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In this paper, the nonlinear thermal buckling of moderately thick and functionally graded 
cylindrical panels is analyzed based on the first-order shear deformation theory (FSDT) and 
large deflection von Kármán equations. The highly coupled nonlinear governing equations are 
solved using a combination of dynamic relaxation approach with the finite-difference 
discretization method in various boundary conditions. The material properties of the 
constituent components of the FG shell are considered to vary continuously along the thickness 
direction based on simple power-law and Mori-Tanaka distribution methods, separately. The 
critical thermal buckling load is considered based on the thermal load-displacement curve 
derived by solving the incremental form of nonlinear equilibrium equations. In order to 
consider the accuracy of the present results, a comparison study has been carried out. The 
effects of the boundary conditions, rule of mixture, grading index, radius-to-thickness ratio, 
length-to-radius ratio, and panel angle are studied on the thermal buckling loads. It is observed 
from the results that in high values of radius-to-thickness ratios, there is no difference between 
the values of critical buckling temperature differences for linear and nonlinear distributions.  

Keywords: Nonlinear; Thermal Buckling; Functionally graded panel; Dynamic relaxation 
method. 

Introduction1234 

Flat and curved panels are important subjects of 
engineering applications among the different 
structural components. These sorts of panels can 
be subjected to thermal loading which the increase 
of temperature may lead to compressive stresses in 
the panels under imposed specific boundary 
conditions; therefore, it may cause thermal 
buckling failures of the panels. Recently Carbon 
nanotube-reinforced (CNT) [1-3], reinforced 
functionally graded (FG) plates [4-6] have been 
investigated. Functionally graded materials 
(FGMs) have received a lot of attention. In the case 
of thermal analysis, FGMs can withstand high 
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temperatures keeping structural integrity at the 
same time. In other words, FGMs properties show 
a smooth variation from one surface to another 
which omit interface problems and decrease stress 
concentration [7,8]. Despite the significant 
importance of the buckling of cylindrical panels, 
few published papers are available [9-11]. Norouzi 
and Alibeigloo [12] studied thermo-viscoelastic 
behavior of cylindrical FGM panel subjected to 
thermal and/or mechanical load using 3D elasticity 
theory. In their paper, they utilized the Fourier 
series expansion and state-space approach. Seifi et 
al. [13] investigated the buckling load of cracked 
panels subjected to compressive and tensile axial 
loads as force per unit length. They noticed radius, 
thickness, width, and length of the panels have 
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little impact on the buckling load of the cracked 
panels. Using the Rayleigh–Ritz approach and 
Kirchhoff–Love’s hypotheses, Panahandeh et al. 
[14] studied the buckling of cylindrical panels on 
tensionless elastic foundations subjected to axial 
compression. They noticed that the impact of the 
foundation on buckling of the panel is significantly 
dependent on width-to-thickness ratio, foundation 
modulus, aspect ratio, and central angle. Magnucki 
[15] investigated nonlinear symmetrically 
mechanical buckling of the cylindrical panel. 
Using the principle of stationary potential energy, 
he derived differential equations of equilibrium. 
Golmakani et al. [16] studied nonlinear buckling 
of moderately thick functionally graded (FG) 
cylindrical panels under axial compression for 
different boundary conditions based on the First-
order shear deformation theory (FSDT) via 
dynamic relaxation (DR) method. They observed 
that with the increase of grading index, the 
influence of radius-to-thickness ratio on the 
buckling load reduces. Zhang et al. [17] 
investigated thermal buckling of FG plates using a 
local Kriging meshless method. Duc and Tung 
[18] used classical shell theory to analyze the 
nonlinear behavior of FGM cylindrical panels 
subjected to uniform lateral pressure with and 
without temperature impacts in the simply 
supported condition. Authors of  papers [19-21] 
studied mechanical and thermal buckling and post-
buckling of conical and cylindrical FG shell panels 
based on FSDT via the element-free KP- Ritz 
approach. Dung and Hoa [22] analyzed nonlinear 
buckling and post-buckling of axially compressed 
FG cylindrical panels based on the classical shell 
theory. The Refs. [23,24] studied thermal buckling 
of the functionally graded cylindrical shell. 
Despite the important contributions to the analysis 
of buckling behavior of cylindrical panels, so far, 
the nonlinear thermal buckling of FG cylindrical 
panels in various boundary conditions has not been 
studied based on FSDT, yet. Therefore, the present 
article analyzes the thermal buckling of FG 
cylindrical panels with clamped and simply 
supported boundary conditions according to FSDT 
and large deflection von Kármán equations. The 
DR technique combined with the finite difference 
(FD) discretization approach is employed to solve 
the governing equations. However, up to now, the 
thermal buckling behavior of FG cylindrical 
panels has not been considered using the DR 
technique, yet. In this paper, the critical thermal 
buckling load is considered based on the thermal 

load-displacement curve derived by solving the 
incremental form of nonlinear equilibrium 
equations. In order to estimate the elastic 
properties of actual FGM’s accurately, the Mori-
Tanaka model is utilized. Moreover, the results of 
this theory are also compared with the power-law 
distribution (simple rule of mixture) which showed 
a notable difference. Also, linear and nonlinear 
temperature distributions are assumed along the 
thickness direction. In order to consider the 
accuracy of the present results, a comparison study 
has been carried out. Finally, numerical results for 
critical temperature difference are obtained in 
diverse boundary conditions, two different rules of 
mixture, grading indices, radius -to- thickness, and 
length-to-radius ratios for linear and nonlinear 
types of thermal distributions. 

Geometry and Material Properties 

Fig. 1 shows an FG cylindrical panel with radius 
R, thickness h, and length L in the cylindrical 
coordinate system (x, θ, z). The FG panel is 
assumed as a mixture of ceramic and metal. Also,  
properties of it change continuously and smoothly 
through the thickness of the panel.  

 

Fig 1. The geometry and coordinate system of the FG 
cylindrical panel 

Although the power-law distribution of the volume 
fraction model is mainly considered to predict the 
elastic behaviors of FGMs, in some case studies, 
the Mori-Tanaka scheme [25] was utilized to 
validate the results with the power-law distribution 
theory. From this model, the material properties 𝑃 
(which is the effective values of Young’s modulus 
and the Poisson’s ratio) along the thickness of the 
FG panel can be written as: 

𝑃(𝑧) = 𝑃 𝑉 + 𝑃 𝑉  (1) 

where the subscripts 𝑐 and 𝑚 express the ceramic 
and the metallic constituents, respectively. Also, 
based on the power-law distribution, the volume 
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fractions of the ceramic 𝑉  and the metal 𝑉  are as 
follows: 

𝑉 =
2𝑧 + ℎ

2ℎ
 (2) 

𝑉 = 1 − 𝑉  (3) 

In the above equation, 𝑧 is the thickness in the 
domain of −ℎ / 2 ≤  𝑧 ≤  ℎ / 2 and 𝑘 is the 
grading index that denotes the material change 
trend through the thickness of the panel.  The 
effective shear modulus 𝐺, and the effective bulk 
modulus 𝐵, and thermal expansion coefficient 
, of the FGM considering the Mori-Tanaka 
homogenization approach are assumed as: 

𝐵 − 𝐵

𝐵 − 𝐵
=

𝑉

1 + (1 − 𝑉 )
( )

 (4) 

𝐺 − 𝐺

𝐺 − 𝐺
=

𝑉

1 + (1 − 𝑉 )
 (5) 

𝐾 − 𝐾

𝐾 − 𝐾
=

𝑉

1 + (1 − 𝑉 )
( )

 (6) 

∝ −∝

∝ −∝
=

−

−
 (7) 

where, 

𝑓 =
𝐺 (9𝐵 + 8𝐺 )

6(𝐵 + 2𝐺 )
 (8) 

Based on this procedure, the Young’s modulus E 
and the Poison's Ratio 𝜗 can be obtained by: 

𝐸 =
9𝐵𝐺

3𝐵 + 𝐺
 (9) 

𝜗 =
3𝐵 − 2𝐺

2(3𝐵 + 𝐺)
 (10) 

Thermal Load Distribution 

In this paper, the temperature variation is 
considered to occur only in the thickness direction. 
For the mentioned one-dimensional temperature 
field, it is considered that the outer ceramic surface 
is exposed to higher temperatures compared to the 
inner metal surface. In this case, the temperature 
distribution along the thickness can be defined by 
the following one-dimensional Fourier equation of 
heat conduction as: 

𝑑

𝑑𝑧
𝑘(𝑧)

𝑑𝑇(𝑧)

𝑑𝑧
= 0 (11) 

Linear Temperature Distribution 
According to the linear temperature distribution, 
the thermal load distribution along the thickness 
direction is considered as follows [25]: 

𝑇(𝑧) = 𝑇 + (𝑇 −𝑇 ) 𝑧 +
ℎ

2
 (12) 

where cTT  at 2/hz   and mTT   at 

2/hz  . 

Nonlinear Temperature Distribution 

The nonlinear thermal distribution ( )T z  can be 
obtained by solving Eq. (11) as follows [26]: 

𝑇(𝑧)

= 𝑇 + (𝑇 −𝑇 )
𝑑𝑧

𝐾(𝑧)

𝑑𝑧

𝐾(𝑧)
 (13) 

 
The integrations of the above equation are 
obtained numerically by discretizing the panel 
along the thickness direction. It is notable that in 
Ref. [24] for obtaining the thermal buckling load 
of FG cylindrical panel, the linear temperature 
variation was assumed along the thickness 
direction.  

Governing Equations 

The displacement field based on the FSDT in the 
cylindrical coordinate system (x, θ, z) is as 
follows: 

)14 (  
𝑈(𝑥, 𝜃, 𝑧) = 𝑢(𝑥, 𝜃) + 𝑧𝜑 (𝑥, 𝜃) 
𝑉(𝑥, 𝜃, 𝑧) = 𝑣(𝑥, 𝜃) + 𝑧𝜑 (𝑥, 𝜃) 
𝑊(𝑥, 𝜃, 𝑧) = 𝑤(𝑥, 𝜃) 

where 𝑈 , 𝑉, and 𝑊 are the displacements 
corresponding to the coordinate system and 
are functions of the spatial coordinates; 
𝑢(𝑥, 𝜃), 𝑣(𝑥, 𝜃), and 𝑤(𝑥, 𝜃) are the middle 
surface displacements and 𝜑 (𝑥, 𝜃), 𝜑 (𝑥, 𝜃) 
describe the rotations about the 𝜃 and 𝑥 axes, 
respectively. As stated, to obtain the buckling 
load via the DR technique, the equilibrium 
equations should be obtained in the 
incremental form. So, all of the following 
governing equations are derived in the 
incremental form of variables. According to 
the incremental nonlinear von Kármán strain-
displacement relations, the strain components 
compatible with the displacement field of Eq. 
(14) are as follow [16]: 

 
)15(  

𝛿𝜀 =
𝜕𝛿𝑢

𝜕𝑋
+

1

2

𝜕𝛿𝑤

𝜕𝑋
+

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋

+ 𝑧
𝜕𝛿𝜑

𝜕𝑋
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𝛿𝜀 =
1

𝑅

𝜕𝛿𝑣

𝜕𝜃
+

𝛿𝑤

𝑅
+

1

𝑅

𝜕𝑤

𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃

+
1

2𝑅

𝜕𝛿𝑤

𝜕𝜃
+

𝑧

𝑅

𝜕𝛿𝜑

𝜕𝜃
 

𝛿𝛾 =
1

𝑅

𝜕𝛿𝑢

𝜕𝜃
+

𝜕𝛿𝑣

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝑤

𝜕𝜃

+
1

𝑅

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃
+

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃

+  𝑍
𝜕𝛿𝜑

𝜕𝑋
+

1

𝑅

𝜕𝛿𝜑

𝜕𝜃
 

𝛿𝛾 = 𝛿𝜑 (𝑥, 𝜃) +
𝜕𝛿𝑤

𝜕𝑋
 

𝛿𝛾 = 𝛿𝜑 (𝑥, 𝜃) +
1

𝑅

𝜕𝛿𝑤

𝜕𝜃
 

Utilizing the Hooke’s law, the incremental 
constitutive thermoelastic relations can be 
expressed by [16, 24]:  

)16(  

𝛿𝜎 =
𝐸(𝑍)

1 − 𝜗
[𝛿𝜀 + 𝜗𝛿𝜀 ]

−
𝐸(𝑍)𝛼(𝑍)𝑇(𝑍)

1 − 𝜗
 

𝛿𝜎 =
𝐸(𝑍)

1 − 𝜗
[𝛿𝜀 + 𝜗𝛿𝜀 ]

−
𝐸(𝑍)𝛼(𝑍)𝑇(𝑍)

1 − 𝜗
 

𝛿𝜏 =
𝐸(𝑍)

2(1 + 𝜗)
[𝛿𝛾 ] 

𝛿𝜏 =
𝐸(𝑍)

2(1 + 𝜗)
[𝛿𝛾 ] 

𝛿𝜏 =
𝐸(𝑍)

2(1 + 𝜗)
[𝛿𝛾 ] 

The stress and moment resultants                                     

(  MMQNN rrr ,,,, ) can be obtained utilizing 

the relevant integration through the thickness [16, 
24]: 

)17(  

(𝛿𝑁 , 𝛿𝑀 ) = 𝛿𝜎 (1, 𝑧)𝑑𝑧          𝑖

= 𝑥, 𝜃, 𝑥𝜃 

𝛿𝑄 = 𝛿𝜎 𝑑𝑧          𝑖 = 𝑥, 𝜃 

(𝛿𝑁 , 𝛿𝑀 )

=
𝐸(𝑍)𝛼(𝑍)𝑇(𝑍)

1 − 𝜗
(1, 𝑧)𝑑𝑧          𝑖 = 𝑥, 𝜃 

By substituting Eqs. (15) and (16) into Eq. (17), 
the incremental form of the constitutive relations 
in terms of displacement field can be obtained as 
[16]: 

)18(  

 
𝛿𝑁 = 𝐴

𝜕𝛿𝑢

𝜕𝑋
+

1

2

𝜕𝛿𝑤

𝜕𝑋
+

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋

+   𝐴
1

𝑅

𝜕𝛿𝑣

𝜕𝜃
+  

𝛿𝑤

𝑅

+
1

𝑅

𝜕𝑤

𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃

+  
1

2𝑅

𝜕𝛿𝑤

𝜕𝜃

+ 𝐵
𝜕𝛿𝜑

𝜕𝑥

+  𝐵
1

𝑅

𝜕𝛿𝜑

𝜕𝜃
− 𝛿𝑁  

𝛿𝑁 =   𝐴
𝜕𝛿𝑢

𝜕𝑋
+

1

2

𝜕𝛿𝑤

𝜕𝑋

+
𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋

+  𝐴
1

𝑅

𝜕𝛿𝑣

𝜕𝜃
+

𝛿𝑤

𝑅

+
1

𝑅

𝜕𝑤

𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃

+
1

2𝑅

𝜕𝛿𝑤

𝜕𝜃

+ 𝐵
𝜕𝛿𝜑

𝜕𝑋

+  𝐵
1

𝑅

𝜕𝛿𝜑

𝜕𝜃
− 𝛿𝑁  

𝛿𝑁 = 𝐴
1

𝑅

𝜕𝛿𝑢

𝜕𝜃
+

𝜕𝛿𝑣

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝑤

𝜕𝜃

+
1

𝑅

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃

+
1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃

+ 𝐵
𝜕𝛿𝜑

𝜕𝑋
+

1

𝑅

𝜕𝛿𝜑

𝜕𝜃
 

𝛿𝑄 = 𝐹 𝛿𝜑 (𝑋, 𝜃) +
1

𝑅

𝜕𝛿𝑤

𝜕𝜃
 

𝛿𝑄 = 𝐹 𝛿𝜑 (𝑋, 𝜃) +
𝜕𝛿𝑤

𝜕𝑋
 

)19(  

 
𝛿𝑀 = 𝐵

𝜕𝛿𝑢

𝜕𝑋
+

1

2

𝜕𝛿𝑤

𝜕𝑋
+

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋

+  𝐵
1

𝑅

𝜕𝛿𝑣

𝜕𝜃
+

𝛿𝑤

𝑅

+
1

𝑅

𝜕𝑤

𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃

+
1

2𝑅

𝜕𝛿𝑤

𝜕𝜃

+ 𝐷
𝜕𝛿𝜑

𝜕𝑥

+ 𝐷
1

𝑅

𝜕𝛿𝜑

𝜕𝜃
− 𝛿𝑀  
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𝛿𝑀 = 𝐵
𝜕𝛿𝑢

𝜕𝑋
+

1

2

𝜕𝛿𝑤

𝜕𝑋
+

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋

+  𝐵
1

𝑅

𝜕𝛿𝑣

𝜕𝜃
+  

𝛿𝑤

𝑅

+
1

𝑅

𝜕𝑤

𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃

+  
1

2𝑅

𝜕𝛿𝑤

𝜕𝜃

+ 𝐷
𝜕𝛿𝜑

𝜕𝑋

+  𝐷
1

𝑅

𝜕𝛿𝜑

𝜕𝜃
− 𝛿𝑀  

𝛿𝑀 = 𝐵
1

𝑅

𝜕𝛿𝑢

𝜕𝜃
+

𝜕𝛿𝑣

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝑤

𝜕𝜃

+
1

𝑅

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃

+
1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃

+ 𝐷
𝜕𝛿𝜑

𝜕𝑋
+

1

𝑅

𝜕𝛿𝜑

𝜕𝜃
 

where ijijij DBA ,,  and ijF  are the extensional, 

coupling, bending, and shear stiffness, 
respectively and are derived by [16]: 

)20(  

 𝐴 , 𝐵 , 𝐷 = ∫ 𝑄 (1, 𝑧, 𝑧 )𝑑𝑧 , 

(i,j=1, 2,6) 

(𝐹 , 𝐹 ) =
𝐾 𝐸

2(1 + 𝜗)
𝑑𝑧          

𝑄 = 𝑄 =
𝐸

1 − 𝜗
 

𝑄 = 𝑄 =
𝜗𝐸

1 − 𝜗
 

𝑄 =
𝐸

2(1 + 𝜗)
 

where the shear correction factor 𝐾 = 5/6  is 
considered [25]. According to the principle of 
minimum potential energy, the force equilibrium 
equations in incremental form can be obtained as 
follows: 

)21(  
𝜕𝛿𝑁

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑁

𝜕𝜃
= 0 

𝜕𝛿𝑁

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑁

𝜕𝜃
= 0 

𝜕𝛿𝑄

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑄

𝜕𝜃
+

𝜕 𝛿𝑊

𝜕𝑋
(𝑁 + 𝛿𝑁 )

+
𝜕 𝑊

𝜕𝑋
𝛿𝑁 −

𝜕 𝛿𝑊

𝜕𝑋
𝛿𝑁

−
𝜕 𝑊

𝜕𝑋
𝛿𝑁

+  
2

𝑅

𝜕 𝛿𝑊

𝜕𝑋 𝜕𝜃
(𝑁 + 𝛿𝑁 )

+
2

𝑅

𝜕 𝑊

𝜕𝑋 𝜕𝜃
𝛿𝑁

+   
1

𝑅

𝜕 𝛿𝑊

𝜕𝜃
(𝑁 + 𝛿𝑁 )

+
1

𝑅

𝜕 𝑊

𝜕𝜃
𝛿𝑁

−
1

𝑅

𝜕 𝛿𝑊

𝜕𝜃
𝛿𝑁

−
1

𝑅

𝜕 𝑊

𝜕𝜃
𝛿𝑁 −

1

𝑅
𝛿𝑁

−
1

𝑅
𝛿𝑁 = 0  

𝜕𝛿𝑀

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑀

𝜕𝜃
− 𝛿𝑄 = 0 

𝜕𝛿𝑀

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑀

𝜕𝜃
− 𝛿𝑄 = 0 

Substituting resultant forces and moments derived 
in Eqs. (18), (19) into Eq. (21) leads to a set of 
nonlinear displacement equilibrium equations in 
the incremental form. For instance, the first 
equation of (21) is described in detail: 
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)22 (  

𝐴
𝜕 𝛿𝑢

𝜕𝑋
+

𝜕 𝛿𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋
+

𝜕 𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋

+
𝜕 𝛿𝑤

𝜕𝑋

𝜕𝑤

𝜕𝑋

+ 𝐴
1

𝑅

𝜕 𝛿𝑣

𝜕𝑋𝜕𝜃

1

𝑅

𝜕𝑤

𝜕𝑋

+
1

𝑅

𝜕 𝛿𝑤

𝜕𝑋𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃

+
1

𝑅

𝜕 𝛿𝑤

𝜕𝑋𝜕𝜃

𝜕𝑤

𝜕𝜃

+  
1

𝑅

𝜕 𝑤

𝜕𝑋𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃

+ 𝐵
𝜕 𝛿𝜑

𝜕𝑋

+ 𝐵
1

𝑅

𝜕 𝛿𝜑

𝜕𝑋𝜕𝜃

+  
1

𝑅
𝐴

1

𝑅

𝜕 𝛿𝑢

𝜕𝜃
+

𝜕 𝛿𝑣

𝜕𝑋𝜕𝜃

+
1

𝑅

𝜕 𝑤

𝜕𝑋𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃

+
1

𝑅

𝜕 𝛿𝑤

𝜕𝑋𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃

+
1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕 𝑤

𝜕𝜃

+
1

𝑅

𝜕𝑤

𝜕𝑋

𝜕 𝛿𝑤

𝜕𝜃

+
1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕 𝛿𝑤

𝜕𝜃

+
1

𝑅
𝐵

𝜕 𝛿𝜑

𝜕𝑋𝜕𝜃

+  
1

𝑅

𝜕 𝛿𝜑

𝜕𝜃
= 0  

The FG cylinder is considered just subjected to a 
thermal gradient along the thickness direction. The 
clamped and simply supported boundary 
conditions in terms of constraints on 
displacements, stress resultants, and stress couples 
at 𝑥 = 0, 𝐿, are as follows:  
Clamped—in-plane movable: 

)23(  𝑁 =  𝑣 = 𝑤 = 𝜑 = 𝜑 = 0 

Simply supported—in-plane movable: 
)24(  𝑁 = 𝑀 = 𝑣 = 𝑤 = 𝜑 = 0 

And in Clamped condition at 𝑦 = 0. 𝑏    𝑦 →
(𝑅𝜃): 

)25(  𝑢 =  𝑣 = 𝑤 = 𝜑 = 𝜑 = 0 

Numerical solution 

In this paper, the DR method combined with a 
finite difference discretization method is used. The 
DR is an efficient technique and an explicit 

iterative method which is applied to transfer a 
boundary value problem into a time-stepping 
initial value problem. In this case, artificial inertia 
and damping forces are added to the right side of 
Eq. (21) as follows [16]: 

𝐿𝐻𝑆{𝐸𝑞𝑠.  (21)} = 𝑚
𝜕 𝛿𝑋

𝜕𝑡
+ 𝑐

𝜕𝛿𝑋

𝜕𝑡
 

In Eq. (26) LHS = left-hand side and 𝑚 , 𝑐  
(𝑋 = 𝑢, 𝑣, 𝑤, 𝜑 , 𝜑 ) are elements of diagonal 
fictitious mass and damping matrices 𝑚 and 𝑐, 
respectively. To check the numerical 
accuracy, the element of diagonal mass matrix 
𝑚 is derived by the Gershgörin theorem as 
[27, 28]:  

𝑚 ≥ 0.25(𝜏 ) 𝑘  

where superscript n mentions the nth iteration 
and 𝜏 is the increment of fictitious time which 

its value is assumed to 1. Moreover, ijk  is the 

element of stiffness matrix 𝐾 which is 
obtained by: 

𝐾 =
𝜕𝑃

𝜕𝑋
 (28) 

where 𝑃 is the left-hand-side of the 
equilibrium relation (21). Also, by applying 
the Rayleigh principle to each node, the instant 
critical damping factor 𝑐  for node i at the nth 
iteration is  achieved as [29]: 

(29) 

 

𝑐 = 2
(𝑋 ) (𝑃 )

(𝑋 ) 𝑚 𝑋
 

Besides, to make the elements of diagonal 
fictitious damping matrix C , various c values for 
diverse nodes are obtained at each direction as 
[29]: 

𝑐 = 𝑐 𝑚 ,     𝑖, 𝑗 = 1,2, … . , 𝑁 (30) 

Eventually, the velocity and acceleration terms 
should be replaced with the equivalent central 
finite-difference terms as follows: 

)31 (  �̈� =
�̇� − �̇�

𝜏
 

)32 (  �̇� =
𝑋 − 𝑋

𝜏
 

By substituting Eqs. (31) and (32) into the right-
hand side of Eq. (26), the stability equations can be 
written into an initial value form as: 
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)33 (  

𝛿�̇�
⁄

=
2𝜏

2 + 𝜏 𝑐
(𝑚 )

𝜕𝛿𝑁

𝜕𝑋

+
1

𝑅

𝜕𝛿𝑁

𝜕𝜃

+  
2 − 𝜏 𝑐

2 + 𝜏 𝑐
𝛿�̇�

⁄  

𝛿�̇�
⁄

=
2𝜏

2 + 𝜏 𝑐
(𝑚 )

𝜕𝛿𝑁

𝜕𝑋

+
1

𝑅

𝜕𝛿𝑁

𝜕𝜃

+   
2 − 𝜏 𝑐

2 + 𝜏 𝑐
𝛿�̇�

⁄  

𝛿�̇�
⁄

=
2𝜏

2 + 𝜏 𝑐
(𝑚 )

𝜕𝛿𝑄

𝜕𝑋

+
1

𝑅

𝜕𝛿𝑄

𝜕𝜃

+
𝜕 𝛿𝑊

𝜕𝑋
(𝑁 + 𝛿𝑁 )

+
𝜕 𝑊

𝜕𝑋
𝛿𝑁

+   
2

𝑅

𝜕 𝛿𝑊

𝜕𝑋 𝜕𝜃
(𝑁 + 𝛿𝑁 )

+
2

𝑅

𝜕 𝑊

𝜕𝑋 𝜕𝜃
𝛿𝑁

+  
1

𝑅

𝜕 𝛿𝑊

𝜕𝜃
(𝑁 + 𝛿𝑁 )

+
1

𝑅

𝜕 𝑊

𝜕𝜃
𝛿𝑁

−  
1

𝑅
𝛿𝑁

+   
2 − 𝜏 𝑐

2 + 𝜏 𝑐
𝛿�̇�

⁄  

𝛿�̇�
⁄

=
2𝜏

2 + 𝜏 𝑐
(𝑚 )

𝜕𝛿𝑀

𝜕𝑋

+
1

𝑅

𝜕𝛿𝑀

𝜕𝜃
−  𝛿𝑄

+
2 − 𝜏 𝑐

2 + 𝜏 𝑐
𝛿�̇�

⁄  

𝛿�̇�
⁄

=
2𝜏

2 + 𝜏 𝑐
(𝑚 )

𝜕𝛿𝑀

𝜕𝑋

+
1

𝑅

𝜕𝛿𝑀

𝜕𝜃
−  𝛿𝑄

+  
2 − 𝜏 𝑐

2 + 𝜏 𝑐
𝛿�̇�

⁄  

By integrating the velocities at the end of each load 
step, the incremental displacements can be 
achieved by: 

𝛿𝑋 = 𝛿𝑋 + Δ𝜏 𝛿�̇�  (34) 

To compute the critical thermal buckling load from 
the load-displacement curve, the total 

displacements of each load must be obtained. 
Hence, the computed incremental displacements in 
each load step should be added to the 
displacements (determined from the previous load 
steps) as follows:  

𝑋 = 𝑋 + 𝛿𝑋  (35) 

It is obvious that the critical thermal buckling load 
is a specified load in which a large amount of 
displacement is occurred compared to the previous 
load steps. 
Fig. 2 represents the convergence behavior of the 
DR method of the critical buckling temperature 
difference versus Q. Here, Q is an equivalence 
point which shows the number of nodes in 
longitudinal direction (M=20), and the number of 
nodes in circumferential direction (N=10). As 
seen, from the point 20*10, the results converged. 
It is also noted that 15 nodes are considered along 
the thickness direction. 

 
Fig 2. The convergence behavior of the DR technique 
of the critical buckling temperature difference versus 

Q (an equivalence point). 
For better clarification of the procedure for the 
buckling investigation, it can be noted that the 
thermal load is applied to the plate incrementally 
so that, in each load step, the incremental form of 
the governing mathematical relations can be 
solved by a numerical code prepared via the DR 
technique. After usingthe DR code in the first 
increment, the latter load step is added to the 
previous one, and the program is repeated again. 
Moreover, it should be mentioned that at the end 
of the convergence in each load step, the obtained 
displacement is also added to those computed in 
the previous one. This process continues till the 
code diverges, and this is a sign of buckling event. 
Briefly, when the buckling occurs, a huge amount 
of displacement will be observed in the thermal 
load-displacement curve at a certain load. In Fig. 
3, the temperature difference diagram versus the 
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displacement for a cylindrical panel with 90° panel 
angle with clamped-clamped boundary condition 
is shown, for obtaining the thermal buckling load. 
As can be seen, by an incremental increase in the 
temperature, a significant deflection has occurred 
in temperature above 1200°C. 

 
Fig 3. Temperature difference versus displacement for 
cylindrical panel with clamped – clamped  boundary 

condition 
Due to the very long terms of governing equations 
in the displacement field, as an example, Eq. (33) 
has been written based on force stability equation 
(Eq. (21)). Here, however, the developed 
numerical code is based on displacement relations. 
Therefore, the displacement stability equations 
and Eqs. (33) to (35) with the relevant boundary 
conditions in their finite-difference forms, 
constitute the set of equations for the sequential 
DR approach. The DR algorithm is explained in 
[30, 31] in details. 

Results and discussions 
In this paper, nonlinear thermal buckling of 
moderately thick FG cylindrical panels made of 
combinations of aluminum and alumina has been 
studied. The properties such as modulus of 
elasticity, thermal conductivity, and thermal 
expansion coefficients and the Poisson’s ratio of 
metal and ceramic phases are: 𝐸 = 70 𝐺𝑃𝑎 , 
𝐾  =  204 𝑊/𝑚𝐾, ∝  =  23 × 10  (1/℃) 
, 𝜗 = 0.3 𝐸 = 380 𝐺𝑃𝑎 , 𝐾  =  10.4𝑊/𝑚𝐾, 
∝  =  7.4 × 10  (1/℃) , 𝜗 = 0.22, 
respectively. Furthermore, the thickness of panels 
are assumed as ℎ = 0.001𝑚. Although the 
temperature of the metal phase is considered 
constant at 𝑇  =20 𝐶, the temperature of the 
ceramic phase rises incrementally. In fact, the 
nonlinear and linear temperature distributions are 
considered along the thickness direction. The final 

purpose is to find the critical temperature 
difference ∆𝑇 = (𝑇 − 𝑇 ) which causes the 
thermal buckling. 
Tables 1 and 2 compare DR results of the present 
study with those reported by Ref. [24] for simply 
supported FG cylindrical shell subjected to the 
linear distribution of thermal loads. Moreover, the 
values in Table 1 are given for a certain radius 
(𝑅 = 0.5 𝑚) with different length-to-radius ratios 
and various thickness-to-radius ratios. Also, the 
values in Table 2 are given for different sizes of 
radius 𝑅(𝑚) and thickness ℎ(𝑚) with the certain 
length-to-radius ratio (𝐿 ⁄ 𝑅 = 0.5). In these 
cases, the Poisson’s ratio is considered as 𝜗 = 0.3. 
 As indicated in Tables 1 and 2, there is a good 
agreement between the current results and those 
reported by Ref. [24] for thermal buckling of FG 
cylindrical shells subjected to linear temperature 
distribution with different geometries, grading 
indices, and boundary conditions. 

Table 1: Comparison of the critical temperature 
difference (℃) for the simply supported FG cylindrical 
shell (𝑘 = 1, 𝑅 = 0.5𝑚) based on linear temperature 
distribution achieved by the DR technique and the 

results reported by Ref. [24]. 
L/R  

ℎ/𝑅 

0.5 0.3 0.15 

Present 
study 

Ref. 
[24] 

Present  
study 

Ref. 
[24] 

Present 
 study 

Ref. 
[24] 

40 40 80 100 140 140 0.0046 

60 80 120 120 210 200 0.0064 

80 80 180 180 320 320 0.00822 

100 100 240 240 420 400 0.001 
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Table 2: Comparison of the critical temperature 
difference (℃) of the simply supported FG cylindrical 

shell (𝑘 = 1,𝐿 𝑅=0.5) based on linear temperature 
distribution obtained by the DR method and the results 

obtained by Ref. [24]. 
ℎ(𝑚)  

𝑅(𝑚) 
0.01 0.007 0.005 

Present 
study 

Ref. 
[24] 

Present 
study 

Ref. 
[24] 

Present  
study 

Ref. 
[24] 

1000 1000 300 300 80 100 0.625 

520 500 170 180 55 60 0.90 

330 340 120 120 80 60 1.18 

230 260 90 100 60 60 1.45 

180 220 70 80 60 60 1.73 

160 160 60 60 60 60 2.00 

In Fig. 4, the critical temperature difference is 
illustrated in terms of the grading index in the 
simple power-law model for the radius-to-
thickness ratio of 5 and the length-to-radius of 0.5 
for two types of heat distribution (linear and 
nonlinear) and 180° angle with simply supported-
clamped and clamped-clamped boundary 
conditions. As seen, based on linear thermal load 
distribution the highest difference of critical 
thermal load, between two cases of clamped and 
simply supported boundary conditions, is occurred 
in grading index of zero (ceramic phase) and by 
the increase of grading index, the difference of 
thermal buckling decreases between clamped and 
simply supported boundary conditions. However, 
based on nonlinear thermal load distribution, there 
is not any significant difference between clamped 
and the simply supported boundary conditions for 
various grading indices. 

 

 
Fig 4. Critical temperature differences (℃) versus the 
grading index based on the simple power-law model 
for various boundary conditions (a) Linear thermal 

load distribution (b) Nonlinear thermal load 
distribution. 

Fig. 5 illustrates the effects of changes of the 
grading indices in the Mori-Tanaka model on 
critical temperature difference with different 
boundary conditions for linear and nonlinear 
analysis with 180-degree panel angle and radius-
to-thickness ratio of 5 (𝑅/ℎ = 5) and length-to-
radius ratio of 0.5 (𝐿/𝑅 = 0.5). The Poisson 
coefficient is assumed to be constant for the simple 
power-law model, but in the Mori-Tanaka model, 
the Poisson coefficient changes along the 
thickness considering the equations (2-5). By 
comparing the results between these two types of 
Models (Fig. 4 and Fig. 5) considered for the 
cylindrical panel, it can be seen that the critical 
temperature difference based on the Mori-Tanaka 
model is greater than the power-law one for 
different boundary conditions. In other words, the 
Mori-Tanaka model has higher temperature 
endurance and higher buckling temperature than 
the simple power-law model. 
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Fig 5. Critical temperature differences (℃) versus the 
grading index based on the Mori-Tanaka model with 

different boundary conditions (a) Linear thermal 
distribution (b) Nonlinear thermal load distribution 

Fig. 6 shows the critical temperature 
difference of different radius to thickness 
ratios for grading index 𝑘 = 1 and the ratio of 
the length to radius ratio of 0.5 (𝐿/𝑅 =  0.5) 
with two types of thermal load distribution 
(linear and nonlinear) for 180 degree of panel 
angle as well as different boundary conditions. 
It can be seen, with the increase of radius to 
thickness ratio, the critical temperature 
difference of buckling decreases. Also, by 
decreasing radius-to-thickness ratio, the 
difference between two cases of linear and 
nonlinear thermal load distributions’ results 
increases. 

 

 

 

 
Fig 6. The values of critical temperature difference 
(℃) versus the ratio of radius-to-thickness ratio for 

various thermal load distributions (A). Simply 
supported - Clamped (S-S, C-C) (B) Clamped-

Clamped (C-C, C-C) 
Fig. 7 illustrates the critical temperature 
difference for different ratios of length-to-
radius ratios, considering the ratio of radius to 
thickness 5 and the grading index of 0.5 and 
the panel angel of 180° for simply supported-
clamped and clamped-clamped boundary 
conditions. As indicated, the effect of the 
length-to-radius ratio on the thermal buckling 
load is considerable for the ratios smaller than 
1 and 2 for simply supported and clamped 
boundary conditions, respectively. Also, by 
increasing the length-to-radius ratio from 2, 
the thermal buckling load remains 
approximately constant. 
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Fig 7. Critical temperature difference values (℃), in 
terms of length to radius ratio, for different thermal 

distributions (A) (S-S, C-C) (B) (C-C, C-C) 
To study the effect of panel angles on the 
critical buckling temperature difference, the 
buckling temperature difference graph for 
various grading indices with radius- to- 
thickness ratio of 10 and length-to-radius ratio 
of 0.5 at various boundary conditions are 
shown in Fig. 8 for linear and nonlinear 
thermal loads distribution. It can be seen that 
by increasing the panel angle, the difference in 
critical buckling temperature in various 
boundary conditions decreases. Also, by 
comparing the critical temperature difference 
in cylindrical panels with 90° angle with other 
angles, it is observed that in the 90° angle, the 
structure endures a higher temperature than 
the other angles. Moreover, in the grading 
index of zero (ceramic), there is no difference 
between the distribution of linear and 
nonlinear thermal load on the critical 
temperature difference for a cylindrical panel 
with  90° angle in different boundary 
conditions. By increasing 𝜃 from 90 ° to 180 
°, there is a significant decrease in the critical 
temperature difference, and in this range, 𝜃  
has the greatest impact on metallic phase (𝑘 =

0). In simply supported boundary conditions 
with increasing 𝑘 from 0 to 5, there is no 
significant difference between the results but 
in clamped boundary condition the mentioned 
difference is slightly higher. Moreover, in the 
case of nonlinear thermal load distribution, the 
difference between the diagrams for different 
indices is much greater than the linear thermal 
distribution. 

 

 

 

 
Fig 8. Critical temperature difference values (℃) in 
different angles for various grading indices of: (a) 
linear thermal load distribution, clamped-clamped 

boundary condition, (b) linear thermal load 
distribution, simply supported-clamped boundary 
condition, (c) nonlinear thermal load distribution, 
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clamped-clamped boundary condition (d) nonlinear 
thermal distribution, simply supported-clamped 

boundary condition. 

Conclusion 

In the present paper, thermal buckling of FG 
cylindrical panels has been considered with 
clamped and simply supported boundary 
conditions using FSDT and large deflection 
von Kármán equations. The properties of the 
constituent components of the FG panel are 
considered to change continuously and 
smoothly along the thickness direction based 
on simple power-law and Mori–Tanaka 
distributions. The results are obtained for both 
linear and nonlinear temperature distributions. 
The critical buckling load is predicted based 
on the thermal load-displacement curve 
obtained by solving the incremental form of 
nonlinear equilibrium equations. The DR 
technique combined with the central finite 
difference discretization method is utilized for 
solving the incremental equations. Eventually, 
the influences of boundary conditions, rules of 
mixture, grading indices, radius -to- thickness, 
and length-to-radius ratios are studied on 
thermal buckling loads. The significant results 
are as follows: 
Based on nonlinear thermal load distribution, 
there is not any significant difference between 
the results of clamped and the simply 
supported boundary conditions for various 
grading indices. 
It is observed that the grading index has a 
significant impact on the thermal buckling of 
FG panels.  
The length-to-radius ratio has a considerable 
effect on the thermal buckling load for the 
smaller ratios (almost less than 1) in different 
boundary conditions.  
By decreasing the radius-to-thickness ratio, 
differences between the thermal buckling load 
obtained by linear and nonlinear thermal load 
distributions increase.  
The Mori-Tanaka model predicts greater 
thermal buckling load than the simple rule of 
mixture.  

The effect of the length-to-radius ratio on the 
thermal buckling load is considerable for the 
ratios smaller than 2 and by increasing the 
ratio from 2, the thermal buckling load 
remains approximately constant. 
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