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This paper presents a novel approach to modeling of jet transport aircraft. Initially, basic
mathematical models of jet transport are derived. Afterwards by focusing on the bank angle
system of the jet transport, considering the aileron as the input, adverse methods of
identification are utilized to estimate parameters of the system in an online manner. Then,
effects of different types of noise on identification process are analyzed. Eventually, effects of
time varying parameters are discussed. Recursive least squares method and its extended
version, covariance resetting and forgetting factor methods were the fundamental tools in the
system identification process of jet transport. Comprehensive simulations are presented and
cast some light on effectiveness and disadvantages of different approaches
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Introduction

Ailerons can be used to generate a rolling motion
for an aircraft. Ailerons are small hinged sections
on the outboard portion of a wing. Ailerons usually
work in opposition: as the right aileron is deflected
upward, the left is deflected downward, and vice
versa.
The ailerons are used to bank the aircraft; to cause
one wing tip to move up and the other wing tip to
move down. The banking creates an unbalanced
side force component of the large wing lift force
which causes the aircraft's flight path to curve.
Airplanes turn because of banking created by the
ailerons, not because of a rudder input.
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The ailerons work by changing the effective shape
of the airfoil of the outer portion of the wing.
Changing the angle of deflection at the rear of an
airfoil will change the amount of lift generated by
the foil. With greater downward deflection, the lift
will increase in the upward direction. The aileron
on the right wing is deflected up. Therefore, the lift
on the left wing is increased, while the lift on the
right wing is decreased. For both wings, the lift
force of the wing section through the aileron is
applied at the aerodynamic center of the section
which is some distance (L) from the aircraft center
of gravity. This creates a torque
T=FXL €))
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about the center of gravity. If the forces (and
distances) are equal there is no net torque on the
aircraft. But if the forces are unequal, there is a net
torque and the aircraft rotates about its center of
gravity. The resulting motion will roll the aircraft
to the right (clockwise). If the pilot reverses the
aileron deflections (right aileron down, left aileron
up) the aircraft will roll in the opposite direction.
We have chosen to name the left wing and right
wing based on a view from the back of the aircraft
towards the nose, because that is the direction in
which the pilot is looking.

In this paper we are going to derive mathematical
models of a jet transport aircraft. Afterwards we
will focus on the bank angle system with aileron as
the input. Then, we use classic auto-regressive
with exogenous input (ARX) and auto-regressive
with exogenous input with moving average noise
(ARMAX) structures to model bank angle system
of the jet transport aircraft and investigate the
effect of noise and parameter changing on
identification of this model.

Mathematical Formulation

The state space jet model during cruise flight at
MACH=0.8 and H=40,000 ft is described by the
following equations:

#(t) = Ax(t) + Bu(t)

2)
y(t) = Cx(t) + Du(t)
In which
A
—0.0558 —0.9968 0.0802 0.0415
- 0.5980 —0.1150 —0.0318 0
—3.0500 0.3889 —0.4650 0
0 0.0805 1.0000 0
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The system is multi-input multi-output, therefore
the following transfer functions could be derived
from the preceding model:

yaw rate

rudder @)
—0.4755% — 0.2479s% — 0.1187s — 0.05633

s+ 0.635s% + 0.938s%2 + 0.511s + 0.0036
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bank angle

rudder 5)
0.114s* — 0.2s — 1.373

s* +0.6355% +0.938s52 + 0.511s + 0.0036
yaw rate

aileron - 6)
0.007s3 — 0.0005s% + 0.008s + 0.004

s* +0.63553 + 0.938s52 + 0.511s + 0.0036
bank angle

aileron %)
0.1436s5% + 0.0273s + 0.11

s*+0.635s% + 0.938s2 + 0.511s + 0.0036
In this paper we focus on the last transfer function,
that is, bank angle as the output and aileron a s the
input. Fig. 1 shows the schematic dynamic of the
jet transport aircraft.

Right Aileron
Right Force (Fr)

Center of

Distance (L)

Resulting Motion

Fig. 1: Jet transport schematic

Using zero order hold method and sampling time of
0.01 we discretize this model.

byz% + byz? + byz
Gd(z_l) — (8)
zt+ a7z +ayz? +azz+ ay

Where actual a; and b;are :

a, = —2.01
a, = 1.705
as = —0.7771
a, = 0.2101 9)
b, = 0.06364
b, = 0.2369
b, = 0.4441

b; = —0.009138

Afterwards, assuming that we don’t know a; and
bjwe try to estimate these parameters under
diverse conditions.

of Jet

Parameter Estimation

Aircraft

Transport

Considering the derived model in the previous
section, bank angle as the output and aileron as the
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input, we utilize RLS method to estimate
parameters of this system.

A0 =80t — 1)+ K(D)e(t)

e(t) =y(t) — @ (OO -1

(10)
_ P(t—1)e(t)
P(t) = P(t — 1) — P(t-Dp®)e" (HP(t—1)

L+ (P~ De(D)

In which 6 = [a;a,a3a,bbyb3b,] is the
parameters vector K, is the correcting gain, ¢ is the
vector of regressors, P is somehow the covariance
matrix and is the one-step ahead error.
To solve the recursive equations (10), for
initialization we consider P(0) = pI where p =
10° and #(0) = 0.
Figures 2, 3 and 4 show the RLS estimation results
for a single sinusoid, sum of three sinusoid signals
with different frequencies and a white noise as
inputs.
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Fig. 2:(a) RLS estimation, one sinusoid. (b) RLS

Residue
(a)
20 14 T
+yTrue
10 —Yris |1
[ il |
L FL_M%;..“AW;‘W % ‘,‘gr&g,f‘vﬁﬁﬁ‘"u"i
RN Uy | V¥ Y
20 a0 60 80 W00 120 140 160 180 200
x10° (b)
5
h\
0 :“"v
5 "-Vf
020 a0 60 80 100 120 140 160 180 200

Fig. 3:(a)RLS estimation, sum of four sinusoids. (b)
RLS Residue.
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Fig. 4:(a)RLS estimation, white noise. (b) RLS
Residue
As can be seen, in all the cases estimations show
promising results. Furthermore, Tablel presents the
estimated parameters, their actual values and the
corresponding cost functions.

100 120 140 160 180 200

Table 1: Parameters estimation under different input

signals
Actual One Swm of four White
values sinusoid sinusoid noise
90 9]_5 §LS éLS
a -2.010 -1.903 -1.918 -2.010
a, 1.705 1.505 1.704 1.7049
as -0.777 -0.633 -0.777 -0.777
ay 0210 0.170 0.210 0210
by 0.063 0.063 0.063 0.063
b, 0.236 0.243 0.236 0.236
by 0.444 0.466 0.444 0.444
b, -0.009 0.048 -0.009 -0.009
V(Bs) 6.16 x 1075 4.64x 1078 1.91?6*3
X

By analyzing the table 1, It can be inferred that for
the single sinusoid signal which is PE of the order
of 2, parameters have not converged to their actual
values and for the summation of four sinusoid
signal which is PE of the order of 8, the accuracy
of convergence became relatively better, and
eventually the best convergence happened for the
white noise signal.

Effects of Noise on Jet Transport modeling

In this section we are going to investigate the
effects of different kinds of noise on the
identification process. To accomplish this, we try
to estimate parameters of the jet transport aircraft
system with white noise colored noise and without
noise.

We assume that the system in unknown for us and
structure of the model - number of poles and zeros-
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is the only priori knowledge we have about the
system. Fig. 5 shows this estimation.
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Fig. 5: (a) True output and RLS estimated output
without noise. (b) Residue of RLS estimation without
noise. (c¢) True output and RLS estimated output with
white noise. (d) Residue of RLS estimation with white
noise. (e) True output and RLS estimated output with

colored noise. (f) Residue of RLS estimation with

colored noise
As can be seen, in the two cases of without noise
and with white noise the output of estimation
tracks the actual output of the system but colored
noise caused a considerable error. Figures 6 and 7
show the parameters convergence in absence and
presence of noise.
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Fig. 6: Effects of noise on denominator parameters
estimation
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Fig.7: Effects of noise on denominator parameters
estimation
Table 1 summarizes the results of this simulation.

Table 2: Effects of noise on parameters estimation

Actual Without White Colored

Values Noise Noise Noise
9(] é\LS é\)L.S‘ é\LS

a -2.010 -2.010 -1.937 -1.409
a, 1.705 1.705 1.551 0.668
as -0.777 -0.777 -0.656 -0.141
dy 0.210 0.210 0.177 0.097
by 0.063 0.063 0.078 0.082
b 0.236 0.236 0.240 0271
bs 0444 0.444 0475 0.605
by -0.009 -0.009 0.048 0318
V() 46x 10711 31.432 58.121

Second column of table 2 shows actual values,
third column estimations without noise, fourth
column estimations with white noise and the last
column shows estimation with colored noise. It
can be deduced from the table 2 that estimation in
presence of white noise has not bias while in the
presence of colored noise parameters convergence
do not take place perfectly and estimated
parameters are biased.

Therefore, to solve this dilemma we apply
extended least squares (ERLS) method to identify
parameters of the system in the presence of colored
noise. ERLS is almost identical with RLS, the only
discrepancy is that in ERLS the regressors vector
is extended as equation (11) in order to identify
noise dynamic.

@T(t)z[_y(t_l)'"_y(t_n) (11)
u(t—1) ..ut—n)e(t—1).. et —n)

Fig 8 shows the result of ERLS method.
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Fig. 8: (a)True output and ERLS estimated output with
colored noise. (b)Residue of ERLS estimation with
colored noise
And figures 9 and 10 show the estimation of
parameters of the jet transport aircraft under the
influence of colored noise, identified by ERLS

method.
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Fig. 9: Estimation with ERLS method

o - — Tue
Estimated
0 100 200 300 400 500 600 700 8OO 900 1000

0 100 200 300 400 500 600 700 8OO 900 1000
b3

0 100 200 300 400 ?)[3'0 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

Fig. 10: Estimation with ERLS method

As can be observed from figure 9 and 10, even by
using ERLS method parameters don’t converge to
their correct values but have a better accuracy
compared with solely RLS.
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Effects of Time Varying Parameters

So far we have been considering the parameters of
jet transport model to be constant. Whereas in the
course of flight and practical situations, parameters
may change over time. In this section we make a
gallant effort to investigate the effects of these
time varying parameters on identification of the
system.

To do so, we consider two cases. In one case we
change the parameters fast and in the other slow.
In simulations this change stars at sampling 1500.
We utilize RLS algorithm plus forgetting factor
method and covariance resetting to estimate
parameters. Needless to mention that covariance
resetting and forgetting factor methods are
exploited to avoid the matrix gets ill conditioned.
Figures 11 and 12 show the parameters estimation
while the parameters vary slowly.
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Fig. 11: Denominator parameters vary slowly
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Fig. 12: Denominator parameters vary quickly

As can be seen, when parameters change slowly
over time, forgetting factor method shows a better
result in comparison with covariance resetting.
The reason lies in the fact that in data samples
don’t jump considerably so giving less importance
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to previous samples is enough to estimate
parameters properly.

Figures 13 and 14 show the parameters estimation
while the parameters vary quickly.
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Fig. 13: Numerator parameters vary quickly
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Fig. 14: Numerator parameters vary quickly
On the contrary with former conditions, in this
case where parameters vary quickly over a
specified time interval, covariance resetting
method shows a more desirable result.

Conclusion

Utilizing RLS method and its extended version
ERLS, we tried to deal with system identification
problem of a jet transport aircraft. Effects of
different types of noise and time varying
parameters was investigated. It was seen that RLS
method estimates parameters without any bias
even in presence of white noise, but is impractical
when the colored noise shows up. When
parameters vary slowly over time forgetting vector
shows better results while when parameters
change quickly overtime covariance resetting
method is more effective.
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