On the Design of Nonlinear Discrete-Time Adaptive Controller for damaged Airplane

Document Type: Original Article

Authors

1 Faculty of Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran

2 Faculty of Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran.

3 Department of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran.

Abstract

airplane in presence of asymmetric left-wing damaged. ‎Variations of the aerodynamic parameters, mass and ‎moments of inertia, and the center of gravity due to ‎damage are all considered in the nonlinear ‎mathematical modeling. The proposed discrete-time ‎nonlinear MRAC algorithm applies the recursive least ‎square (RLS) algorithm as a parameter estimator as ‎well as the error between the real damaged dynamics ‎and a model of nominal undamaged aircraft to ‎generate the desired control commands. The discrete-‎time adaptive control algorithm is augmented with a ‎Nonlinear Dynamic Inversion (NDI) control strategy ‎and is implemented on the NASA generic transport ‎model (GTM) airplane while considering the effect of ‎wing damage and un-modeled actuator dynamics. The ‎stability of the proposed nonlinear adaptive controller is ‎demonstrated through Popov’s hyperstability theory. ‎Simulation results of the introduced controller are ‎compared with the classical discrete-time adaptive ‎control strategy. The results demonstrate the effective ‎performance of the proposed algorithm in controlling ‎the airplane in presence of abrupt asymmetric damage.‎

Keywords

Main Subjects