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In the last decade, nonlinear normal modes have attracted the attention of many
researchers, and many methods and algorithms have been proposed to calculate them.
Among the proposed methods, the combination of the shooting method and the continuation
of the periodic solution is the strongest methods. However, the computational cost of the
method has still limited its application. In this paper, an updated formula is used to reduce
the computational costs of the method. Using this updated formula significantly reduced
the computation time so that the computational speed of nonlinear normal modes increased
tenfold. Also, as the power of nonlinear terms increases in the system, the efficiency of the
updated formula increases. In order to evaluate the accuracy of the proposed method, a
system with two degrees of freedom was studied, and it was observed that the results

obtained are consistent with the results in other works.
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Introduction

Nonlinear normal modes are powerful tools in the
analysis of nonlinear systems. Until the 1990s,
nonlinear normal modes were known as theoretical
concepts until a new look was created with the work
of Vakakis [1-3], Shaw and Pierre [4-6]. Many
researchers have paid attention to this issue in the
last decade, and numerous review articles on
nonlinear normal modes have been presented [7-10].
The cornerstone of the definition of nonlinear
normal mode was laid by Lyapunov. He proved that
for a Hamiltonian system with n degrees of freedom
that is not in a state of internal resonance, there are
n periodic solutions around the equilibrium point of
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the system [11]. After him, many efforts were made
in this field. Weinstein (1973) [12] and Moser
(1976) [13] generalized Lyapunov's theory in the
presence of internal resonance [12]. Kauderer was
the first to offer quantitative methods for calculating
nonlinear normal modes [14].

Today, there are two standard definitions of the
nonlinear normal modes: Rosenberg defined
nonlinear normal modes as synchronous periodic
vibrations in stable systems [15]. This definition
means that all parts of the system reach their extreme
values simultaneously. Shaw and Pierre considered
the characteristics of lack of change in nonlinear
normal modes and defined nonlinear normal modes
as invariant manifolds in phase space. This means
that if a movement starts in this manifold, it stays in
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it until the end. If a system is under internal
resonance, some degrees of freedom move faster
than others.

Kerschen et al. (2009) generalized Rosenberg's
definition and defined nonlinear normal modes as
periodic but not necessarily synchronous vibrations.
Haller and Ponsioen (2016) generalized the
definition of Kerschen et al. and defined nonlinear
normal modes as recurrent motion with a discrete
Fourier spectrum of frequencies [16].

Based on these two definitions, methods for
calculating nonlinear normal modes are divided
into two general categories: methods that
calculate the invariant manifold directly and
methods that deal with the periodic solution in
nonlinear systems.

This paper considers the calculation of
nonlinear normal modes using the Rosenberg
definition. There are very powerful and
complex mathematical methods for calculating
periodic solutions in nonlinear systems [22, 23].
One of the first attempts to calculate nonlinear
normal modes in the system's periodic solution
was performed using numerical methods by
Slater [24]. He used the sequential continuity
method to calculate the system's periodic
solution. Lee et al. used a combination of
shooting method and sequential continuity to
calculate nonlinear normal modes [25].
Kerschen et al. (2009) used a combination of
shooting method and response continuity based
on pseudo-arclength [26]. They successfully
obtained nonlinear normal modes for discrete
and continuous nonlinear stable systems [27].
Kuether et al. implemented the method
proposed by Peeters et al. in Abaqus Software
and calculated the normal nonlinear modes of a
surface with geometric nonlinear behavior [28,
29]. Renson et al. calculated the nonlinear
normal modes of a satellite's structure using the
method of Peeters et al. And extracted the
modal interaction in it. They also present
experimental evidence for results [30].

In addition to the analysis of real structures,
normal nonlinear modes have been used in other
fields such as energy [31], nonlinear vibration
absorbers [32, 33], updating nonlinear finite
element models [34, 38], and finding faults in
nonlinear structures [39].
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Among the various methods for calculating
nonlinear normal modes, the combination of
shooting method and continuity based on
pseudo-arclength has been widely used, and in
many articles, they are considered the primary
method for validating other methods. However,
the computational cost of these methods is still
a problem.

In this paper, the updated formula presented by
Deuflhard et al. is used to reduce the
computation time [40]. This algorithm is based
on Deuflhard et al. called the efficient path
following method (EPFM).

In the following, the theory of the method is
presented, and then its efficiency is evaluated in
the format of the analysis of a nonlinear system
with two degrees of freedom.

Efficient path following method

This method is similar to the method proposed by
Peeters et al. The difference is that this method uses
an updated formula to reduce the computational cost
of the algorithm. To use this method, it is necessary
first to determine the periodic solution of the system
at an energy level. Then, using the continuation of
the periodic solution method based on pseudo-
arclength, the changes of nonlinear normal modes
are calculated with the changes of energy in the
system. Therefore, this chapter is divided into two
parts. In the first part, finding the periodic solution
of the nonlinear system using the shooting method,
and in the second part, the continuation of the
periodic solution method based on pseudo-arclength
will be reviewed.

Shooting method

In general, the methods of calculating the periodic
solution of a system are divided into two general
categories: frequency domain and time domain. The
standard method in frequency is harmonic balance
and its developed methods. In the field of time,
standard methods are single shooting, multiple
shooting, collocation, and finite differences.

The initial value problem becomes a two-point
boundary value problem in time-domain
methods. In these methods, an initial condition
and a solution with periodicity are sought, so
that formula (1) is accurate.
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x(x,T) = xo (1)

The single shooting method is one of the most
widely used numerical methods for finding the
periodic solution of dynamic systems due to its
simple structure. This method has been used in
many software packages such as CANDSYS/QA
and LOCBIF [34, 35]. Another advantage of this
method is that the single value matrix (Monodormy)
is generated in the implementation process, which
can quickly calculate the flocculation coefficients
and check the stability of the desired periodic
solution. The governing formula on the system in
the state space is expressed as Formula (2) in which
Z is the vector of state variables.

Z=yg2) 2)

The field vector in formula (2) is defined as
formula (3).

(2) ) (3)
z)= :

97 MKk £, (x0)]

The dynamic response of the system to the initial
conditions of z = (0) = z, = [x} %] is shown as
z(t) = z(t, z,) to indicate the dependence of the
system response to the initial conditions. The answer
of z, (t, Zpo)iS the system’s periodic response if it
satisfies the conditions of formula (4), in which T is
the minimum period of the system.

z,,z,0)=z2,0+T,z ) 4)
The single shooting method numerically solves the
problem of a two-point boundary value with
periodic conditions in the form of formula 5.

H(T,ZPO)EZP(T,ZPO)—ZPOZO (5)

H is the shooting function and shows the difference
between the initial conditions and the system
response at the moment T. In a trial and error
process, the single shooting method finds the initial
conditions and periodicity to satisfy the periodicity
condition.

This method is based on direct temporal integration
and the Newton-Raphson algorithm. In this way, a T
and zy are first guessed as the initial conditions and
the periodicity of the system response. Then the
system response in the assumed periodicity T is
calculated by direct integration using numerical
methods such as Rang Kota or Newmark. Generally,
the initial conjecture (Zpo, T) does not satisfy the
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periodic conditions. Newton-Raphson algorithm is
used to correct the initial conjecture. Here's how to
fix the initial conjecture using the Newton-Raphson
algorithm.

Correction values of Azy, and AT? are obtained by
extending the Taylor shooting function. The Taylor
expansion of the shooting function is represented in
formula 6.

oH
H(T, ZpO) +6Z_

p0

AZ°, L
Por

(Tz0) (T.20)

AT’ (6)

+HOT =0

The initial conditions of z,, and the periodicity T,
which determine the periodic motion of the system,
are obtained with formula 7.

(k+1) _ _(k) (k)
b0 = Z,0 +Azp0

T kD) — k) A R

V4

(7

Where Azl(,'f)) and AT ®are calculated by formula 8:

oH . +6—H AT*
Flgegy Tl ®
=—-H(T",z})

In formula 8, k is the iteration number in the
shooting method. This process continues until the
desired accuracy is obtained. The convergence
condition of the response is considered to be the
relative error of the periodic conditions [31]. This
condition is expressed in formula 9, in which ¢ is the
optimal accuracy for the convergence of the
response.

] @z, -2,)

Fol kel

€))

Matrix Z—I; |(T, Zpo) is obtained from formula 10.

OoH Oz
— == =g(T.z))
or (T.2p0) otl,r (10)
=2(2(0,z)))
Matrix ~ " is defined using formula 11.
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H (1, ):M % _
aZ/IO e azpo _ 6ZP° (11)
_0z(t,z,)
0z 54 .
aH|

& . .
Therefore, to calculate ~°'7=0, the Jacobi matrix
J = 0z (t,z,)

0z,

. must be calculated. Each element of the
Jacobi matrix is defined by formula 12. In this
regard, Z; is the i factor of Zand Z; is the j" factor

of Zo.

O (7, ):M %0 _
0z 50 0 0z, | 0z,
(12)
_oz(t,z,,)
6zp0 -

This matrix shows the response changes at moment
t in exchange for the changes in the initial
conditions. There are two general methods for
calculating this matrix: sensitivity analysis and finite
difference. In this paper, the finite difference is used.
The governing equation is solved under the
following two initial conditions in the finite
difference method. The answer, similar to each of
these initial conditions, is shown by z(T,z,) and
7k (T, zy + Sey), respectively.

z(0)=z, (13)
z¥(0)=z, +de, (14)

In the above formula ey is the k™ column of the
identity matrix and Jis a small number. Finally,

element of matrix ; &z are obtained from
0zy |,
formula 15:
Jw:z(T,ZO+5eg)—z(T,zo) (15)

As it turns out, the highest cost of this method is
related to producing Jacobi matrix in every attempt.
If the sensitivity analysis method is used, it is
necessary to integrate the differential equations with
n® variables. If the finite difference method is used,
it is necessary to integrate for n times the governing
equation on the system. The Jacobi matrix is
calculated using one of these two methods to reduce
its production time in the trial and error process in
the first attempt. In other attempts, the Jacobi matrix
is generated using the update formula. Deuflhard et
al. propose equation 16 to calculate the Jacobian
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matrix. In this regard, K represents the number of
attempts.

k+1

_oH

_620

k

oH

o,

+Hk+l

(16)

By calculating the Jacobian matrix, a system of n
equation and n+l unknowns are obtained: n
unknowns of Az, and an unknown. As it turns out,
AT is an indefinite system. This is because the
periodic response of an autonomous system to the
linear transfer of the time source is invariant. That
is, if z(t, zy)is a periodic solution of the system, then
z(t + 7,2¢)will be the periodic solution for any
desiredr.

For the uniqueness of the system’s response, a phase
condition equation is added to this system of
equations. In this paper, phase conditions are
considered equal to zero velocities of degrees of
freedom at the beginning of motion.

Finally, the shooting method leads to the system of
equations in the form of formula 17. In this regard,
h(z,0,T)=0 is the equation of phase condition.

H(z,,,T)=0

F(Z')O’T):{h(z T)=0 (17)

o’

Continuation of the periodic solution method
based on pseudo arclength continuation

This paper uses the Continuation of the periodic
solution method based on pseudo arclength
continuation. This method is one of the most robust
methods of periodic solution continuity and can
easily cross the return points on the response curve.
In this method, the subsequent response on the path
is calculated from a known point on the response
curve. This method has three steps. The first step is
prediction. At this point, an initial conjecture is
estimated for the next point. In the second stage, the
initial conjecture is corrected. At this stage, the
initial conjecture, estimated in the prediction stage,
is corrected using the Newton-Raphson method. The
third step is to determine the step length to estimate
the initial conjecture of the subsequent response.
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Figure 1: Continuation of the periodic solution method
based on pseudo arclength continuation

The tangent method is used for prediction. In this

_[pr
method, the vector R, _[Pz i B

the path and is calculated by the following equation.
In this regard, the method of calculating matrices of
and oH is the same as that

or

:r is tangent to

oH
(o4

o Ty 2 pogsy)

T(jyezpocy)

described in the shooting method. % is also an
equation of phase condition.

ol
00 705) o i) || B ) _ (18)
ah 0 Byl 10
01z o)) i

One of its components is considered constant to
calculate the tangent vector, and then the resulting
system is solved using the Moore-Penrose method.
It is then normalized using the formula [p| = 1 of
normal tangent vector.

In the tangent method, the initial conjecture
Zpo(j+1) T(j+1)is predicted for the next response
Zpo(j+1)» 1(j+1)in the direction of the tangent vector
in the given response zp(j), T(j). The relation of the
predicted value is in the form of relation 19.

ZpoGi+) || pogi) Eq

. = +5,, (19)
T. T P..

G+) ) Q)

In this relation, S is the step length in the direction
of the tangent vector.
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The initial conjecture, estimated in the prediction
step, is then corrected using the Newton-Raphson
method. In correcting the initial conjecture, to
increase the convergence speed, the correction
values of the initial condition and the periodicity is
perpendicular to the calculated vector during the
prediction step. The obtained ipO(j+1)JT(j+1) in the
prediction step is used as the first conjecture. In the
K™ attempt, the initial conditions and periodicity are
obtained using formula 20. In this regard, k is the
counter of each attempt in the correction process,
and j is the counter of the response point on the
curve.

ke k k
Z pocj+n = Z pogieny TAZ pogsa 20)
K+l ok k
TG =TG5y +AT Gy,

The values of the initial condition correction and the
periodicity are calculated by solving the system of
the following indeterminate equations using the
Moore-Penrose method.

oH o0H
oz oT
0 (Z::ihll.T‘k/‘”' (o T AZAO .
3 PO+ _
h(zpm,q;) 0 ATK -
(j+1)
P PT(/H]

z(j+1)
(21)
-H (me, b ’T(ﬁu')

k
)

0

The main element in implementing an optimal and
efficient periodic solution continuation method is
step length control. There are several ways to control
step length.

There are at least three factors that affect the length
of the step, including:

Convergence behavior: The step length should be
determined so that there is a suitable convergence
speed in each step of correcting the initial
conjecture.

Estimation of the response curve: The step length
should be controlled so that small details of the
response curve are also estimated.

Multi-branch: The step length should be chosen so
that the multi-branch points on the response curve
are well defined.

Of course, not all of the above factors are always
taken into account to determine the length of the
step. For example, the second factor is not
considered in the homotopic method, where the
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median responses are unimportant. On the other
hand, when drawing the response curve of a system
is important, the second factor must be considered.
There are several ways to control step length. In this
convergence behavior, the step of correcting the
initial conjecture is considered. The step length in
each step is selected so that the number of attempts
in each correction step remains constant. Hence the
step length in each step is determined using formula
22.

Jj+l opt  _j

S (22)

In the above relation, s/*1is the step length in the
desired step, s’ is the step length in the previous step,
Noptis the number of desirable attempts in the

correction stage and Njis the number of attempts
made in the previous correction step.

Numerical results

The nonlinear normal modes of the two-degree-of-
freedom system were calculated to evaluate the
accuracy and efficiency of the EPFM. Then, the
results were compared with the results presented in
[27]. Figure 2 shows the system under study.

1

FIQ A

Figure 2: The two-degrees-of-freedom system

The governing equation of this system is in the form
of formula (23):

X, +2(x1—)c2)+0.5x13 =0
X, +(2x,-x,)=0

In the EPFM method, the mode shape and frequency
of the linear system are used as the initial conjecture
to start the calculations. The shape of the mode and

(23)

the linear frequency of this system are ¢ = H _11]

and w? {;}, respectively, which are used to start

calculations. The phase condition is such that the
velocity components are set to zero at the beginning
of the periodicity.

First, the system's behavior of nonlinear normal
modes up to medium energy levels is investigated.
Figure 3 shows the frequency-energy diagram of the
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first nonlinear normal mode of the system in
question. As can be seen from the diagram, as the
system energy increases, the frequency of the first
nonlinear normal mode also increases. This is
because the nonlinear spring in the system is of the
third-degree type. Therefore, as the energy
increases, the system's frequency increases, or in
other words, the nonlinear spring becomes harder.
Each of these nonlinear normal modes will be
examined in more detail in the following. As can be
seen, the results obtained from the EPFM method
are in good agreement with the results obtained by
Peeters et al. The results in this figure were obtained
in 35 seconds by a computer with a 2.2 GHz corei7
CPU and 8GB of memory, without the use of an
updated formula. In contrast, the updated formula
reduces the calculation time to 9.5 seconds. This
means that the EPFM method is 3.6 times faster.

T
EPFM
O Peeters etal

0.22

021
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019

Frequency (Hz)

018

017

0.16F

10° 10" 10° 10°
Energy(Log Scale)
Figure 3: Frequency diagram of the energy of the first
nonlinear normal mode up to the average energy levels

Figure 4 shows the modal curves of the first and
second nonlinear normal modes. As shown in the
figure, the modal curve is a straight line at very low
energy levels. Gradually, as the energy level
increases, this curve goes out of linear shape and
becomes a curve. Another critical point that can be
seen well in this figure is that with increasing the
system's energy level, the amplitude of the second
degree of freedom vibrations in the first nonlinear
normal mode increases more than the amplitude of
the first degree of freedom of the system. In other
words, as the energy level increases, the first
nonlinear normal mode is localized, meaning that
most of the vibration energy is concentrated in the
second degree of freedom. The opposite is true in the
second nonlinear normal mode, with most of the
vibrational energy concentrated in the first degree of
freedom.
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Figure 5 shows the nonlinear normal modes of the
system at higher energy levels. The frequency of
both modes increases with increasing energy. In the
frequency-energy curve of the first mode, three
tongues are observed. These tongues indicate the
occurrence of internal resonance in this mode.

Figure 6 shows the first nonlinear normal mode at
higher energy levels. The EPFM method needs 255
seconds to extract the first modal interaction.
However, if the updated formula is not used, it will
take 2647 seconds to obtain similar results. It takes
2683 seconds to calculate all three modal
interactions using EPFM. Otherwise, it takes 15408
seconds to obtain these results.

08|
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Figure 4: Modal curve of the first (a) and the second (b)
nonlinear normal mode
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Figure 5: Energy-frequency diagram of the first and
second nonlinear modes at high energy levels
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Figure 6: Energy-frequency diagram of the first
nonlinear normal mode at high energy levels
Figure 7 shows these tongues in more detail. These
tongues represent internal resonance in ratios of 1:3,
1:5, and 1:7, respectively. As can be seen, the results

are very consistent with the results in [27].

Figure 8 shows the system's time response before
and after internal resonance. As can be seen, the
system response is no longer synchronized after

modal interaction.
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Figure 7: Details of modal interaction in the first

nonlinear normal mode

3

o

() (b)
Figure 8: Time response diagram before (a) and after
(b) modal interaction

Figure 9 shows the frequency response of the
system's first and second nonlinear modes before
and after the internal resonance. As can be seen at
low energy levels, there is only one harmonic in
each nonlinear mode, which is well spaced apart.
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Gradually with increasing energy, the power of the
third harmonic increases in the first nonlinear mode.
Of course, this harmonic is still far from the first
harmonic of the second mode. By further increasing
the energy, the power of the third harmonic in the
first nonlinear mode increases, and the power of the
first harmonic decreases until the first harmonic
disappears entirely in the internal resonance and the
frequency of the third harmonic of the first mode
equals the first harmonic frequency of the second
mode. After internal resonance, the first harmonic of
the first nonlinear mode appears again, but this time
its power is less than the third harmonic.
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Figure 9: Frequency response of the first mode (left)
and the second mode (right) before and after internal
resonance

Numerical results

This paper presents a new algorithm based on the
optimal path tracking method (EPFM) for
calculating nonlinear normal modes. In order to
increase the computational speed in this algorithm,
an updated formula was used in calculating the
Jacobi matrix. In order to evaluate the accuracy and
efficiency of this algorithm, a two degrees-of-
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freedom nonlinear system was investigated. The
results obtained are very consistent with the results
presented in other sources. Also, the EPFM method
is ten times faster than a similar method. The results
also show that the higher the system's nonlinearity,
the higher the efficiency of this method.
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