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In this paper, nonlinear vibration analysis of functionally graded piezoelectric (FGP) 

beam with porous materials is investigated based on the Timoshenko beam theory. Material 

properties of FG porous beam are described according to the rule of mixture which is 

modified to approximate material properties with porosity phases. Ritz method is used to 

obtain the governing equation which is then solved by a direct iterative method to determine 

the nonlinear vibration frequencies of FGP porous beam subjected to different boundary 

conditions.The effects of external electric voltage, material distribution profile, porosity 

volume fraction, slenderness ratios and boundary conditions on the nonlinear vibration 

characteristics of the FGP porous beam are discussed in detail. The results indicate that 

piezoelectric layers have a significant effect on the nonlinear frequencies. Also, it is found 

that porosity has a considerable influence on the nonlinear frequency, especially when the 

electric voltage is applied.  

Keywords:Nonlinear vibration, Porous material, Functionally graded material beam,Piezoelectric 

layers 

Introduction 

Functionally graded materials (FGMs), are a novel 

generation of composites of microscopic 

heterogeneity proposed in the early 1980s 

[1].These materials are supplied by controlling the 

volume fractions, microstructure, porosity, etc. of 

the material constituents during manufacturing, 

resulting in spatial gradient of macroscopic 

material properties of mechanical strength and 

thermal conductivity. As a result, FGMs possess 

various advantages over the conventional 

composite laminates, such as smaller thermal 

stresses, stress concentrations or intensity factors, 

attenuation of stress waves, and so on. [2].Due to 

the high mechanical and thermal properties of the 

ceramic-metal materials, FGMs have excellent 

resistance to high temperature and thermal impact 

[3]. Therefore, functionally graded materials have 

many applications in various branches of industry 

such as power, engineering, automotive and 

electronics industries [4]. 

With a browse of the previous studies, it is 

found that there are many investigations on 

vibration analysis of FGM beams. Kitipornchai et 

al. [5] analyzed nonlinear vibration of FG 

Timoshenko beam with an edge crack. They used 

Ritz method to derive the governing eigenvalue 

equation. Ke et al. [6] investigated the nonlinear 

free vibration of functionally graded 

nanocomposite beams reinforced by single-walled 

carbon nanotubes supported with different 
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boundary conditions.Longitudinal free vibration 

analysis of axially functionally graded microbars 

was conducted by Akgöz and Civalek [7]. They 

utilized Rayleigh-Ritz method to obtain an 

approximate solution for the beam with a clamped-

clamped and clamped-free boundary conditions. 

Pradhan and Chakraverty [8] presented 

fundamental frequencies of FGM beams with 

different boundary conditions. Ansari et al. [9] 

investigated size-dependent vibration of 

functionally graded curved microbeams based on 

the modified strain gradient elasticity theory. 
Mashat et al. [10] used the Carrera Unified 

Formulation to carry out free-vibrational analyses 

of functionally graded structures. Hadji et al. [11] 

developed higher order shear deformation beam 

theory to perform static and free vibration analysis 

of functionally graded beams. Moreover, Sofiyev 

[12] studied vibration and stability of functionally 

graded conical shells under a compressive axial 

load within the framework of shear deformation 

beam theoryand using Galerkin’s method.Chen et 

al. [13] studied thermo-elastic vibration of FGM 

beams with general boundary conditions based on 

a higher-order shear deformation beam theory. The 

size-dependent vibration behavior of the nano-

beam made of functionally graded materials is also 

studied by Zhang et al. [14] based on the non-local 

theory and the material and dimensions of the 

beams. In all of these studies the effect of porosity 

was not considered. 

Besides, due to porosity occurring inside 

FGMs during fabrication, FGMs can be modeled 

as a porous material with nonhomogeneous 

distribution of porosity. It is therefore necessary to 

consider the vibration behavior of beams having 

porosities in this study. Recently, researchers have 

investigated the vibration behavior of porous FGM 

beams. For example, the linear and nonlinear 

vibration analysis of FGM beam with porosities 

was done by Wattanasakulpong et al. [15]. They 

used differential transformation method to obtain 

linear and nonlinear vibration responses of porous 

FGM beams with different kinds of elastic 

supports. Ebrahimi and Zia [16] studied the large-

amplitude nonlinear vibration of functionally 

graded (FG) Timoshenko beams made of porous 

material. They employed both Galerkin’s method 

and the method of multiple scales to solve the 

governing equations. Chen et al. [17] studied the 

free and forced vibration characteristics of 

functionally graded porous beams with nonlinear 

distribution of elastic module and mass density 

along the thickness direction of the beam. They 

considered symmetric and asymmetric porosity 

distributions in their porous FGM beam.Shafiei et 

al. [18] analyzed size dependent nonlinear 

vibration behavior of imperfect uniform and non-

uniform functionally graded micro beams within 

the framework of modified couple stress and 

Euler-Bernoulli theories. Ebrahimi et al. [19] 

conducted the thermo-mechanical vibration 

analysis of functionally graded beams made of a 

porous material subjected to various thermal 

loadings using the differential transformation 

method. Additionally, Gui-Lin et al. [20] 

investigated the vibration behaviors of porous 

nanotubes. They used the Navier solution method 

in order to solve the governing equations. 

Because of their efficiency in converting 

electrical energy into mechanical energy, 

piezoelectric materials have found numerous 

applications in structural dynamics. Their main 

applications are in sensors and electromechanical 

actuators, as resonators in electronic equipment, 

also they have acoustic applications, as ultrasound 

transducers, naval hydrophones, and sonars. In 

addition, recently, the FGM concept has been 

applied to the piezoelectric structures such as 

bimorph actuators [21]. Yang and Zhifei [22] 

studied the free vibration of an FGP beam using 

state-space based differential quadrature method 

(SSDQM). Armin et al. [23] identified the static 

and dynamic characteristics of an FGP beam under 

thermal, electrical and mechanical loading using 

the finite element analysis. Doroushi et al. [24] 

presented the free and forced vibration 

characteristics of an FGPMbeam under thermo-

electro-mechanical loads based on the higher-

order shear deformation beamtheory. Ke et al. [25] 

investigated thermoelectric-mechanical vibration 

of the piezoelectric nanobeams using the nonlocal 

theory and Timoshenko beam theory.Electro-

thermo-mechanical vibrational behavior of FGP 

plates with porosities is explored via a refined 

four-variable plate theory by Barati and Zenkour 

[26]. Furthermore, Ebrahimi and Salari [27] 

extracted the thermo-electro-mechanical 

vibrations of FGP Timoshenko nanobeam under 

thermal and electrical loading.Ebrahimi and Barati 

[28] conducted the nonlocal free vibration analysis 

of curved FGP nanobeams based on the Euler–

Bernoulli beam model by using a Navier-type 

solution method.The steady-state analytical 

solutions for the coupled thermo-electro-elastic 
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forced vibrations of piezoelectric laminated beams 

are presented by Zhao et al. [29]. 

To the best knowledge of the authors, no 

research effort has been devoted so far to find 

theeffect of porosity on the nonlinear vibrational 

behavior of an FG Timoshenko beam with 

piezoelectric layers. Motivated by these 

considerations, in this investigation, the nonlinear 

vibration of piezoelectric FG porous beam is 

studied within the framework of Timoshenko 

beam theory and von Kármán geometric 

nonlinearity. The governing eigenvalue equation is 

derived by using Ritz method and a direct iterative 

method is used to obtain the nonlinear vibration 

frequencies of a piezoelectric FG porous beam 

subjected to three different  boundary  conditions,  

including  hinged-hinged  (H-H), clamped-

clamped  (C-C) and clamped-hinged (C-H). The 

influences of external electric voltage material 

distribution profile, porosity volume fraction, 

slenderness ratios and boundary conditions on the 

vibration behavior of the piezoelectric FG porous 

beam are discussed in detail. In order to validate 

the present study, the results of this paper are 

compared with the available results from the 

existing literature.  

Piezoelectric Functionally Graded 

Porous Beam 

An FG porous beam mounted with two 

piezoelectric layers on the top and bottom surfaces 

is shown in Fig. 1, with length L, and total 

thickness h+2ha, where h is the thickness of the 

FG porous beam and hais the thickness of the 

piezoelectric layer. In this investigation, it is 

considered that the FG beam is comprised of 

ceramic and metal, and the effective material 

properties of the FG beams such as Young’s 

modulus E, Poisson’s ratio ν, shear modulus G and 

material density (ρ) vary constantly across the 

thickness direction based on the modified power-

law model. Consider an imperfect FGM with a 

porosity volume fraction, α (α ≪1), distributed 

evenly across the metal and ceramic, the modified 

rule of mixture is expressed by [15]: 

 

Figure 1.Functionally graded porous beam with piezoelectric layers 

P = 𝑃𝑚 (𝑉𝑚 − 
𝛼

2
) + 𝑃𝑐 (𝑉𝑐 − 

𝛼

2
) (1) 

Now, the total volume fraction of the metal and 

ceramic is: 𝑉𝑚 + 𝑉𝑐 = 1, and the ceramic volume 

fractions is stated as [15]: 

𝑉𝑐  = (
𝑧

ℎ
+

1

2
)
𝑛

 (2) 

Therefore, all material properties of the imperfect 

FGM can be expressed as [15]: 

P = (𝑃𝑐 − 𝑃𝑚) (
𝑧

ℎ
+
1

2
)
𝑛

 + 𝑃𝑚−(𝑃𝑚 + 𝑃𝑐)
𝛼

2
 (3) 

Where the positive real number n (0 ≤ n < ∞) 

is the power law or volume fraction index, and z is 

the distance from the mid-plane of the FG beam. 

The Young’s modulus (E) and material density (ρ) 

equations of the imperfect FGM beam can be 

written as [15]: 

E(z) = (𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+

1

2
)
𝑛

 + 𝐸𝑚−(𝐸𝑚 +

 𝐸𝑐)
𝛼

2
 

(4) 

ρ(z) = (𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ
+
1

2
)
𝑛

 + 

𝜌𝑚−(𝜌𝑚 + 𝜌𝑐)
𝛼

2
 

(5) 

Theoretical formulation 
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This investigation is based on the Timoshenko 

beam theory with the following displacement field 

[32]: 

�̃�(𝑥. 𝑧. 𝑡) = U(𝑥. 𝑡) + zψ(𝑥. 𝑡),     

W̃(x. z. t) = W(𝑥. 𝑡) 

 

(6) 

Where U(𝑥, 𝑡)and W(𝑥, 𝑡)are the axial and the 

transverse displacement in the midplane, ψ is the 

rotation of beam cross-section and t is time. The 

Von-Kármán type nonlinear strain-displacement 

relationships are given by: 

휀𝑥 = 
∂U

∂x
 + 𝑧

∂𝜓

∂x
 + 
1

2
(
𝜕𝑊

𝜕𝑥
)
2

,  𝛾𝑥𝑧 = 
∂W

∂x
 +ψ 

 

(7) 

Where 휀𝑥 and 𝛾𝑥𝑧 are the normal and shear 

strains, respectively. 

For the piezoelectric layer electric field 

component, 𝐸𝑧 can be written as (Shen [30]): 

𝐸𝑧 =
𝑉0

ℎ𝑎
                                                       (8) 

Where  𝑉0is the applied voltage across the 

thickness. 

The constitutive relations for the functionally 

graded porous beam are given as follows (Ke et al. 

[25]): 

𝜎𝑥𝑥 = 𝑄11(𝑧) [
∂U

∂x
 +  𝑧

∂𝜓

∂x
 +  

1

2
(
𝜕𝑊

𝜕𝑥
)
2

] 

,    𝜎𝑥𝑧 = 𝑄55(𝑧) (
∂W

∂x
 + 𝜓) 

𝑄11(𝑧) =  
𝐸(𝑧) 

1− 𝜐(𝑧)2
  ,   𝑄55(𝑧) =

 
𝐸(𝑧) 

2(1+𝜐(𝑧))
 

 (9) 

And for the piezoelectric layers: 

𝜎𝑥𝑥
𝑎 = 𝑐11휀𝑥𝑥 − 𝑒31𝐸𝑧  ,  𝐷𝑧 = 𝑒31휀𝑥𝑥 + 𝜖33𝐸𝑧 

𝜎𝑥𝑧
𝑎 =

𝑐11

2(1+𝜐𝑎)
𝛾𝑥𝑧 ,   𝑄55𝑎 =

𝑘𝑠 𝑐11

2(1+𝜐𝑎)
          (10) 

Where𝜎𝑥𝑥and 𝜎𝑥𝑧  are the axial and shear 

stresses through the FG porous beam and 𝜎𝑥𝑥
𝑎  and 

𝜎𝑥𝑧
𝑎  are the axial and shear stresses through the 

piezoelectric layers.𝑄11and𝑄55arereduced elastic 

constants. Also, 𝜐(𝑧) and 𝜐𝑎are Poisson’s ratios 

for FG porous beam and piezoelectric layers, 

respectively. Here, 𝑐11,𝐷𝑧,𝑒31, and 𝜖33 are the 

elastic constant, electric displacement, 

piezoelectric constant, and the dielectric 

permittivity coefficient for the piezoelectric layers, 

respectively. 

For the FGP porous Timoshenko beam, the 

kinetic energy T and potential energy V can be 

written as: 

𝑇 =  
1

2
∫ ∫ 𝜌(𝑧) [(

∂U

∂t
 +  𝑧

∂𝜓

∂t
)
2

+
ℎ

2

−
ℎ

2

𝑙

0

(
∂W

∂t
)
2

] 𝑑𝑧𝑑𝑥+
1

2
∫ ∫ 𝜌𝑎 [(

∂U

∂t
 +  𝑧

∂𝜓

∂t
)
2

+
ℎ

2
+ℎ𝑎

ℎ

2

𝑙

0

(
∂W

∂t
)
2

] 𝑑𝑧𝑑𝑥 +
1

2
∫ ∫ 𝜌𝑎 [(

∂U

∂t
 +  𝑧

∂𝜓

∂t
)
2

+
−
ℎ

2

−
ℎ

2
−ℎ𝑎

𝑙

0

(
∂W

∂t
)
2

] 𝑑𝑧𝑑𝑥 

(11) 

𝑉 =  
1

2
∫ ∫ {𝑄11(𝑧) [(

∂U

∂x
 +  𝑧

∂𝜓

∂x
) +

ℎ

2

−
ℎ

2

𝑙

0

1

2
(
∂W

∂x
)
2

]
2

+ 𝑄55(𝑧) (
𝜕𝑊

𝜕𝑥
 + 𝜓)

2

} 𝑑𝑧𝑑𝑥 

+
1

2
∫ ∫ {[𝑐11 ((

∂U

∂x
 +  𝑧

∂𝜓

∂x
) +

1

2
(
∂W

∂x
)
2

)

2

−
ℎ

2
+ℎ𝑎

ℎ

2

𝑙

0

𝑒31𝐸𝑧 [(
∂U

∂x
 +  𝑧

∂𝜓

∂x
) +

1

2
(
∂W

∂x
)
2

]] +

𝑄55𝑎 (
𝜕𝑊

𝜕𝑥
 + 𝜓)

2

−

𝐷𝑧𝐸𝑧}𝑑𝑧𝑑𝑥+
1

2
∫ ∫ {[𝑐11 ((

∂U

∂x
 +  𝑧

∂𝜓

∂x
) +

−
ℎ

2

−
ℎ

2
−ℎ𝑎

𝑙

0

1

2
(
∂W

∂x
)
2

)

2

− 𝑒31𝐸𝑧 [(
∂U

∂x
 +  𝑧

∂𝜓

∂x
) +

1

2
(
∂W

∂x
)
2

]] + 𝑄55𝑎 (
𝜕𝑊

𝜕𝑥
 + 𝜓)

2

− 𝐷𝑧𝐸𝑧}𝑑𝑧𝑑𝑥 

(12) 

Also, the work done by the external force can 

be expressed as: 

𝑊𝑒𝑥 = ∫
𝑙

0
fp (

𝜕𝑊

𝜕𝑥
)
2

𝑑𝑥                               

(13) 

Where fpis the normal force induced by the 

external electric voltage 𝑉0, and can be written as:  

fp = ∫

ℎ

2
+ℎ𝑎

ℎ

2

𝑒31𝐸𝑧𝑑𝑧 + ∫

−
ℎ

2

−
ℎ

2
−ℎ𝑎

𝑒31𝐸𝑧𝑑𝑧 (14) 
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The stiffness components and inertia related 

terms can be stated as: 

(𝐴11, 𝐵11, 𝐷11)  

=  ∫
𝐸(𝑧)

1 − 𝜐(𝑧)2

ℎ

2

−
ℎ

2

(1, 𝑧, 𝑧2)𝑑𝑧 

𝐴55  =  ∫
𝑘𝑠𝐸(𝑧) 

2(1 + 𝜐)

ℎ

2

−
ℎ

2

𝑑𝑧 

(𝐴11𝑎 , 𝐵11𝑎 , 𝐷11𝑎)  =  ∫  𝑐11

ℎ

2
+ℎ𝑎

ℎ

2

(1, 𝑧, 𝑧2)𝑑𝑧 + 

                                        ∫  𝑐11

−
ℎ

2

−
ℎ

2
−ℎ𝑎

(1, 𝑧, 𝑧2)𝑑𝑧 

𝐴55𝑎  =  ∫
𝑘𝑠 𝑐11

2(1 + 𝜐𝑎)

ℎ

2
+ℎ𝑎

ℎ

2

𝑑𝑧

+ ∫
𝑘𝑠 𝑐11

2(1 + 𝜐𝑎)

−
ℎ

2

−
ℎ

2
−ℎ𝑎

𝑑𝑧 

(𝐼1 , 𝐼2, 𝐼3)  = ∫

ℎ/2

−ℎ/2

𝜌(𝑧)(1, 𝑧, 𝑧2)𝑑𝑧 

(𝐼1𝑎 , 𝐼2𝑎 , 𝐼3𝑎)  = ∫

ℎ

2
+ℎ𝑎

ℎ

2

𝜌𝑎(1, 𝑧, 𝑧
2)𝑑𝑧 + 

                                  ∫
−
ℎ

2

−
ℎ

2
−ℎ𝑎

𝜌𝑎(1, 𝑧, 𝑧
2)𝑑𝑧                                          

 

(15) 

 

Where 𝑘𝑠= 5/6 is the shear correction factor 

and also 𝜌(𝑧) and𝜌𝑎 are the mass densities of FGM 

and piezoelectric layer, respectively. 

For a beam that is undergoing harmonic 

motion, the maximum kinetic energy of beam 

𝑇max can be stated as: 

𝑇max  =

 
Ω2

2
{
∫ (𝐼1𝑈

2 + 2𝐼2𝑈𝜓 + 𝐼3𝜓
2 + 𝐼1𝑊

2)𝑑𝑥
𝑙

0
+

∫ (𝐼1𝑎𝑈
2 + 2𝐼2𝑎𝑈𝜓 + 𝐼3𝑎𝜓

2 + 𝐼1𝑎𝑊
2)𝑑𝑥

𝑙

0

}  

 

(16

) 

Where Ω is the nonlinear frequency of the FGP 

beam. And also the maximum potential energy 𝑉max 
of the FGP beam can be stated as [6]: 

𝑉max = 𝑉linear + 𝑉nonlinear                        (17) 

Where 𝑉linear and 𝑉nonlinear are linear and 

nonlinear potential energies according to strain-

displacement relationships and can be written as: 

𝑉linear  =  
1

2

{
 
 
 
 
 
 

 
 
 
 
 
 

∫

(

 
 𝐴11 (

𝜕𝑈

𝜕𝑥
)

2

+ 2𝐵11
𝜕𝑈

𝜕𝑥

𝜕𝜓

𝜕𝑥
+ 𝐷11 (

𝜕𝜓

𝜕𝑥
)

2

+𝐴55 (
𝜕𝑊

𝜕𝑥
+ 𝜓)

2

)

 
 
𝑑𝑥

𝑙

0

+

∫ (

 
 𝐴11𝑎 (

𝜕𝑈

𝜕𝑥
)

2

+ 2𝐵11𝑎
𝜕𝑈

𝜕𝑥

𝜕𝜓

𝜕𝑥
+ 𝐷11𝑎 (

𝜕𝜓

𝜕𝑥
)

2

+𝐴55𝑎 (
𝜕𝑊

𝜕𝑥
+ 𝜓)

2

)

 
 
𝑑𝑥 +

∫(−4𝑒31𝑉0 (
𝜕𝑈

𝜕𝑥
+
1

2
(
𝜕𝑊

𝜕𝑥
)

2

))𝑑𝑥 + ∫(−2V0𝜖33𝐸𝑧)𝑑𝑥

𝑙

0

𝑙

0

𝑙

0

}
 
 
 
 
 
 

 
 
 
 
 
 

 

 (18) 

𝑉nonlinear =
1

2

{
 
 
 
 

 
 
 
 

∫ (

 
 𝐴11

𝜕𝜓

𝜕𝑥
(
𝜕𝑊

𝜕𝑥
)
2

+ 𝐵11
𝜕𝑈

𝜕𝑥
(
𝜕𝑊

𝜕𝑥
)
2

+
1

4
𝐴11 (

𝜕𝑊

𝜕𝑥
)
4

)

 
 
𝑑𝑥

+∫

(

 
 𝐴11𝑎

𝜕𝜓

𝜕𝑥
(
𝜕𝑊

𝜕𝑥
)
2

+ 𝐵11𝑎
𝜕𝑈

𝜕𝑥
(
𝜕𝑊

𝜕𝑥
)
2

+
1

4
𝐴11𝑎 (

𝜕𝑊

𝜕𝑥
)
4

)

 
 
𝑑𝑥

𝑙

0

𝑙

0

}
 
 
 
 

 
 
 
 

 

(19) 

And external work can be stated as: 

𝑊𝑒𝑥 = ∫
𝑙

0
2𝑒31𝑉0 (

𝜕𝑊

𝜕𝑥
)
2
𝑑𝑥                         (20) 

By defining the following normalized 

variables: 
 

𝑥 =
𝑥

𝑙
 ,  (𝑈, �̂�) = (

𝑈

ℎ
,
𝑊

ℎ
)  ,  

 (𝐼1 , 𝐼2, 𝐼3, 𝐼1𝑎  , 𝐼2𝑎, 𝐼3𝑎) = 

(
𝐼1
𝐼10
 ,
𝐼2
𝐼10ℎ

,
𝐼3

𝐼10ℎ2
,
𝐼1𝑎
𝐼10
 ,
𝐼2𝑎
𝐼10ℎ

,
𝐼3𝑎
𝐼10ℎ2

) 

(�̂�11, �̂�55, �̂�11, �̂�11, �̂�11𝑎, �̂�55𝑎 , �̂�11𝑎, �̂�11𝑎) = 

(

 
 

𝐴11
𝐴110

,
𝐴55
𝐴110

,
𝐵11
𝐴110ℎ

,
𝐷11

𝐴110ℎ2
 

,
𝐴11𝑎
𝐴110

,
𝐴55𝑎
𝐴110

,
𝐵11𝑎
𝐴110ℎ

,
𝐷11𝑎
𝐴110ℎ2)

 
 

 

𝜂 =
𝑙

ℎ
 , �̂� =

𝑒31𝑉0

𝐴110
 , φ̂ =

𝜖33𝑉0𝐸𝑧

𝐴110
,  

 𝜔 = Ω𝑙√
𝐼10

𝐴110
 

 

(21) 

 

Where 𝐴110 and 𝐼10 are the values of 𝐴11 and 

𝐼1 of a homogeneous beam (n→ ∞), the 

normalized form of Eqs. (16-20) can be stated as: 

Where 

 

�̅�max =
𝑇max
μ

, �̅�linear =
𝑉linear
μ

, �̅�nonlinear (22) 
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=
𝑉nonlinear

μ
, �̅�𝑒𝑥 =

𝑊𝑒𝑥
μ
, μ =

𝐴110ℎ
2

𝑙
 

�̅�linear  =  
1

2

{
 
 
 
 
 
 

 
 
 
 
 
 

∫

(

 
 
�̂�11 (

𝜕𝑈

𝜕𝑥
)

2

+ 2�̂�11
𝜕𝑈

𝜕𝑥

𝜕𝜓

𝜕𝑥
+

�̂�11 (
𝜕𝜓

𝜕𝑥
)
2

+ �̂�55 (
𝜕�̂�

𝜕𝑥
+ 𝜂�̂�)

2

)

 
 
𝑑𝑥

1

0

+

∫
(

 
 

�̂�11𝑎 (
𝜕𝑈

𝜕𝑥
)

2

+ 2�̂�11𝑎
𝜕𝑈

𝜕𝑥

𝜕𝜓

𝜕𝑥

+�̂�11𝑎 (
𝜕𝜓

𝜕𝑥
)
2

+ �̂�55𝑎 (
𝜕�̂�

𝜕𝑥
+ 𝜂𝜓)

2

)

 
 
𝑑𝑥 +

∫−4�̂� (𝜂
𝜕𝑈

𝜕𝑥
+
1

2
(
𝜕�̂�

𝜕𝑥
)

2

)𝑑𝑥 + ∫−2𝜂2φ̂𝑑𝑥

1

0

1

0

1

0

}
 
 
 
 
 
 

 
 
 
 
 
 

 

(23) 

�̅�nonlinear =
1

2

{
 
 
 
 
 
 

 
 
 
 
 
 

∫
(

 
 
 

𝐴11

𝜂

𝜕𝜓

𝜕𝑥
(
𝜕�̂�

𝜕𝑥
)
2

+
�̂�11

𝜂

𝜕�̂�

𝜕𝑥
(
𝜕�̂�

𝜕𝑥
)
2

+
𝐴11

4𝜂2
(
𝜕�̂�

𝜕𝑥
)
4

)

 
 
 
𝑑�̂�

+∫

(

 
 
 

𝐴11𝑎

𝜂

𝜕𝜓

𝜕𝑥
(
𝜕�̂�

𝜕𝑥
)
2

+
�̂�11𝑎

𝜂

𝜕�̂�

𝜕𝑥
(
𝜕�̂�

𝜕𝑥
)
2

+
𝐴11𝑎

4𝜂2
(
𝜕�̂�

𝜕𝑥
)
4

)

 
 
 
𝑑�̂�

1

0

1

0

}
 
 
 
 
 
 

 
 
 
 
 
 

        (25) 

�̅�𝑒𝑥 = ∫  
1

0
2�̂� (

𝜕�̂�

𝜕𝑥
)
2

𝑑𝑥                                 (26) 

Where 

�̅�max =
𝑇max

μ
,  �̅�linear =

𝑉linear

μ
, 

 �̅�nonlinear =
𝑉nonlinear

μ
,  

 �̅�𝑒𝑥 =
𝑊𝑒𝑥

μ
,  μ =

𝐴110ℎ
2

𝑙
                     

 

Therefore, the energy functional for the FGP 

beam can be stated as: 

𝐿 = �̅�linear + �̅�nonlinear − �̅�max + �̅�𝑒𝑥                   (27) 

Ritz method 

In this investigation, Ritz method is used to obtain 

the governing eigenvalue equation for nonlinear 

vibration of FGP Timoshenko beams. Ritz trial 

displacement functions that satisfy  the geometric 

boundary conditions of the beam can be written as: 

�̂�(𝑥) =∑λ1𝑗�̂�
𝑗(1 − 𝑥)𝑞0

𝑁

𝑗=1

 

�̂�(𝑥) =∑λ2𝑗𝑥
𝑗(1 − 𝑥)𝑞0

𝑁

𝑗=1

 

𝜓(𝑥) = ∑ λ3𝑗𝑥
(𝑗+𝑟0)(1 − 𝑥)𝑠0𝑁

𝑗=1      

(28) 

Where N is the number of polynomials 

involved in the trial functions, λ1𝑗, λ2𝑗,  λ3𝑗are the 

unknown constant coefficients to be determined, 

and 𝑞0, 𝑟0, 𝑠0 are trail function indices for different 

boundary conditions as stated in Table 1. 

Table 1. Trial function indices for different boundary 

conditions 

BCs 𝒒𝟎 𝒓𝟎 𝒔𝟎 

H–H 1 -1 0 

C–H 1 0 0 

C–C 1 0 1 

Substituting the above trial functions into Eqs. 

(22–25); then applying Ritz method to minimize 

the total energy functional with respect to 

unknown coefficients: 

𝜕𝐿

𝜕λ𝑖𝑗
= 0 , (𝑖 = 1,2,3; 𝑗 = 1,2,… ,𝑁)     (29) 

leads to nonlinear governing equation in 

matrix form: 

([𝐹] + [𝑘𝑙] + [𝑘𝑛𝑙])[𝑑] − 𝜔
2[𝑀][𝑑] = 0      (30) 

Where 𝑀 is the mass matrix and 𝑘𝑙,𝑘𝑛𝑙 are the 

linear and nonlinear stiffness matrices, 

respectively; the unknown vector is 𝑑 =

{{λ1𝑗}
𝑇
{λ2𝑗}

𝑇
{λ3𝑗}

𝑇
} and F is the force matrix due 

to external electric voltage. 

By neglecting nonlinear stiffness matrix𝑘𝑛𝑙, 
linear frequencies of the FGP beam can be 

obtained. Also, the direct iterative method is used 

to obtain nonlinear frequencies as stated by Ke et 

al. [6] before. In order to better describe the 

method used, the flowchart of solving method is 

illustrated in Fig. 2. 
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Figure 2. The flowchart of solving method 

Numerical results 

In this investigation, functionally graded material 

of the beam is composed of Alumina (Al2O3) and 

Aluminum (Al); the material properties of which 

are: E=380 GPa, ρ=3960 kg/m3, and υ=0.3 

for Al2O3; and E=70 GPa, ρ=2702 kg/m3, and 

ν=0.3 for Al. Also,  the piezoelectric layers are 

made of PZT-4 with the thickness of ℎ𝑎 =
0.001𝑚, the material properties of which are: 

𝑐11 = 132  Gpa, 𝑒31 = −4.1 C 𝑚−2 , 𝜖33 =
7.124 × 10−9 C 𝑚−2𝑁−1, and ρ𝑎 = 7500 kg/m3 

(Ke et al. [25]). Before the vibration behaviors of 

the FGP porous Timoshenko beam are 

investigated, in order to ensure the accuracy of the 

present formulation, results obtained from the 

present study are compared with the other available 

results. The present results, linear fundamental 

frequency of intact FGM beams(𝛼 = 0 , ℎ𝑎 = 0) 
are compared with those of Ke et al.[5] for different 

boundary conditions and slenderness ratios in Table 

2. According to Table 2, the present results are in a 

good agreement with their analytical results. To 

further verify the present results, the nonlinear 

frequency ratio of 𝜔𝑛𝑙/𝜔𝑙 for intact FGM beams is 

compared to the results obtained by Kitipornchai et 

al. [5] for different boundary conditions and 

amplitudes. The contents of Table 3 indicate that the 

present results are in a good agreement with their 

results. 

Table 2. Comparison of linear fundamental frequency 

of intact FGM beams (𝜔 = Ω𝑙√
𝐼10

𝐴110
, 𝛼 = 0 , ℎ𝑎 = 0) 

  H-H C-C 

l/h n Present [31] Error% Present [31] Error% 

6 
0.2 
1 
5 

0.4598 
0.4521 
0.4598 

0.4543 
0.4472 
0.4543 

1.21 
1.09 
1.21 

0.8600 
0.8991 
0.8600 

0.8494 
0.8887 
0.8494 

1.25 
1.17 
1.25 

16 
0.2 
1 
5 

0.1800 
0.1768 
0.1800 

0.1797 
0.1764 
0.1797 

0.17 
0.23 
0.17 

0.3693 
0.3918 
0.3693 

0.3686 
0.3910 
0.3686 

0.19 
0.20 
0.19 

Table 3.Comparison of nonlinear frequency ratio 

𝜔𝑛𝑙/𝜔𝑙  for intact FGM beams (𝜔 = Ω𝑙√
𝐼10

𝐴110
,l/h=6,𝛼 =

0, ℎ𝑎 = 0) 

BC

s 
𝐧 

𝒘𝒎𝒂𝒙= 0.2 𝒘𝒎𝒂𝒙 = 0.4 

Presen

t 
[5] 

Error

% 

Presen

t 
[5] 

Error

% 

H-

H 

0.

2 

1 

5 

1.0332 

1.0629 

1.0334 

1.021

7 

1.072

7 

1.032

3 

1.13 

0.91 

0.11 
1.1179 

1.2320 

1.1967 

1.112

4 

1.231

7 

1.201

3 

0.49 

0.02 

0.38 

C-

H 

0.

2 

1 

5 

1.0331 

1.0347 

1.0332 

1.028

6 

1.032

6 

0.44 

0.20 

0.11 

1.1191 

1.1300 

1.1357 

1.110

0 

1.123

9 

0.82 

0.54 

0.27 
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1.032

1 

1.132

6 

C-C 

0.

2 

1 

5 

1.0193 

1.0175 

1.0193 

1.019

2 

1.017

4 

1.019

2 

0.01 

0.01 

0.01 
1.0746 

1.0677 

1.0746 

1.074

4 

1.067

6 

1.074

4 

0.02 

0.01 

0.02 

Now, the numerical results for the hinged-hinged 

(H-H), clamped-hinged (C-H) and clamped-clamped 

(C-C) piezoelectric functionally graded porous 

Timoshenko beams are presented. Table 4 presents the 

effect of applied voltage on 𝜔𝑛𝑙 for intact FGP beams 

in different amplitudes and volume fraction indexes. 

The results indicate that 𝜔𝑛𝑙 decreases in positive 

voltage while increases in negative voltage. These 

variations are more significant at higher values of 

volume fraction index. The maximum increase and 

decrease for 𝜔𝑛𝑙 in comparison with zero voltages are 

11.32% and 13.13% respectively, and they occur at 

𝑛 = 5 and 𝑤𝑚𝑎𝑥= 0.8. Table 5 tabulatesvariation of 

𝜔𝑛𝑙 for different porosity coefficients and voltages. It 

is found that by increasing the porosity coefficient, 

𝜔𝑛𝑙 decreases, especially at higher values of volume 

fraction index in the positive voltage. Also, the 

maximum decrease for 𝜔𝑛𝑙 in comparison with intact 

beam is 54.54% and occurs at 𝑛 = 10, 𝛼 = 0.2 

and 𝑉0=0.05. In Figs. (3-5) the effect of porosity 

coefficient on 𝜔𝑛𝑙 of C-C FGP porous beam versus 

volume fraction index (n) in different voltages is 

illustrated. 

Table 4. Effect of applied voltage on nonlinear 

frequency 𝜔𝑛𝑙 for intact FGP beams in different 

amplitudes (l/h=6, 𝛼=0 and C-C boundary condition) 

𝑽𝟎 𝐧 
 𝒘𝒎𝒂𝒙   

0.2 0.4 0.6 0.8 

+0.05 

0.2 
1 
2 
5 

1.52 
1.21 
1.05 
0.92 

1.61 
1.30 
1.14 
0.99 

1.75 
1.43 
1.26 
1.10 

1.93 
1.60 
1.41 
1.23 

0 

0.2 
1 
2 
5 

1.65 
1.39 
1.26 
1.17 

1.73 
1.46 
1.33 
1.22 

1.86 
1.58 
1.44 
1.31 

2.03 
1.73 
1.57 
1.42 

 
-0.05 

 

0.2 
1 
2 
5 

1.77 
1.54 
1.44 
1.36 

1.84 
1.61 
1.50 
1.41 

1.97 
1.71 
1.59 
1.48 

2.12 
1.85 
1.71 
1.58 

Table 5. Variation of nonlinear frequency 𝜔𝑛𝑙 of FGP 

beams for different porosity coefficients (l/h=6, 

𝑤𝑚𝑎𝑥=0.2 and C-C boundary condition) 

𝜶 𝑽𝟎 𝐧=0.2 𝐧=0.5 𝐧=1 𝐧=2 𝐧=5 𝐧=10 

0 
+0.05v 

0v 
-0.05v 

1.52 
1.65 
1.77 

1.37 
1.52 
1.66 

1.21 
1.39 
1.54 

1.05 
1.26 
1.44 

0.92 
1.17 
1.36 

0.84 
1.11 
1.32 

0.1 
+0.05v 

0v 
-0.05v 

1.52 
1.66 
1.79 

1.36 
1.52 
1.67 

1.16 
1.36 
1.54 

0.96 
1.21 
1.41 

0.79 
1.10 
1.33 

0.69 
1.04 
1.28 

 
0.2 

 

+0.05v 
0v 

-0.05v 

1.53 
1.68 
1.82 

1.34 
1.52 
1.68 

1.10 
1.33 
1.53 

0.82 
1.13 
1.37 

0.54 
0.98 
1.26 

0.38 
0.91 
1.22 

 

Figure 3. Variation of nonlinear frequency of C-C FGP 

porous beams versus volume fraction index for different 

porosity coefficients (l/h = 6, 𝑉0= 0, 𝑤𝑚𝑎𝑥= 0.6) 

 

Figure 4. Variation of nonlinear frequency of C-C FGP 

porous beams versus volume fraction index for different 

porosity coefficients (l/h = 6, 𝑉0= 0.05, 𝑤𝑚𝑎𝑥= 0.6) 
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Figure 5. Variation of nonlinear frequency of C-C FGP 

porous beams versus volume fraction index for different 

porosity coefficients (l/h = 6, 𝑉0= -0.05,𝑤𝑚𝑎𝑥= 0.6) 

Results indicate that with an increased 

porosity coefficient, 𝜔𝑛𝑙 decreases and this 

phenomenon is more significant in a positive 

voltage. In Figs. (6-8) the effect of electric voltage 

on 𝜔𝑛𝑙 of C-C FGP porous beam versus maximum 

amplitude 𝑤𝑚𝑎𝑥 in different slender ratios is 

illustrated. As expected, the beam with a higher 

amplitude has a remarkably higher frequency, 

especially in the negative voltage and with a larger 

slender ratio.  

 

Figure 6. Variation of nonlinear frequency of FGP 

porous beams versus maximum amplitude for different 

voltages (l/h = 6, 𝛼 = 0.1, 𝑛 = 0.5) 

 

Figure 7. Variation of nonlinear frequency of FGP 

porous beams versus maximum amplitude for different 

voltages (l/h = 8,𝛼 = 0.1, n= 0.5) 

 

Figure 8. Variation of nonlinear frequency of FGP 

porous beams versus maximum amplitude for different 

voltages (l/h = 10,𝛼 = 0.1, n= 0.5) 

The effect of different boundary conditions on 

𝜔𝑛𝑙 versus volume fraction index (n) for different 

porosity coefficients is presented in Figs. (9-11). It 

is found that an increase in the volume fraction 

index has a significant effect on 𝜔𝑛𝑙for higher 

porosity coefficients. The variation of 𝜔𝑛𝑙 of FGP 

porous beam versus applied electric voltage for 

various boundary conditions is illustrated in Fig. 

12. This figure shows that the effect of voltage is 

more significant for hinged-hinged boundary 

condition. 
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Figure 9. Variation of nonlinear frequency of FGP 

porous beams versus volume fraction index for 

different boundary conditions (𝛼 = 0, l/h = 6, 𝑉0= 

0.02, 𝑤𝑚𝑎𝑥= 0.1) 

 

Figure 10. Variation of nonlinear frequency of FGP 

porous beams versus volume fraction index for 

different boundary conditions (𝛼 = 0.1, l/h = 6, 𝑉0= 

0.02, 𝑤𝑚𝑎𝑥= 0.1) 

 

Figure 11. Variation of nonlinear frequency of FGP 

porous beams versus volume fraction index for 

different boundary conditions (𝛼 = 0.2, l/h = 6, 𝑉0= 

0.02, 𝑤𝑚𝑎𝑥= 0.1) 

 

Figure 12. Variation of nonlinear frequency of FGP 

porous beams versus voltage for different boundary 

conditions (l/h = 6, 𝛼 = 0.1, 𝑛 = 0.5, 𝑤𝑚𝑎𝑥= 0.2) 

Conclusions 

In this paper, the nonlinear vibration analysis of 

functionally graded piezoelectric (FGP) beam with 

porous materials is conducted within the 

framework of Timoshenko beam theory and von 

Kármán geometric nonlinearity. The modified rule 

of mixture covering porosity phases is employed 

to describe and approximate material properties of 

the imperfect FGM beams. In this investigation, 

Ritz and direct iterative methods are used to obtain 

the nonlinear vibration frequencies of a 

piezoelectric FG porous beam subjected to three 

different  boundary  conditions of hinged-hinged 

(H-H), clamped-clamped (C-C) and clamped-

hinged (C-H). The good agreement between the 

results of this article and those available in the 

literature verified the presented approach. The 

influences of several parameters such as external 

electric voltage, material distribution profile, 

porosity volume fraction, slenderness ratios and 

boundary conditions on the nonlinear vibration 

characteristics of the FGP porous beams are 

studied and discussed in detail. The numerical 

results indicate that porosity has a considerable 

effect on the vibrational behavior of the FGP 

beams and it is more significant when the electric 

voltage is applied. The maximum decrease for 𝜔𝑛𝑙 
is obtained as 54.54% in comparison with intact 

beam. Also, the effect of the applied voltage is 

more at higher amplitudes and the maximum 

increase and decrease for 𝜔𝑛𝑙 in comparison with 
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zero voltages are obtained 11.32% and 13.13%, 

respectively, at 𝑛 = 5 and 𝑤𝑚𝑎𝑥= 0.8. 
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