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In this paper, the particular solution technique for inverse simulation applied to the 

quadrotor maneuvering flight is investigated. The trust-region dogleg (DL) technique 

which is proposed alleviates the weakness of Newton’s method used for numerical 

differentiation of system states in the solution process. The proposed technique emphasizes 

global convergence solution to the inverse simulation problem. This algorithm is evaluated 

by calculating the control inputs necessary to enable the quadrotor to follow a specified 

trajectory including climb-hover and cruise-hover maneuvers. The trajectory is generated 

by the direct simulation using a linear optimal control developed for the quadrotor. The 

rotors for the quadrotor are of a nonlinear model developed based on blade element theory 

(BET), linear aerodynamics, and non uniform inflow over the rotor disc. The results show 

that the control inputs obtained from the inverse simulation are in a good agreement with 

control inputs estimated by direct simulation. The results also confirm that the maximum 

difference between the prescribed trajectory and the trajectory generated by the direct 

simulation is less than 0.02%, and thus, the potential application of the inverse simulation 

with the trust-region dogleg optimization is evident. 
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Introduction12 
The inverse technique for dynamic model 

simulation, the one in which control inputs are 

determined based on the prescribed maneuver, has 

been receiving much attention in aerospace 

engineering and in other application areas, such as 

robotics, biomechanics, computer animations, and 

aerospace [1-11]. The potential of the inverse 

simulation approach for external validation of 

nonlinear simulation models is also given 

particular considerations. The external validation 

of nonlinear models is conducted using time 

history data collected from the experiments on the 

corresponding real system. Comparison of the 

measurement input variables with equivalent 

variables from simulation model in inverse mode 

by the measured output response data from the real 
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system can provide insight about model 

deficiencies which may not be so obvious from 

conventional output response comparisons. A 

review of some available methods and algorithms 

in the field of aircraft flight mechanics and surveys 

on a number of typical applications have been 

reported earlier in the literature [12].  

The available solution methods of inverse 

simulation are divided into techniques involving 

numerical differentiation and iterative techniques 

based on numerical integration processes. The 

differentiation method tends to be at least an order 

of magnitude faster than integration and the two 

approaches tend, therefore, to have different areas 

of application. 

Kato and Suguira [13], Kato [14], and 

Thomson [15] have developed inverse simulation 

algorithms for particular air vehicles. The 
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algorithms in [13-15] share a common feature in 

which they call numerical time differentiation of 

some vehicle state variables in the solution 

process. The numerical time differentiation 

approach is that of finding an appropriate 

approximation for the function to be differentiated 

and also differentiating the approximated function. 

However, the problem with time differentiation 

approach is that even the small errors in the 

approximated function are increasingly 

intensified, meaning that the unreliability and 

probability occurrence of solution instability is 

increased with the errors in the solution process 

[16].  

Even though much attention has been focused 

on inverse simulation issues [17-22], Thomson has 

directly emphasized the deficiency in the solution 

process occurred by differentiation approach [15] 

and then, asserted that the numerical integration 

methods are more reliable and stable for inverse 

simulations. 

Hess [23] has followed and restated the 

inverse simulation in a valuable procedure which 

eliminates time differentiation in the solution 

process. Although the resulting formulations have 

advantages over the algorithms requiring time 

differentiation, the direct simulation algorithm 

with control inputs is also called to obtain output 

vectors in a particular interval. Consequently, time 

integration method is essentially much slower than 

the time differentiation and is computationally 

time consuming. Some examples of the integration 

method have been examined in helicopter 

maneuvering flight, inspecting the flight and 

handling qualities of helicopters, as well as 

examining the aircraft performance [24-27]. 

Overall, solutions to inverse problems are 

generally impractical for all but restricted to the 

simplest problems with small computational 

domains. 

Solutions to inverse simulation problems, 

particularly the non-linear ones, also face 

deficiencies of Newton-Raphson method (NR) in 

both time differentiation and integration process. 

The problem with this approach is that the NR 

method is rarely converged into non-convex and 

ill-conditioned problems [28, 29]. Because the 

small changes in input variables lead to large 

variations of output variables in complex 

problems, the global convergence cannot be 

achieved in the solution process. To alleviate the 

problem in time differentiation technique, 

Powell’s dogleg (DL) algorithm is proposed and 

applied to the nonlinear inverse simulation 

problem in this paper. The DL algorithm is 

formulated based on trust-region methods 

implemented for unconstrained minimization 

through the combinations of the Gauss-Newton 

and steepest descent directions [30]. This 

algorithm is explicitly controlled through the use 

of the trust-region method. Accordingly, in this 

work, the potential of DL algorithm as compared 

with NR method in global convergence issue is 

exercised by estimating the control inputs 

necessary for the developed quadrotor model to 

follow a prescribed trajectory defined as climb-

hover and cruise-hover maneuvers. The process of 

inverse simulation is presented in Fig. 1. 

 

Fig. 1. Direct and inverse simulation process 

Inverse simulation algorithm  

The inverse problem is presented in [14] and will 

only be summarized here. In nonlinear equation 

form, the motion of a quadrotor is obtained as: 

𝒙̇(𝑘𝑇)

= 𝒇 (𝒙(𝑘𝑇), 𝒖(𝑘𝑇)) 
(1) 

where 𝑇 is discretization interval, 𝒖(𝑘𝑇) is the 

input vector with four control inputs, and 𝒙(𝑘𝑇) is 

the state vector. Using Newton method, the 

following error vector for Eq. (1) is defined as: 

𝑭𝐸(𝒙(𝑘𝑇), 𝒖(𝑘𝑇))

= 𝒙̇(𝑘𝑇)

− 𝒇 (𝒙(𝑘𝑇), 𝒖(𝑘𝑇)) = 0 

(2) 

or 

𝑭𝐸(𝒀(𝑘𝑇)) = 𝒙̇(𝑘𝑇) − 𝒇 (𝒀(𝑘𝑇))

= 0 

(3) 



  

 

 

 

 

/39 

 

Examination of Quadrotor Inverse Simulation Problem Using Trust-Region … Journal of  Aerospace Science and Technology 

Vol. 12  / No. 1/ Winter- Spring 2019 

where 𝒀 = [𝑦1 … 𝑦𝑛]T is the unknown 

vector including control inputs and certain state 

variables. In an iterative procedure, the unknown 

vector 𝒀 is obtained as: 

𝒀𝑚+1(𝑘𝑇) = 𝒀𝑚(𝑘𝑇) + 𝒅𝐺𝑁 (4) 

where 𝑚 is an iteration number. Eq. (4) is the 

linear approximation of 𝒀, where (𝒅𝐺𝑁) is Gauss-

Newton step and error vector is updated where the 

error estimator is |𝒀𝑚+1(𝑘𝑇) − 𝒀𝑚(𝑘𝑇)|. Normally, 

the convergence occurs if |𝒀𝑚+1(𝑘𝑇) − 𝒀𝑚(𝑘𝑇)| ≤

10−6. In this paper,𝒅𝐺𝑁 is defined as: 

𝒅𝐺𝑁

= − [𝑱[𝑭𝐸[𝒀𝒎(𝑘𝑇)]]]
−1

𝑭𝐸[𝒀𝒎(𝑘𝑇)] 
(5) 

where 

𝑱𝑖𝑗 =
𝜕𝑭𝐸𝑖[𝒀(𝑘𝑇)]

𝜕𝑦𝑗(𝑘𝑇)
𝑖, 𝑗 = 1, 𝑛 

(6) 

Here, 𝑱[ ]is the Jacobian matrix which shows 

the derivative in the single variable Newton 

method. As the partial derivatives in Eq. (6) cannot 

be determined analytically, these derivatives are 

therefore approximated as: 

𝜕𝑭𝐸[𝒀(𝑘𝑇)]

𝜕𝑦𝑗(𝑘𝑇)

=
𝑭𝐸𝑖[𝑦𝑗 + Δ𝑦𝑖 2⁄ ] − 𝑭𝐸𝑖[𝑦𝑗 − Δ𝑦𝑖 2⁄ ]

Δ𝑦𝑖
𝑖, 𝑗

= 1,… , 𝑛 

(7) 

where Δ𝑦𝑖 is perturbation in 𝑦𝑖, and can be 

generated as fixed percentage of 𝑦, at 𝑘𝑇. It should 

be noted when the Jacobian inverse is singular, the 

Moore-Penrose pseudoinverse of the Jacobian ( 𝑱+) 

is used instead of  𝑱−1 . More details on 

pseudoinverse are given in [31, 32]. 

(𝑱{𝑭𝐸[𝒀𝑚(𝑘𝑇)]})
−1

= (𝑱+{𝑭𝐸[𝒀𝑚(𝑘𝑇)]}) 

(8) 

The time differentiation algorithm is outlined 

in Fig. 2. This process is started with a given 

trajectory over a specified time interval, and then 

the time differentiation process is performed as the 

next step of the solution. Following this process, 

the iterative NR method is used to calculate 

unknowns of nonlinear equations of motion. The 

control inputs and other unknowns are changed 

and improved, in step fashion, every 𝑘𝑇 seconds 

on the basis of a solution of Eq. (4). When 

convergence condition is fulfilled, the control 

inputs can be computed and the solution continues 

at the next step time. The values of the control 

inputs are stored to enable a good first estimate to 

be made at the interval of next time point. 

 

Fig. 2.  Diagram for inverse simulation using Newton-

Raphson method 

 Trust-region dogleg algorithm 

Among different numerical solution methods, 

trust-region dogleg algorithm [30 & 34] is used to 

achieve the solutions of inverse problem in this 

paper. This method eliminates the singularity 

within the Jacobian inverse mostly occurring in 

NR approach. Furthermore, NR method may not 

converge when the starting point is far from the 

solution and a good estimation of the solution is 

not available. To avoid this, dogleg algorithm 

based on trust-region method is proposed here. 

Thus, the global convergence of the solution for 

any initial guess is obtained. Dogleg algorithm 

combines the properties of the steepest descent 
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method with the benefits of Gauss-Newton method 

[33].To use a trust-region strategy, a merit function 

is needed to decide if 𝒀𝑚+1 is better or worse 

than𝒀𝑚+1. The merit function is defined as: 

𝒎𝑘(𝒅)

=
1

2
𝑭𝐸
𝑇[𝒀(𝑘𝑇)]𝑭𝐸[ 𝒀(𝑘𝑇)]

+ 𝒅𝑇𝑱𝑇[𝑭𝐸[𝒀(𝑘𝑇)]]𝑭𝐸  [𝒀(𝑘𝑇)]

+
1

2
𝒅𝑇𝑱𝑇[𝑭𝐸[𝒀(𝑘𝑇)]] 𝑱 [𝑭𝐸[𝒀(𝑘𝑇)]]𝒅 

(9) 

where the sub problem is corresponded to: 

Min.[𝒎𝑘(𝒅)] subject to ‖𝒅‖ ≤ ∆𝑘 
(10) 

where ∆𝑘 is the radius of the trust-region,𝒅 is 

a diagonal scaling matrix (dog-leg step) and ∥… ∥ 
is the norm. This sub problem can be efficiently 

solved using a dogleg technique using Cauchy step 
(𝒅𝐶) and unconstrained minimizer or Gauss-

Newton step (𝒅𝐺𝑁). Thus, the exact solution of Eq. 

(10) is obtained as: 

𝒅 = 𝒅𝐶 +λ(𝒅𝐺𝑁 − 𝒅𝐶) 
(11) 

where λ is the largest value between [0,1] 

when ‖𝒅‖ ≤ ∆𝑘 . The Cauchy step is calculated as: 

𝒅𝐶 = −𝜏𝑘∆𝑘
𝑱𝑇{𝑭𝑬[𝒀(𝑘𝑇)]}. 𝑭𝑬[𝒀(𝑘𝑇)]

‖𝑱𝑇{𝑭𝑬[𝒀(𝑘𝑇)]}. 𝑭𝑬[𝒀(𝑘𝑇)‖
 (12) 

where 𝜏𝑘 is step-size and is calculated as 

follow: 

𝜏𝑘

= {

1 (𝐹𝐸
𝑇𝑱)(𝑱𝑇𝑱)(𝑱𝑇𝑭𝐸) ≤ 0

min {1,
‖𝑱𝑇 . 𝑭𝐸‖

3

∆𝑘(𝐹𝐸
𝑇 . 𝑱)(𝑱𝑇 . 𝑱)(𝑱𝑇. 𝑭𝐸)

} (𝐹𝐸
𝑇𝑱)(𝑱𝑇𝑱)(𝑱𝑇𝑭𝐸) > 0

 

(13) 

𝑱 [𝑭𝐸[𝒀(𝑘𝑇)]] and 𝑭𝐸[𝒀(𝑘𝑇)] are 

respectively abbreviated as 𝑱 and 𝑭𝐸 in Eq. (13). 

Gauss-Newton step is calculated as: 

𝒅𝐺𝑁 = −𝑱
−1{𝑭𝐸[𝒀(𝑘𝑇)]}𝑭𝐸[𝒀(𝑘𝑇)] (14) 

The dogleg method allows successively better 

estimates of 𝒀𝑚+1(𝑘𝑇) to be made at each value of 

𝑘. Accordingly, the solution of Eq. (3) can be 

represented as: 

𝒀𝑚+1(𝑘𝑇) = 𝒀𝑚(𝑘𝑇) + 𝒅 (15) 

Eq. (15) is the linear approximation of 𝑌, 

where (𝑑) is dog-leg step and is updated where the 

error estimator is corresponded to |𝒀𝑚+1(𝑘𝑇) −
𝒀𝑚(𝑘𝑇)|. The convergence is obtained if 

|𝒀𝑚+1(𝑘𝑇) − 𝒀𝑚(𝑘𝑇)| ≤ 10
−6. In the case 

where 𝑱−1 is singular, 𝒅 is just Cauchy direction, 

thus, Eq. (11) can also be written as:  

𝒅 = 𝒅𝐶(1 − λ) (16) 

What is to be said is that the inverse 

simulation algorithm based on DL approach is 

approximately similar to the NR algorithm 

presented in Fig. 2. However, in DL approach, 

there is no need to calculate the pseudoinverse of 

Jacobian and also the value of DL step is replaced 

by Newton step value. Furthermore, after the 𝑚 −
𝑡ℎ iteration where the convergence criterion in the 

internal loop is satisfied, the control inputs and 

other unknowns are determined, in step fashion, 

every 𝑘𝑇 seconds. 

Quadrotor model 

The equations of motion of the fuselage are those 

of a rigid body, formulated in the body-fixed 

coordinate system (see Fig. 3). The terms on the 

left hand side represent the externally applied 

loads (𝐹𝐵 , 𝑀𝐵) which include contributions from 

the rotors and aerodynamic loads directly applied 

to the fuselage. 

(17) 𝐹𝐵 = 𝑚(𝑉̇𝐵 +𝜔𝐼𝐵
𝐵 × 𝑉𝐵) 

(18) 𝑀𝐵 = 𝐼𝐵𝜔̇𝐼𝐵
𝐵 +𝜔𝐼𝐵

𝐵 × 𝐼𝐵𝜔𝐼𝐵
𝐵  

where𝑚 is the mass of quadrotor, 𝑉𝐵 =

[𝑥̇ 𝑦̇ 𝑧̇]𝑇, 𝜔𝐼𝐵
𝐵 = [𝜔𝑋 𝜔𝑌 𝜔𝑍], and 𝐼𝐵 = 𝐼3×3 is 

linear velocity vector, angular velocity vector, and 

the mass moment inertia matrix represented in 

body-fixed coordinate system, respectively. The 

superscript 𝐵 refers to body-fixed coordinate 

system. The forces and moments on the left hand 

side of Eqs. (17) and (18) are then given by:  

(19) 

𝐹𝐵 = [𝐹𝑋𝑟 + 𝐹𝑋𝑏 𝐹𝑌𝑟 + 𝐹𝑌𝑏 𝐹𝑍𝑟 + 𝐹𝑍𝑏]
𝑇

= [−(𝐻 + 𝐷𝑋)𝐷𝑌(𝐷𝑍
− 𝑇)]𝑇 

𝑀𝐵

= [𝑀𝑋𝑟 +𝑀𝑋𝑏 𝑀𝑌𝑟 +𝑀𝑌𝑏 𝑀𝑍𝑟 +𝑀𝑍𝑏]
𝑇

≅ [𝑀𝑋𝑏 𝑀𝑌𝑏 𝑄]𝑇 = [𝜏𝑋 𝜏𝑌 𝜏𝑍]𝑇 
 

(20) 

𝐹𝐵 = [𝐹𝑋𝑟 + 𝐹𝑋𝑏 𝐹𝑌𝑟 + 𝐹𝑌𝑏 𝐹𝑍𝑟 + 𝐹𝑍𝑏]
𝑇

= [−(𝐻 + 𝐷𝑋)𝐷𝑌(𝐷𝑍
− 𝑇)]𝑇 

𝑀𝐵

= [𝑀𝑋𝑟 +𝑀𝑋𝑏 𝑀𝑌𝑟
+𝑀𝑌𝑏 𝑀𝑍𝑟

+𝑀𝑍𝑏]
𝑇

≅ [𝑀𝑋𝑏 𝑀𝑌𝑏
𝑄]𝑇 = [𝜏𝑋 𝜏𝑌 𝜏𝑍]𝑇 

 

where the subscript 𝑟 refers to the rotor and 𝑏 

to the helicopter body. The rotor blade is of a 

rectangular plan form with NACA 0012 cross 

sections and has no taper. All blades were designed 
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and built with no flapping, lead-lag, and feathering 

degrees of freedom. 

 

Fig. 3. Presentation of coordinate systems for a typical quadrotor. 

The representation of Eq. (17) in inertial 

coordinate system is: 

𝐶𝐵
𝐼𝐹𝐵 = 𝑚𝑉̇𝐼 = 𝑚𝐶𝐵

𝐼 (𝑉̇𝐵 +𝜔𝐼𝐵
𝐵 × 𝑉𝐵) (21) 

where 𝐶𝐵
𝐼  is the transformation matrix from 

body-fixed to inertial coordinate and 𝑉̇𝐼 =

[𝑎𝑋𝑎𝑌𝑎𝑍]
𝑇. 

𝐶𝐵
𝐼

= [

𝐶𝜃𝐶𝜓 𝑆𝜃𝑆𝜙𝐶𝜓 − 𝐶𝜙𝑆𝜓 𝐶𝜙𝑆𝜃𝐶𝜓 + 𝑆𝜙𝑆𝜓
𝐶𝜃𝑆𝜓 𝑆𝜙𝑆𝜃𝑆𝜓 + 𝐶𝜙𝐶𝜓 𝐶𝜙𝑆𝜃𝑆𝜓 − 𝑆𝜙𝐶𝜓
−𝑆𝜃 𝑆𝜙𝐶𝜃 𝐶𝜙𝐶𝜃

] 
(22) 

Here, 𝑆 ≡ sin (… ) and 𝐶 = cos (… ) are Sine and 

Cosine operators. To model the rotor, the forces 

generated by each rotor are calculated by blade 

element theory (BET). This theory determines the 

forces of the blade element at (𝑟𝑒 , 𝜓𝑏) and then 

integrates over the blade radius from root cutout to 

the blade effective radius, 𝐵𝑅, where 𝐵(= 1 −

√2𝐶𝑇/𝑏) is the blade tip loss factor, 𝐶𝑇 is thrust 

coefficient and 𝑏 is the number of blades. In 

forward flight, the rotor forces have to be 

averaged over a rotor revolution to obtain the 

trim condition. The aerodynamic load on the 

blade element provides a shear load and a 

moment at the blade root. In a conventional 

rotor, the flapping hinge at the blade root avoids 

much of this load from being transferred to the 

fuselage. A stiff rotor, such as those on a typical 

quadrotor, however, transfer these moments, and 

thus, are calculated in this work. Accordingly, 

the rotor thrust, drag, and side force coefficients 

are corresponded to: 

𝐶𝑇 =
𝑎𝜎

2
(
𝐵3

3
𝜃0  −

𝐵2

2
𝜇𝑧  −

𝐵2

2
𝜆0  

+
𝐵4

4
𝜃1  +

𝐵

2
𝜇𝑥
2𝜃0  

+
𝐵

2
𝜇𝑦
2𝜃0  +

𝐵2

4
𝜇𝑥
2𝜃1  

+
𝐵2

4
𝜇𝑦
2𝜃1) 

 

T1 

  

T3 

  
τ1 

τ2 

τ3 
τ4 

yI xI 

zI 

Inertial coordinate system (xI, yI, zI)  
  
  

zB 

yB 

Body − fixed coordinate system (xB, yB, zB) 
  

Rotor 1  
  
  

Rotor 3  
  
 

Rotor 2  
  
 

Rotor 4  
  
 

H4 
Y4 

H1 
Y1 

Y2 H2 

Y3 H3 

T2 

T4 
xB 

Dxf 

Dyf 
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𝐶𝐻 = 𝐵
𝜎𝑎

2
(𝐵
𝐶𝑑0
2𝑎

𝜇𝑥 − 
1

2
𝜆0𝜇𝑥𝜃0

+
1

2
𝜇𝑥𝜇𝑧𝜃0

−
1

4
𝐵𝜆0𝜇𝑥𝜃1  

+
1

4
𝐵𝜇𝑥𝜇𝑧𝜃1) 

(23) 

𝐶𝑌 = 𝐵
𝜎𝑎

2
(𝐵
𝐶𝑑0
2𝑎

𝜇𝑦  −  
1

2
𝜆0𝜇𝑦𝜃0

+ 
1

2
𝜇𝑦𝜇𝑧𝜃0

−
1

4
𝐵𝜆0𝜇𝑦𝜃1

+ 
1

4
𝐵𝜇𝑦𝜇𝑧𝜃1) 

 

Also, the moment coefficients are given as 

(see Fig. 4): 

(24) 

𝐶𝑀𝑥 = −𝐵
2
𝜎𝑎

2
(
1

4
𝜆0𝜇𝑥 −

1

4
𝜇𝑥𝜇𝑧  

+
1

3
𝐵𝜇𝑥𝜃0 +

1

4
𝐵2𝜇𝑥𝜃1) 

𝐶𝑀𝑦 = 𝐵2
𝜎𝑎

2
(
1

4
𝜆0𝜇𝑦 −

1

4
𝜇𝑦𝜇𝑧 +

1

3
𝐵𝜇𝑦𝜃0

+
1

4
𝐵2𝜇𝑦𝜃1) 

 

𝐶𝑀𝑧 = 𝐵2
𝜎𝑎

2
(
𝐶𝑑0
4𝑎

𝐵2 −
1

2
𝜆0
2  −  

1

2
𝜇𝑧
2   

+
𝐶𝑑0
4𝑎

𝜇𝑥
2  +  

𝐶𝑑0
4𝑎

𝜇𝑦
2  

+ 𝜆0𝜇𝑧  −  
1

4
𝐵2𝜆0𝜃1

+ 
1

4
𝐵2𝜇𝑧𝜃1 − 

1

3
𝐵𝜆0𝜃0

+
1

3
𝐵𝜇𝑧𝜃0) 

where  𝜇𝑥 = 𝑣𝑥
ℎ𝑢𝑏/𝑣𝑡  , 𝜇𝑦 = 𝑣𝑦

ℎ𝑢𝑏/𝑣𝑡  , and 𝜇𝑧 =
𝑣𝑧
ℎ𝑢𝑏/𝑣𝑡. 

 𝑣𝑥
ℎ𝑢𝑏 = 𝑢 + 𝑟𝑦𝑖  

(25) 𝑣𝑦
ℎ𝑢𝑏 = 𝑣 + 𝑟𝑥𝑖  

 𝑣𝑧
ℎ𝑢𝑏 = 𝑤 − 𝑝𝑦𝑖 − 𝑞𝑥𝑖  

Here, 𝑥𝑖and 𝑦𝑖are the coordinate of the 𝑖 − 𝑡ℎ 

rotor. The rotor coefficients are 𝐶𝑇(= 𝑇/𝜌𝐴𝑣𝑡
2), 𝐶𝐻(=

𝐻/𝜌𝐴𝑣𝑡
2), and 𝐶𝑌(= 𝑌/𝜌𝐴𝑣𝑡

2), and the rotor solidity is 

𝜎 = 𝑏𝑐/𝜋𝑅. In addition, 𝑎 is lift curve slope, 𝜃0 is 

blade collective pitch, 𝜃1 is blade twist, 𝐶𝑑0 is profile 

drag coefficient, and 𝜆0 represents the rotor inflow 

ratio. Also, 𝑏 is the number of blades, 𝑐 denotes blade 

chord length, 𝑉∞ forward flight speed, 𝛼𝑇𝑃𝑃 is tip path 

plane angle of attack (see Fig. 4), and 𝑣𝑡 = 𝑅Ω the 
blade tip speed. The inflow ratio is then obtained as 

[35]: 

𝜆0 = 𝜇 tan 𝛼𝑇𝑃𝑃 +
𝐶𝑇

2√𝜇2 + 𝜆0
2

 (26) 

For a given advance ratio, thrust coefficient, 

and 𝛼𝑇𝑃𝑃, the solution to inflow ratio was provided 

using NR method in this paper where the iteration 

started with 𝜆𝑛=0 = √𝐶𝑇/2 and the convergence 

occurred when‖
𝜆𝑛+1 −𝜆𝑛

𝜆𝑛+1
‖ ≤ 10−5.  

 
Fig. 4.Presentation of the rotor tip path plane (TPP) 
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The equations of motion of the fuselage are 

those of a rigid body, formulated in the body-fixed 

coordinate system. In this paper, the magnitudes of 

𝑝, 𝑞, and 𝑟are assumed to be small, and the net 

angular momentum of the rotors is also close to 

zero since the momentum of the clockwise rotors 

cancels out that of the counter-clockwise motors. 

Therefore, the gyroscopic moments are small and 

are neglected. To track the position and velocity as 

well as the attitudes, a total of 12 states are 

required: 

(27) 

−∑ 𝐻𝑖
4

𝑖=1
− 𝑋𝐹 = 𝑚(𝑢̇ + 𝑞𝑤 − 𝑣𝑟

+ 𝑔𝑠𝑖𝑛𝜃) 

∑ 𝑌𝑖
4

𝑖=1
+ 𝑌𝐹 = 𝑚(𝑣̇ + 𝑟𝑢 − 𝑤𝑝

− 𝑔𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃) 

−∑ 𝑇𝑖
4

𝑖=1
− 𝑍𝐹 = 𝑚(𝑤̇ + 𝑝𝑣 − 𝑞𝑢

− 𝑔𝑐𝑜𝑠𝜙 𝑐𝑜𝑠 𝜃) 

and 

(28) 

∑ (𝑀𝑥𝑖
+ 𝑇𝑖𝑦𝑖)

4

𝑖=1
= 𝐼𝑥𝑥𝑝̇ + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟 

∑ (𝑀𝑦𝑖
+ 𝑇𝑖𝑥𝑖)

4

𝑖=1
= 𝐼𝑦𝑞̇ + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝𝑟 

∑ (𝑀𝑧𝑖
+ 𝑌𝑖𝑥𝑖 − 𝐻𝑖𝑦𝑖)

4

𝑖=1

= 𝐼𝑧𝑧 𝑟̇ + (𝐼𝑦 − 𝐼𝑥)𝑝𝑞 

The authors assumed that the contribution of 

fuselage in 𝑥𝐵 direction can be calculated using the 

equivalent flat plate area approach. Thus, the 

fuselage drag is given by 𝑋𝐹 =
1

2
𝜌(𝜇Ω𝑅)2𝑓𝑒, where 

𝑓𝑒 represents the equivalent flat plate area, and 

𝑌𝐹 = 𝑍𝐹 = 0 [35]. 

Maneuvers Definition  

Two different maneuvers for the quadrotor 

including climb-hover and cruise-hover were 

designed to prove the capabilities of inverse 

simulation with trust-region DL algorithm. The 

climb-hover motion is characterized by a rapid 10 

meter vertical translation with a constant lateral 

and longitudinal position andvariable heading 

angle starting and terminating in a trimmed hover. 

The duration of the maneuver is specified as 40 

seconds. Heading angle is changed up to 63.4 

degrees in 30 seconds and climb velocity is 2 

knots. 

Cruise-hover is characterized by a rapid 22 

meter forward flight with constant altitude and 

heading, starting and terminating in a trimmed 

hover. The duration of the maneuver is specified 

as 60 seconds and forward flight velocity is 3 

knots.Thesetwo maneuvers were generated by 

direct simulation of quadrotor with the linear 

quadratic controller (LQR). Table 1 compares the 

two maneuvers for the inverse simulation problem. 

 

Table 3 Presentation of the hover-climb and the 

cruise-hover maneuvers 

Flight phase States variables 
Control 

inputs 

Climb-hover {𝑧, 𝑧,̇ 𝜓, 𝜓,̇ 𝜙, 𝜙̇} {𝑢1, 𝑢2, 𝑢4} 

Cruise-hover {𝑥, 𝑥̇, 𝑧, 𝑧̇, 𝜃, 𝜃̇, 𝜙, 𝜙̇} {𝑢1, 𝑢2, 𝑢3} 

 

The four control inputs of 𝒖(𝑡) =
{𝑢1, 𝑢2, 𝑢3, 𝑢4} based on physical requirements of 

the quadrotor are defined in Table 1. These control 

vectors are altitude control (ΔΩ𝑍), roll control 

(ΔΩ𝜙), pitch control (ΔΩ𝜃), and yaw control input 

(ΔΩ𝜓), respectively. The relationship of the inputs 

with the rotation speed of each rotor is defined as 

[36]: 

(29) 

[

Ω1
Ω2
Ω3
Ω4

]

= [

Ω𝑛
Ω𝑛
Ω𝑛
Ω𝑛

] + [

+1 +1 −1 −1
+1 −1 −1 +1
+1 −1 +1 −1
+1 +1 +1 +1

]

[
 
 
 
ΔΩ𝑍
ΔΩ𝜙
ΔΩ𝜃
ΔΩ𝜓]

 
 
 

 

where Ω𝑛 is the nominal speed of each rotor in 

hover flight. To generate the control vector 𝒖(𝑡), 

the LQR was developed for the linearized 

equations of motion represented by 𝒙̇ = 𝐴𝒙(𝑡) +

𝐵𝒖(𝑡) in which 𝒙(𝑡) is the state vector. The 

satisfactory explanation for control vector was 

𝒖(𝑡) = −𝐾[ 𝒙(𝑡) − 𝒙𝑐𝑜𝑚(𝑡𝑓)] which is a 

multiplication of the optimal feedback gain (𝐾) to 

the difference between the system state 𝒙(𝑡) and 

the system control command 𝒙𝑐𝑜𝑚(𝑡𝑓). To satisfy 

the system controllability, in the first step, 

variables𝑧and𝜓and their rates were accounted as 

system variables and 𝑢1 and 𝑢4 were considered as 

the control inputs. Therefore, the 𝐴 and 𝐵 matrices 

are considered as:  
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(30) 

𝐴 = [

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

] ,                 𝐵

= [

0 0
−0.0632 0

0 0
0 0.0635

] 

The performance index is then defined as: 

(31) 
𝐽 =

1

2
∫  [ 𝒙𝑇(𝑡)
𝑡1

𝑡0

𝑄𝒙(𝑡)

+ 𝒖𝑇(𝑡)𝑅𝒖(𝑡)]𝑑𝑡 

where semi-positive and positive definite 

matrices are respectively estimated as: 

(32) 𝑄 = [

10 0 0 0
0 10 0 0
0
0

0
0

1
0

0
1

] ,        𝑅 = [
1 0
0 1

] 

It should be noted that the elements of 

diagonal matrices Q and R are obtained by trial and 

error. By solving the Riccati equation 𝐴𝑇𝑃 + 𝑃𝐴 −

𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0, the optimal gain matrix for the 

first step is obtained as: 

(33) 

𝐾

= [
−3.1623 −10.4915 0 0

0 0 1 5.7005
] 

Since 𝑢2 control input is shared between two 

maneuvers presented in Table 1, here the 𝐴 and 𝐵 

matrices are reduced to: 

(34) 
 

A = [
0 1
0 0

] ,        B = [
0
1.21

] 

As a result, using the above modification, the 

improvement in roll angle value against unwanted 

disturbance was evident. Choosing 𝑄 and 𝑅 as 

identity matrices, the optimal feedback gain is 

obtained as: 

(35) 𝐾 = [1 1.6288] 

For the second maneuver, the three 

variables of 𝑥, 𝑧, and 𝜃 and their rates are 

accounted as state variables and 𝑢1 and 𝑢3 are 

defined as control inputs. It should be noted that 

𝑢1 is the control input for altitude adjustment and 

𝑢3is allocated for controlling the position and 

pitch angle. Based on the author’s examination, 

the system controllability is sufficiently gained 

by the selected control inputs and the state 

variables. Accordingly, 𝐴 and 𝐵 matrices can be 

given: 

(36) 

A =

[
 
 
 
 
 
0 1 0 0 0 0
0 0 0 0 −9.81 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0]

 
 
 
 
 

,        B

=

[
 
 
 
 
 

0 0
0 0
0 0

−0.0632 0
0 0
0 −1.21]

 
 
 
 
 

 

where elements of diagonal matrices Q and R are 

obtained by trial and error that corresponded as: 

(37) 

Q

=

[
 
 
 
 
 
0.01 0 0 0 0 0
0 0.01 0 0 0 0
0 0 1000 0 0 0
0 0 0 1000 0 0
0 0 0 0 100 0
0 0 0 0 0 100]

 
 
 
 
 

,        R

= [
1 0
0 1

] 

Thus, the optimal control gain for the second 

maneuver is calculated as: 

(38) 
𝐾 = 

[
0 0 −31.6228 −44.7294 0 0
0.1 0.5595 0 0 −14.8623  −11.1609

]  

Results  

Direct simulation with LQR  

Figs. 5 and 6 show the results of direct simulation for 

the developed non-linear model of a typical quadrotor 

with optimal gains determined by Eqs. (33), (35), and 

(38). The aim of the direct simulation is to achieve the 

final point at (-10, 20, -10) from the reference position 

(0,0,0) defined as a starting point of flight. Table 2 

provides the general specifications of the quadrotor 

used in this simulation [36]. Fig. 6 confirms that we 

have obtained satisfactory results by the direct 

simulation after 60 seconds where the values of Euler 

angles are corresponded to 𝜓 = −63.4°, 𝜙 = 0°, and 

𝜃 = −0.4°.  

Table 4General specifications of selected quadrotor [36]. 

Parameter Symbol Unit Value 

Mass 𝑚 kg 0.52 
Moment of inertia 
about x-axis 

𝐼𝑥𝑥  kg.m2 
6.23 ⨯ 
10-3 

Moment of inertia 
about y-axis 

𝐼𝑦𝑦 kg.m2 
6.23 ⨯ 
10-3 

Moment of inertia 
about z-axis 

𝐼𝑧𝑧 kg.m2 
1.12 ⨯ 
10-2 

Hub to hub distance 𝑙 m 0.23 
Rotation speed Ω0 rad/s 311.7 
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Parameter Symbol Unit Value 

Induced power 
correction factor 

𝜅  1.13 

Profile drag 
coefficient 

𝐶𝑑0   0.008 

Number of blades 𝑏  2 
Blade chord 𝑐 m 0.016 
Blade radius 𝑅 m 0.13 

Parameter Symbol Unit Value 

Blade twist  𝜃1 deg -10 
Blade collective 
pitch 

𝜃0 deg 20 

Lift curve slope of 
blade 

𝑎 1/rad 5.7 

Rotor solidity 𝜎  0.0784 
Blade loading 𝐶𝑇/𝜎  0.14 

   
(a) (b) (c) 

Fig. 5. Time histories of quadrotor position calculated by direct simulation with LQR controller 

Fig. 6 illustrates the trajectory of the quadrotor 

obtained by direct simulation with LQR controller at 

𝐶𝑇/𝜎 =  0.14. Also, Fig. 6 shows the variations of 

heading, roll, and pitch angles for the trajectory shown 

in Fig. 5. It can be seen that the heading angle occurs 

at -63.4o where the nose of quadrotor is in direction 

with the line connected to final point. In this case, the 

altitude also increases 10 m and thus, the quadrotor 

reaches to the desired altitude. The results show that, 

after 40 seconds, a positive pitch angle of 3.5o is 

required to reach the final point while the altitude is 

hold at the specific of 10 m. As shown in Fig. 6(b), at 

62 seconds, when the longitudinal error with respect 

to the final point is as large as 0.4 m, a pitch angle of -

0.4o is required to turn the quadrotor back to the final 

point. Accordingly, decreasing quadrotor pitch angle 

is continued for 80 seconds and therefore the hover 

condition is obtained.  

 
  

(a) (b) (c) 

Fig. 6. Time histories of quadrotor attitude calculated from direct simulation using LQR method. 

Inverse simulation with Newton-Raphson 

algorithm 

Fig. 7(a) through (d) compare the four control 

inputs predicted by inverse simulation based on 

NR algorithm and direct simulation with LQR 

controller. The results of inverse simulation are 

achieved where the unknown vector is defined as 

𝒀 = [𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝜙, 𝜃, 𝜓, 𝜔𝑦 , 𝜔𝑧] and the error 
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vector 𝑭𝐸 consists of 6 equations of motion, Eqs. 

(19) and (20), and three kinematic expressions for 

Euler angles. Moreover, the initial guess on 𝒀0(𝑡 =

0) is set to [0.1, 0, 0, 0.1, 0 ,0.1, 0, 0, 0.1] and the 

inverse simulation were carried out by the 

differential method where the step time was 

adjusted to 0.01 second. The trajectory used in 

inverse simulation is based on the generated 

position and attitude previously shown in in Figs. 

5 and 6. 

 

 
 

(a) (b) 

  

(c) (d) 

Fig. 7.  Control inputs calculated by inverse simulation with NR method and LQR controller 

 

As seen in Fig. 7(a) to (d), in climb-hover 

maneuver, a good correlation between all four 

control inputs obtained by inverse simulation and the 

optimal control inputs designed for direct simulation 

is obvious. The results confirm that NR method is 

unable to calculate control inputs after 40 seconds in 

cruise-hover maneuver. This result is attributed to the 

location of starting point that is beyond the desired 

solution.  

 Inverse simulation with Dogleg algorithm 

Fig. 8(a) through (d) compare the time history of 

the four control inputs determined by inverse 

simulation based on DL algorithm and direct 

simulation with LQR controller at 𝐶𝑇/𝜎 =  0.14. 

The initial guess on 𝒀0 and the step time of 0.01 

second was the same as the NR method.  
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(a) (b) 

  
(c) (d) 

Fig. 8.  Control inputs calculated by inverse simulation with trust-region DL method and LQR controller 

As it can be seen in Fig. 8(a) to (d), a good 

correlation is evident between the results of 

direct simulation with LQR and inverse 

simulation with DL algorithm in both climb-

hover and cruise-hover maneuvers. Unlike the 

NR method, here the DL solutions involve all 

four control inputs after 40 seconds for cruise-

hover phase. The reason for this result is that the 

DL algorithm can guarantee the global 

convergence throughout the computational 

domain. 

Fig. 9 shows iterationloop number (𝑘) in 

each step (𝑚) for inverse simulation based on 

NR and DL methods. Figures 9(a) and 9(b) show 

the first phase of the flight and Fig. 9(c) 

corresponds to both flight phases as presented in 

Table 1. Given the total flight time of 100 

seconds and the step size of 0.01 seconds for 

both phases of flight, we will have 10,000 

solution steps.  

The initial guess of unknowns in the first 

step (𝑘 = 1) is considered as 
[0.1, 0, 0,0.1,0, 0.1, 0, 0,0.1] and in the next step 

(𝑘 = 2), the control inputs in the previous steps 

are considered as the initial guess. As can be 

seen in Fig. 9 (a), the least iteration loop in the 

NR method is 2, but in the DL method the 

convergence is obtained by one iteration only in 

some steps. The total number of iteration loops 

for the first phase of the flight is 8202 times in 

the NR and 7634 in the DL method, indicating a 

higher speed of DL. In the second phase of the 

flight (cruise flight) since the initial guess of the 

control inputs is out of the solution, it will be 

unstable in the NR procedure but due to the 

insensitivity of the DL to the initial conditions, 
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by increasing the number of repeating loops, the 

unknowns are calculated. The total number of 

solution steps using DL method is 26421. 

   
(a) (b) (c) 

Fig. 9.  Comparison of iteration number in each step for inverse simulation based on NR and DL methods  

Fig. 10 shows the direct simulation results 

based on control inputs gained by inverse 

simulation with DL algorithm. These results are 

compared to the trajectory generated by LQR 

controller previously shown in Figs. 5 and 6. 
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Fig. 10.  Comparison of the trajectory for inverse and direct simulaton with LQR controller 

We observed that the trajectory obtained by 

the controller inputs in inverse simulation is in a 

good agreement with the results of optimal control 

inputs. The results address that the longitudinal 

and lateral errors in x and y directions relative to 

the prescribed trajectory are about 0.04% and 

0.02%, respectively. Even though a very slight 

difference of about 0.0002° between roll angles is 

obvious, the proposed inverse simulation 

procedure and the relevant results are reasonably 

acceptable. 

Conclusions 

 The trust-region Dogleg solution algorithm has 

been proposed to improve the inverse simulation 

process. The case study has performed on a non-

linear dynamic model of quadrotor with two 

different maneuvers (i.e., climb-hover and cruise-

hover) generated by direct simulation with LQR 

controller. This work is a step towards enhancing 

the inverse simulation process and the principal 

findings are: 

1. An inverse simulation algorithm with time 

differentiation method and trust-region dogleg 

solver can be applied to the real problems such 

as V/STOL aircraft maneuvers.  
2. Even though the model of quadrotor studied 

here consists of nonlinear dynamics and linear 

rotor aerodynamics with a non-uniform inflow 

ratio, the solution method proposed in this 

paper is not restricted to these conditions. 
3. The process of inverse simulation with trust-

region dogleg solution algorithm can guarantee 

the global convergence of solution for any 

problems over the computational domain. This 

algorithm can be employed instead of the 

traditional Newton-Raphson which suffers 

from local convergence occurred in the ill-

conditioned problems. 
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