)Qx෤(t) ቀx෤̇ ୘(t)Px෤(t) + x෤ ୘(t)Px෤̇(t)ቁ ∑ i(i −୬
୧ୀଵ

1)α୧(x෤ ୘(t)Px෤(t))୧ିଶ     (65) 

Since  denotes that , so  is a uniform 
function of time. Lyapunov's function is bounded 
from the bellow, and  and  are continuously 
uniform, and from Barbalat's lemma it can be 
concluded that V tends to a fixed limit and the 
Lyapunov derivative tends to zero. 
lim
୲→ஶ

−x෤୘(t)Qx෤(t) ∑ iα୧(x෤୘(t)Px෤(t))୧ିଵ୬
୧ୀଵ = 0 (66) 

Or 

lim
୲→ஶ

x෤୘(t)Qx෤(t) = 0        (67) 

Which confirms that: 

lim
୲→ஶ

‖x෤(t)‖ = 0       or    x(t) → x୫(t)        (68) 

Since the Lyapunov function candidate is radially 
unbounded, it is concluded that the closed-loop 
system is asymptotically and globally stable. so, it 
was proved that x asymptotically follows xm(t). 
Therefore:  

y(t) = Cx(t)       (69) 

It tracks the output of the model reference 
asymptotically and globally: 

y୫(t) = Cx୫(t)    (70) 

From (41) relation we know that ym(t) tracks the 
bounded command signal r(t). Therefore y(t) 
follows r(t). 

Wing Rock phenomenon and its governing 
dynamic equations 

Most fighter aircraft perform high-angle attack 
maneuvers in order to achieve superiority in aerial 
combat. Flying with a high angle of attack enters 
the aircraft in a non-linear area, which may be 
outside the flight envelope designed for the flying 
object, and this creates dangerous phenomena for 
the aircraft to fly. Examples of these nonlinear 
phenomena are jump response, yaw motion 
deviation, pitch angle oscillations, and wing rock. 

Wing rock phenomenon that occurs at high attack 
angles includes lateral oscillations, the most 
important characteristic of these oscillations is the 
oscillation around the longitudinal axis of the 
flying object with a fixed amplitude and 
frequency. In the Wing Rock phenomenon, 
periodic changes in aerodynamic coefficients are 
the cause of limit cycle oscillations, and this is a 
clear example of parametric uncertainty in the 
system. The flow separation from the wings occurs 
at a high angle of attack. In this case, the adverse 
pressure gradient continues along the flow, and as 
a result, the velocity gradient on the surface turns 
zero. Due to the flow separation as the aircraft 
moves forward, the compressive drag force 
increases and the flow separated from the wing 
surface produces vortices. Due to the asymmetry 
of the vortices produced in the two wings, 
nonlinear periodic changes in aerodynamic 
coefficients occur, which causes adverse 
oscillations in the roll angle of the aircraft. 

 
Figure 1 - Fluid flow isolated from the wing surface at 

a high angle of attack 

Delta wing fighters with high sweep back angles 
are mainly faced with this phenomenon. 
Experiments have shown that vortices produced at 
the leading edge of the wing are the most important 
cause of this phenomenon. Although leading edge 
vortices are required to generate high lift force in 
order to create high attack angles, by combining 
these vortices and wings with low aspect ratio and 
nonlinear changes in the derivative, the destruction 
of the roll angle and the effects of the angle of 
attack and the angle of the lateral glide angle are 
the main reasons for this phenomenon. Extensive 
research has been done on this nonlinear 
phenomenon, some of which are presented in 
references [11-20]. 
Various control approaches have been proposed to 
control this nonlinear phenomenon. In [21], a 
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forty-nine rule based fuzzy logic controller is 
presented to control this phenomenon, and the 
consistency and performance of the transient mode 
of this controller are analyzed. Two types of 
nonlinear controllers based on linear feedback and 
sliding-mode were suggested in [22]. In [23] an 
adaptive fuzzy controller is designed to control the 
effect of wing rock in the presence of uncertainty 
and unknown disturbances. The unknown 
nonlinear function is detected by a fuzzy 
approximator and the adaptation laws are derived 
by Lyapunov stability method. In [24], a neural 
adaptive controller with trajectory tracking 
technique L2 was presented and in [25], with the 
help of a fuzzy slider-mode controller, it was 
shown that the system state variables reach the 
desired state model without overshoot. In the 
reference [26] with a combination of direct 
adaptive control methods and uncertainty 
observer, two robust trajectory tracking controllers 
are presented, which the researchers concluded 
that uncertainty observers are possible for real-
time applications. In the reference [27] with a 
combined adaptive controller, the Wing 
phenomenon was controlled by considering the 
time delay. It was also shown that by combining 
CAPC and LQR, a better transient mode 
performance is obtained than LQR. And in the 
references [28-32] with the approach of adaptive 
and robust adaptive controller, the control of this 
nonlinear phenomenon of the limit cycle has been 
studied. 
In this study, with the aim of evaluating the 
controllers designed according to the dynamics of 
this phenomenon with the help of adaptive control 
algorithms of the reference model with 
accumulative parametric uncertainty and model 
reference adaptive control with accumulative 
uncertainty and feedback integrator, this nonlinear 
phenomenon is controlled. Both of the above 
algorithms are direct algorithms that are designed 
by Lyapunov method. 

Although the Wing Rock phenomenon occurs in a 
space of six-degrees of freedom, the obvious 
features of this phenomenon, which are in fact the 
oscillations of the roll angle around the 
longitudinal axis of the flying object , can also be 
examined as one degree of freedom. Wind tunnel 
experiments produce limit cycle oscillations as one 
degree of freedom to the extent that in this 
experiment a flying object  is on a device in a free 
rotation around the longitudinal axis. Fitted 

mathematical models from wind tunnel 
experiments presented second-order models, 
which in this study the model presented by the 
paper [33] is used. 

ϕ̈(t) = cଵC୐ − cଶϕ̇(t)            (71) 

In equation (71) ϕ is the roll angle and also: 

cଵ =
஡ୗୡ୐ౙ

మ

ଶ୍౮౮
           (72) 

cଶ =
ஜ౮୐ౙ

୍౮౮୙ౙ
            (73) 

In equation (72), ρ is air density, S is area of wing, 
C wing chord, Lc is characteristic length, Ixx is 
moment of inertia of the wing, μx is rotational axis 
damping coefficient and Uc is characteristic speed. 
The values of these parameters are specified in 
Table 2. By selecting these numbers, the values c 
= 0.355 and c = 0.001 are obtained. The moment 
coefficient of the roll angle is considered in form 
(74) [33] : 

C୐൫ϕ(t)،ϕ̇(t)൯ = aଵϕ(t) + aଶϕ̇(t) + aଷϕଷ(t) +

aସϕଶ(t)ϕ̇(t) + aହϕ(t)ϕ̇ଶ(t)   (74) 

In equation (74) both variables  and  are 
assumed to be measurable. The values of ai, which 
depend on the angle of attack, are shown in Table 
3. Placing (74) in (71) results in: 

ϕ̈(t) = cଵaଵϕ(t) + (cଵaଶ − cଶ)ϕ̇(t) + cଵaଷϕଷ(t) +
cଵaସϕଶ(t)ϕ̇(t) + cଵaହϕ(t)ϕ̇ଶ(t)            (75) 

Table 2 - delta wing flying object specifications [33] 

 

Table 3 - The values of the parameters of the equation 
(74) in terms of angle of attack (degree) [33] 

𝛂 𝐚𝟏 𝐚𝟐 𝐚𝟑 𝐚𝟒 𝐚𝟓 
 

15 -0.01026 -0.02117 -0.14181 0.99735 -0.83478 

21.5 -0.04207 0.01456 0.04714 -
0.18583 

0.24234 

22.5 -0.04681 0.01966 0.05671 -
0.22691 

0.59065 

25 -0.05686 0.03254 0.07334 -0.3597 1.4681 
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Phase plane analysis of the Wing Rock 
phenomenon 

By considering  and , the 
system dynamics are converted into state space: 

ẋଵ(t) = xଶ(t) 
ẋଶ(t) = cଵaଵxଵ(t) + (cଵaଶ − cଶ)xଶ(t) + cଵaଷxଵ(t)ଷ +
cଵaସxଵ(t)ଶxଶ(t) + cଵaହxଵ(t)xଶ(t)ଶ                     (76) 

Next, calculate the equilibrium points of the 
nonlinear system (76): 

ẋଵ(t) = 0 
ẋଶ(t) = 0         (77) 

Which results in: 

xଶ(t) = 0 
 
aଵxଵ(t) + aଷxଵ(t)ଷ = 0       (78) 

The answers to Equation (78) are: 

xଵ(t) = 0 ،xଵ(t) = ±ට
ିୟభ

ୟయ
       (79) 

Therefore, 3 equilibrium points were obtained, 

, , . Equilibrium points B and C 

are available when  < 0. By referring to Table 1, 
this condition is met when𝛼 ≥ 21.5 .  

Table 4 - Equilibrium points related to the attack angle 
of 25 degrees 

Equilibrium 
point 

coordinates 

Corresponding 
eigenvalues 

Balance 
point type 

 
 

Unstable 
focus 

  
Saddle 
point 

  
Saddle 
point 

Next, we specify the type of equilibrium points, 
which is done using the linearization technique. 
Considering the general state of the nonlinear 
system in form (80): 

ẋଵ = fଵ(xଵ. xଶ) 
ẋଶ = fଶ(xଵ. xଶ)         (80) 

The Jacobin matrices are: 

J = ቎

ப୤భ

ப୶భ

ப୤భ

ப୶మ

ப୤మ

ப୶భ

ப୤మ

ப୶మ

቏          (81) 

If (x1e.x2e) is an equilibrium point of the system 
(76) then the linearized system corresponding to 
the above equilibrium point are: 

൤
ẋଵ

ẋଶ
൨ = ቎

ப୤భ

ப୶భ
(xଵୣ. xଶୣ)

ப୤భ

ப୶మ
(xଵୣ. xଶୣ)

ப୤మ

ப୶భ
(xଵୣ. xଶୣ)

ப୤మ

ப୶మ
(xଵୣ. xଶୣ)

቏ ቂ
xଵ

xଶ
ቃ  (82) 

According to the system state space equation: 

ẋଵ(t) = fଵ(xଵ. xଶ) = xଶ(t) 
ẋଶ(t) = fଶ(xଵ. xଶ) = cଵaଵxଵ(t) + (cଵaଶ −
cଶ)xଶ(t) + cଵaଷxଵ(t)ଷ + cଵaସxଵ(t)ଶxଶ(t) +
cଵaହxଵ(t)xଶ(t)ଶ        (83) 

The linearized system around the equilibrium 
point is obtained in the form (84): 

 

 
     (84) 

Figures 2 to 5 show the nonlinear behavior of the 
wing rock phenomenon at the angle of attack α = 
25 deg with the initial conditions  and 

. 

 
Figure 2 - Roll moment coefficient hysteresis 
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Figure 3 - Phase plane of the Wing Rock phenomenon 

(2 saddle equilibrium points and an unstable focus) 

 

Figure 4 - Wing Rock phenomenon limit cycle 

 

Figure 5 - Rolling angle oscillation response (build up 
phase) 

 

 

 

Wing Rock phenomenon control model 

The control model studied in this study is in the 
form (85): 
ϕ̈(t) = cଵaଵϕ + (cଵaଶ − cଶ)ϕ̇ + cଵaଷϕଷ +

cଵaସϕଶϕ̇ + cଵaହϕϕ̇ଶ +  d଴u   (85) 

In (85), u(t) is the input of the control surfaces 
(aircraft ailerons) and d0 is the impact factor of the 
control surfaces. By defining the mode vector 

 equation (85) is 
written in the form of state space (86): 

൤
ẋଵ(t)
ẋଶ(t)

൨ = ൤
0 1

cଵaଵ cଵaଶ − cଶ
൨ ൤

xଵ(t)
xଶ(t)

൨ +

ቂ
0
1

ቃ d଴(u +
ୡభୟయ

ୢబ
xଵ

ଷ(t) +  
ୡభୟర

ୢబ
xଵ

ଶ(t)xଶ(t) +
ୡభୟఱ

ୢబ
xଵ(t)xଶ

ଶ(t))    (86) 

 

Simulation 

Evaluation of the performance of the model 
reference adaptive control designed with 
the Lyapunov function in the power series 

In this part, in order to evaluate the adaptive 
controller designed in the first part of the system, 
a degree of freedom of the wing is simulated. 
Using the data of Table 3 corresponding to the 
angle of attack of 25 degrees and taking into 
account the impact factor of the controller: 

d଴ = 1            (87) 

The basic conditions for the system are considered 
as follows: 

ϕ଴ = 5 deg ،P଴ = 0     ቀ
ୢୣ୥

ୱ
ቁ          (88) 

The dynamics of roll angle of the reference model 
are considered to be in the form of a transfer 
function (89): 

థౣ

୰
=

ன౤
మ

ୱమାଶஞன౤ୱାன౤
మ     (89) 

Equation (89) in the form of state space (90) is 
considered: 

ቈ
ϕ̇୫

Ṗ୫

቉ = ൤
0 1

−ω୬
ଶ −2ξω୬

൨ ൤
ϕ୫

P୫
൨ + ൤

0
ω୬

ଶ൨ r(𝑡) (90) 
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The natural frequency, and the damping 
coefficient and the considered adaptation gain 
matrices are: 

ω୬ = 1   ،  ξ = 0.7 

Γ୰ = 100  ،Γ୶ = ቂ
1 0
0 1

ቃ ،Γ஘ = ൥
100 0 0

0 100 0
0 0 100

൩       (91) 

The response form of the closed-loop system is 
presented with considering the step input with 
different initial conditions. The maximum 
allowable changes for aileron are considered (umax 
= 20 deg) and in the structure of the adaptation law, 
the adaptation laws corresponding to the second-
order Lyapunov function in the power series 
(Table 1, second row i = 2) are used.  

 
Figure 6 - Tracking the reference trajectory with the 
second-order adaptive controller in the power series 

 
Figure 7: Trajectory tracking of the roll angle rate 

reference 
      
As shown in Figures 6 and 7, the system mode 
variables (roll angle and roll angle rate) track the 
input command trajectory after a period of time 
and it is clear that these angles are out of hysteresis 

mode and the wing rock phenomenon is well 
controlled by the designed controller. 

 

Figure 8 - Control signal (in the allowable range of 
20-and 20 + degrees) 

 

Figure 9 – boundedness of controller feedback 
parameters estimation 

 
Figure 10 - boundedness of controller feed forward 

parameters estimation 
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Figure 11 - Boundedness estimation of regressor 

vector parameters 

Since the model reference adaptive control, despite 
guaranteeing the stability of the closed-loop 
system, does not provide the convergence of the 
controller parameters and the regressor vector 
parameters accumulative uncertainty, but 
guarantees the boundedness of the estimation of 
the above parameters. This is well illustrated in 
Figures 9 to 11. 

Comparison of performance of controller 
designed with Lyapunov function in the 
power series with controller designed with 
quadratic  Lyapunov function 

In this section, to compare the performance of the 
controller designed with Lyapunov function in the 
power series with the controller designed with 
standard Lyapunov function (29), the Lyapunov 
function in the power series 2 in the form (92) is 
used: 

  
            (92) 

The adaptation law derived from Lyapunov 
function is as follows: 

(93) 

 

The simulation results of the controller with the 
above adaptation law in comparison with the 
adaptation controller with the adaptation law (29) 
are presented in Figures 12 to 15. 

 
Figure 12 - Roll angle reference model tracking by 2 
adaptive controllers (red = second-order power series 

and blue is common adaptive controller) 

 
Figure 13 - Magnification of Figure 11 

 
Figure 14: Roll angle rate reference model tracking by 

2 adaptive controllers (red = 2nd order power series 
and blue is conventional adaptive controller) 
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Figure 15 - Magnification of Figure 13 

As is well illustrated in the figures above, the 
controller provides a relatively better response 
than the conventional adaptive controller with the 
rules of the second-order power series. The second 
norm of the tracking error signal and the second 
norm of the energy signal consumed are presented 
in Table 5. 

Table 5 – Numerical comparison of the second norm 
of the tracking error and the control signal 

   
Controller designed 

with quadratic  
Lyapunov function 

0.572 4.46 

Controller designed 
with second-order 

Lyapunov function in 
the power series 

0.362 4.40 

Evaluation of the performance of the 
adaptive controller of the reference model 
with a feedback integrator designed with 
the Lyapunov function in the power series 

Using the relation (30) and the data in Table 2 for 
α = 25 deg:        

A୮ = ቂ
0 1

−0.0201 0.01
ቃ ،B୮ = ቂ

0
1

ቃ       (94) 

Roll angle is considered as adjusted output: 

y = [1    0]x୮ =  ϕ    (95) 

Which results in: 

C୮ = [1 0]    (96) 

 

Developed open loop systems include: 

A = ൥
0 1 0
0 0 1
0 −0.0201 0.01

൩ ، B = ൥
0
0
1

൩ ، C = [0 1 0] (97) 

In order to stabilize the developed system, LQR 
controller is used: 

u୐୕ୖ(t) = −K୐୕ୖ
୘ x(t)   (98) 

By selecting values: 

Q୐୕ୖ = ൥
1 0 0
0 1 0
0 0 1

൩ ،R୐୕ୖ = 1   (99) 

 
Figure 16 - Trajectory tracking the reference (roll 

angle) 

 
Figure 17 - Magnification of Figure 15 
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Figure 18 - Control signal (within the allowable range 
of 20 and +20 degrees) 

 

Figure 19 – Roll angle tracking error 

The simulation results are presented in Figures 15 
to 18. It is clear that after the transient state, the 
tracking error goes to zero and the control signal 
remains within the allowable range. As can be seen 
in Figures 6 and 11, the tracking error decreases 
over time and by tending the time towards 
unbounded, the tracking is achieved. However, in 
the adaptation state with the feedback integrator, 
the convergence error occurs much faster, which 
can be seen in Figures 15 and 18. 

Conclusion 
The innovation presented in this paper is 
considering Lyapunov function in power series 
form based on quadratic polynomials tracking 
error and it was proved that the adaptation rules 
derived from this Lyapunov function include 
quadratic expressions in power series form. The 
adaptation laws derived from quadratic Lyapunov 
function in the power series can be considered 

similar to the adaptation law derived from the 
common quadratic Lyapunov function, except that 
the benefits of its adaptation vary with time. The 
simulations show the proper performance of these 
controllers. In the adaptive mode, the proper 
transient mode performance and the convergence 
of the tracking error to zero with tending the time 
to unboundedness and in the feedback integrator 
mode, a faster convergence of the tracking error to 
zero was observed. The tracking error and control 
signal norm in the second-order adaptive 
controller in the power series mode were less than 
the tracking error and control signal norm in the 
conventional adaptive controller, which are 
specified in Table 5. Lyapunov function in the 
form of power series can be used in designing 
different types of robust adaptive and adaptive 
controllers designed by Lyapunov method. 
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