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Introduction
Attitude control of flight vehicles has been a 
momentousissue such that a lot of publication
shave been presented in this areaduring the past 
decades. The plenitude of attitude control 
outcomes can be divided almost into two 
categories: first, the methods which control the 
attitude by using the physical attitude parameters 
such as Euler angles which sufferfrom singularity 
that impedes large orientation maneuvers [
second, the methods which a
quaternions that describe an Euler axis and the 
body-fixed frame rotation with respect to that axis. 
In these methods, singularities obstacle that were 
discovered in Euler angles approaches are 
completely removed [3-7].A large number of 
optimal and nonlinear control approaches are 
proposed to control the quaternion attitude based 
on minimization of some performance objectives 
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Conventional quaternion based methods have been extensively employed for 
spacecraft attitude control where the aerodynamic forces can be neglected. In the 

e of aerodynamic forces, the flight attitude control is more complicated 
aerodynamic moments and inertia uncertainties. In this paper, a robust nero
quaternion controller based on back-stepping technique for vehicle with aerodynamic 

is proposed. The presented control lawconsists of a neural network based 
adaptive part and an additional term which ensures the robustness of the system. 
Actually, the first term is designed to approximate and cancel out the matc

the second term is used  toensure the robustness of system against 
approximation error of the neural network.The Lyapunov direct method is applied to 
derive the learning laws for the neural network weights and adaptive gai

 boundedness of the error signals is guaranteed based on 
stability criterion. The benefit of the presented method is 

through simulation of an aerodynamic control vehicle. 
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Introduction1  
Attitude control of flight vehicles has been a 
momentousissue such that a lot of publication 
shave been presented in this areaduring the past 
decades. The plenitude of attitude control 

be divided almost into two 
categories: first, the methods which control the 
attitude by using the physical attitude parameters 
such as Euler angles which sufferfrom singularity 

large orientation maneuvers [1,2] and 
second, the methods which are based on 

Euler axis and the 
fixed frame rotation with respect to that axis. 
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and nonlinear control approaches are 
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like minimal time or control energy [
nonlinear proportional -derivative control method 
is presented in [9], which g
dynamic in finite time. A robust nonlinear control 
based on H∞ approach is proposed for spacecraft 
attitude maneuver in [10], which is designed such 
that  L2 gain from the exogenous disturbance to the 
performance measure in the close
becomes less than a desired scalar.A quaternion 
feedback control based on back stepping approach 
is presented in [11] to stabilize a micro satellite 
attitude. This proposed controller stabilizes the 
equilibrium points in the closed
uniformly asymptotically. 

In practical applications, 
uncertainties which should be considered in 
system dynamic when the controller is designed, 
for instance, in fuel consumption, outgassing etc. 
One possible approach to handle the model 
uncertainty is adaptive control. In this area, the adaptive output feedback 
attitude control of a spacecraft based on using 

ontrol of 
ehicles 

e Ashtar University of Technology  
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the Chebyshev neural networks isinvestigated 
in presence of dynamic uncertaintiesin [12]. 

In [13], an adaptive sliding tracking control 
algorithm is extended to track a desired time-
varying attitude of a satellite in the presence 
ofexternal disturbances and inertia uncertainties. 
In this work, reaction wheels are used as 
actuators and are modelled in addition to the 
spacecraft dynamics. The attitude control of a 
rigid satellite withexternal disturbance and 
actuator failure uncertainties is presented using 
adaptive control method in [14]. The parameters 
of external disturbance and failure uncertainties 
are estimated directly by adaptive rules. Also, 
the desired stability and output tracking 
properties of control scheme are analyzed. 

In the previously mentioned works, there is a 
common point where the relevance between 
torque and deflection angles and atmospheric 
moment coefficients are neglected.For instance, 
when the attitude control for the tactical projectile 
operated in the low atmosphere is under study, 
these relationships become important and cannot 
be omitted.However, the researches in this area 
aresorely found [15-16]. 

In [15], a non-adaptive robust control scheme 
based on the quaternion feedback for attitude 
control of aprojectile which employs thrust vector 
controlis proposed. The control law consists of 
two parts: the nominal feedback part and an 
additional term to guarantee the robustness 
against the plantuncertainties. Quaternion attitude 
control of a projectile model, which is nonlinear 
inaerodynamics with atmospheric moment and 
inertia coefficients uncertainties together with 
bounded disturbances, is presented in [16]. In this 
work, a free chattering adaptive sliding mode 
controlleris designed based on back stepping 
technique to stabilize the state variables of the 
closed loop system to a small region of there 
ference states. 

In this paper, a relatively simple neural network 
based adaptive attitude control of aerodynamic 
control projectile is considered. In contrary to [3-
15], here the quaternion dynamic model which is 
nonlinear in aerodynamics with inertial and 
aerodynamic coefficients uncertainties is 
considered. Also, in contrary to [16] which assumed 
that the uncertainties satisfy a bound which is linear 
with respect to a portion of states norm, here the 
neuralnetwork which was demonstrated as a 
universal smooth function approximator, is applied 

to cancel out the unknown unstructured uncertainty 
adaptively [17]. 

In this paper, first the back-steppingapproach 
is applied to construct the baseline controller, and 
thenthe uncertainties are cancelled out using an 
additive nero-adaptive control term.In addition, 
an augmented term as a robustifying control part, 
is applied in the control law to eliminate the 
neural network approximation error.   

The paperis organized as follows: section 2 
describes the dynamic model of system and the 
problem of control associated with this system is 
also clarified. The procedure ofthe control 
designwhich is based on back-stepping technique, 
and approximation properties of the NN is 
addressed in section 3. Section 4 provides 
analytical results on stability proof of the closed-
loop system. Simulation results are presented in 
section 5. Conclusions are also given in section 6.   
Model Description and Problem 
Statement  
Consider the Euler dynamic equations of 
rotational motion of a vehicle in the body frame 
as [3]    Jω ω Jω M                                        (1) 
Where , , T

x y z     ω is angular rate vector 
of roll, yaw and pitch channel,

, , T
x y zM M M   M is the input torque vector 

containing roll, yaw and pitch torques, 
respectively and J  represent the inertia matrix. 
Here, it is assumed that the aerodynamic 
forces cannot beneglected; so, the input 
moments includingaerodynamic control 
moments of aerodynamic surfaces are 
considered as follows: 

      (2)   
2

2

2

x lp x l a

y m mr y n r

z m mq z m e

dM qSd c cV
dM qSd c c cV
dM qSd c c cV



 

 

 
  
  

                     

  

Where ,m mc c  are pitch and yaw moment 
coefficients, respectively, , ,lp mr mqc c c  are roll, 
yaw and pitch damping coefficients and 
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, ,l n mc c c    are deflects moment coefficients 
of roll, yaw and pitch, respectively. Also,

, , , , ,q S d V    represent dynamic pressure, 
reference area and diameter of 
vehicle,amplitude of speed and pitch and yaw 
attack angles, respectively and , ,a r e    
arerespectivelyaileron,rudder and elevator 
commands. Substituting (2) into (1) yields,   ( )t  ω α δJω ω Jω + A ω + A η + A δ d      (3) 
Where  

2 0 0
0 02 0 0
lp

mr
mq

cqsd cV c

      
ωA

 0 0 0
0 0
0 0

m
m

qsd c
c

 


      
A

   0 0
0 0
0 0
lp

n
m

c
qsd c

c




      
δA  

   (4) 

and  T  η ,  Ta r e  δ , and 
( )td is bounded external disturbance vector. 

Let the parameters of system , ,ω αJ A A  and δA  
have some additive uncertaintiesof , ,  ωJ A
 αA and  δA , respectively. Considering 
these uncertainties, the dynamic equation (3) 
can be rewritten as:     ω α δJω = ω Jω + A ω + A η+ A δ + Δ ω,η,δ   (5) 
Where  

 
 

  ( )t

   
   
   

    
ω ω ω

α α α

δ δ δ

Δ ω, η,δ = J JΩJω + J JΩ Jω + Ω Jω +
A + J JA + J J A ω

+ A + J JA + J J A η +
A + J JA + J J A δ d

           (6) 

On the other hand, under some mild 
conditions, kinematic equations are defined in 
terms of the aerodynamicangles , ,    as 
follows [18]:  η = R η ω                                                 (7) 
Where  
  cos cos sin cos sin

sin cos 0
cos tan sin tan 1

    
 

   
         

R η          (8) 

According to Euler’s eigenaxis rotation 
theorem, the attitude of rigid-body can be 
determined by a rotation angle  about an 
eigenaxis. Based on such angle and axis

1 2 3{ , , }Te e ee , the well-known Hamilton 
rotation quaternion is defined as [19]: 
 4, sin , cos2 2q      q e                            (9) 

Where 4q  and  1 2 3, , Tq q q denote the scalar 
part and vector part of the quaternion, 
respectively, which satisfy 2

4 1T q q q .  
The quaternion kinematic differential 

equation describing the error between a desired 
spacecraft body-fixed frame Bdand the spacecraft 
body-fixed frame B become [20]: 

  ,4

,4

1 1
2 2

1
2

d d d

d d

B B BI B B B B BI

T
B B BI B B

q
q

     

q ω q ω
ω q





          (10) 

With dBI B Bω ω  considering a rate 
stabilization maneuverwhere dB I ω 0 . For 
simplicity, the error quaternion dB Bq will be 
represented by  1 2 3, , Tq q qq  and BIω will be 
representedby , , T

x y z     ω for the remainder 
of the paper. So the error kinematic differential 
equation of the quaternion can be rewritten as: 

  4

4

1 1
2 2

1
2

T

q
q

     

q ω q ω
ω q





                              (11) 

Now, consideringthe entire system including 
(5),(7) and (11) in the presence of matched 
uncertainties  Δ ω, η,δ ,the goal is to design a 
suitable combined control law which stabilizes 
the quaternions tracking error.  
Combined controller design 
For the aforementioned system equations, 
back-stepping control technique will be 
applied in this section to design attitude 
controller. First, lets define new state 
variables as 1 4[ ,1 , ]T T Tq x η q and 2 x ω , 
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then, the transformed equations of the system 
including Eqs. (5),(7) and (11) can be 
rewritten as: 

   
 

 
   

1 4 4 4 4
()

4 1 2
4 3 3

2 2 2 2 2 1
1

1[ , sgn , ] , sgn ,2

1 sgn ( )2

TT TT T T T T T T

T

q q q q

q
q 

                       



  





Q

ω α δ

x η q ω R η f ω q ω q ω

R η
q ω Q x x

q I
Jx = x Jx + A x + A η+ A δ +Δ x ,x ,δ
y Cx

 

   
 

 
   

1 4 4 4 4
()

4 1 2
4 3 3

2 2 2 2 2 1
1

1[ , sgn , ] , sgn ,2

1 sgn ( )2

TT TT T T T T T T

T

q q q q

q
q 

                       



  





Q

ω α δ

x η q ω R η f ω q ω q ω

R η
q ω Q x x

q I
Jx = x Jx +A x +A η+A δ+Δ x ,x ,δ
y Cx

 

12(a) 

12(b) 

Where  4 3 4 4, C 0 I . According to back 
stepping approach, first 2x is considered as an 
input for subsystem (12-a), and a virtual 
control signal is designed such thatit 
guarantees the input to state stability of this 
subsystem;then, the stability of overall 
system will be proven. So lets define the new 
state vector as: 

 1 2 3
2 2 2 2 2 1:Tz z z    z x ν x              (13) 

where  1ν x is the virtual control signal 
vector, which is designedas: 
 1 1 1 1( )T Tk ν x Q x C Cx                                 (14) 

Where 1k is positive constant. Lets select a 
Lyapunov candidateas 1 12 TV  y y , by 
differentiating 1V  and substituting (11) - (13) 
yields: 

 
1 1 1 2 1 1 1 1 1 1 1 2

2
1 1 1 1 1 2

( ) ( ) ( ) ( )
( ) ( )

T T T T T T T T T

T T T T
V k

k
    

  
 y y x C CQ x x x C CQ x Q x C Cx x C CQ x z

Q x C Cx x C CQ x z
(15) 

So if 2 0,z then 2
1 1 1 1( )T TV k  Q x C Cx , by 

integrating both side of later inequality,    1 1
1 10 1

0( )T T V V
k

   Q x C Cx                    (16) 
Since the right hand side of (16), is bounded, 
then, according to Barbalet’s lemma: 

1 1lim ( ) 0T T
t Q x C Cx                              (17) On the other hand, from definition of Q we 

have: 
 

   4 3
1 1 4 4 3 4 4 4 4

4 4
4 3 3

1 1( ) sgn , 1 sgn2 2

T

T T Tq q q
q


 




                     

R η η0Q x C Cx q 0 I qIq I q

(18) 

and consequently, from (17) and (18) lim 0.t q 
Now,the following control signal is proposed 
which stabilizestheoverallsystem, including

1x and 2x   2 2 2 21
1

T T
ad R

 

            

2x Jx A x A η k zδ A Q C Cx Jν u u    (19) 
With  2 21 22 23, ,diag k k kk where 2 1,2,3ik i   
are positive constants, also, ,ad Ru u are NN 
adaptive and robustifyingcontrolvectorterms, 
respectively, which are designed  to cancel 
out the vector of matched uncertainties 2 1Δ x , x ,δ  and are illustrated in the next 
section. 
Neuro adaptive control design The vector function 
       2 1 1 2 1 2 2 1 3 2 1, , T     Δ x ,x ,δ x ,x ,δ x ,x ,δ x ,x ,δ  is 

unknown and should be estimated and 
eliminated to design a suitable stabilizing control 
law. In fact, 1,2,3i i   are estimated by 
applying appropriate multi layer perceptron 
(MLP) to produce the appropriate adaptive part 

1,2,3adiu i   of the control law in (19) for 
eliminating the influence of the unknown signals

1,2,3i i   on the system performance. It is 
shown that multilayer perceptrons are universal 
approximators which can be applied to estimate 
any sufficiently smooth function on an 
appropriate compact set with any desired degree 
of accuracy. So,a set of ideal weights *

iw and *
iV  

on the compact set ζ can be foundsuch 
that[21]. 

  * *
2 1 ( )T T

i i i i    ζx ,x ,δ w σ V ζ ζ     (20) 
where  T2 1=ζ x ,x ,δ , * N m

i R V  and * m
i Rw  

are synaptic weights connecting the input 
layer to the hidden layer and the hidden layer 
to the output layer, respectively; 1

T
m σ   is a vector of nonlinear 
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activation functions of neurons in the hidden 
layer, and i Mi  where Mi depends on the 
network architecture. The ideal constant 
weights *

iw  and *
iV are defined as: 

     * *, arg min sup
i i

T T
i i i i i,  

    w ζw V ζ
w V w σ V ζ      (21) 

where   F,i i i i i i, M M   w w Vw V w V , 
in which iMw  and iMV  are positive numbers, 
and F  denotes the Frobenius norm. Since 

i  can be modeled by using NN, so a MLP 
NN is employed to construct the adaptive 
control part as: 

 T T
adi i iu  w σ V ζ                                       (22) 

Nevertheless, in an adaptive closed loop 
operation,  the neural network weights may be 
different from ideal weights mentioned in (21). 
Therefore, an approximation error should be 
formulated to derive appropriate training 
lawssothat they reduce this error and achieve 
acceptable closed loop performance. Defining  : T

i iσ σ V ζ , it is shown in [21, 22] that: 
   tr ( )T T T T

i adi i i i i i i i iu t     w σ σ V ζ V ζw σ        (23) 
Where * *,i i i i i i= = w w w V V V  and 

 1 1( ), , ( )i i m imdiag    σ    denotes the 
derivative of vector σ  with respect to the 
input signals , 1, ,ij j m   , where 

1[ , , ]T T
i im i  V ζ and mis the number of 

neurons in the hidden layer also: 
F( ) 2i Mi i i i

i i

t mM M
M

  


  






w w

V

V ζ
w ζ     (24) 

where is upper bound of σ . 
The adaptation rules for the weights of the 

neuro-adaptive control part adiu , defined in (22), 
is proposed as:  2

2

Ti
i i i i

i T
i i i

z
z




   
w

V

w σ σ V ζ
V ζw σ
 

                            
 (25)   

where V  and  w  are learning coefficients. 

Adaptive robustifying term The neural network based adaptive control law 
adiu with adaptation rules (25) cannot remove 

the uncertainties 1,2,3i i  completely and 
the approximation errors ( ) 1,2,3i t i 
defined in (23), exist yet. So, to eliminate this 
error an additional control term Riu  is 
proposed to augment   
thecontrol law.  Using (24), it is shown that 
the upper bound of this error can be derived 
asfollows[21]:      

* *

* *
FF

F
* *

F

2
2
2

1 1

i Mi i i i i i i i F

Mi i i i i i i i i i

Mi i i i i i i i i i

i i i i i

mM M M
mM M M M M
mM M M M M M M

   
    
    
  

     
     
     
    

w V w

w V V w w

w V w V w V w

w w ζ V V ζ
w ζ w ζ V ζ V ζ

ζ w ζ ζ V ζ
ζ V w

                                                       (26) where  * max 2 , , ,2i Mi i i i i imM M M M M      w w V V w

 and  F1 1i i i   ζ V w . Hence, ( )i t
is bounded with the multiplication of 
unknown gain *

i  and the known function i . 
To cancel out the approximation error ( )i t , 
the augmented control term is introduced as: 

2tanh i
Ri i i R

zu                                       (27) 
with the following adaptation rule: 

2
i

i i z                                                 (28) 
Where   is the learning coefficient and i  is 
estimation of the unknown parameter *

i . 
Here, to remove the chattering from control 
signal, the continuous function tanh( ) with 
smoothing parameter R is appliedinstead of 
the conventional discontinuous function 
sign( ) . As mentioned before, the universal 
approximation property of NNs ensures the 
boundedness of the approximation error. 
Therefore, it is always possible to find 
positive constants 1,2,3M iU i  such that [21]: 

Ri M iu U                                                    (29)    
Stability analysis This section presents closed loop stability 
analysis of the proposed control law. Using 
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an extension of the Lyapunov theory, it is 
shown in the following theorem thatthe state 
trajectories of system (12)are ultimately 
bounded.      
Theorem 1: Regarding to the combined 
adaptive controller (19), the neuro-adaptive 
control part adu in (22) with the adaptation 
rules (25) and the robustifying augmented 
control term Ru in (27), then, the error signals 
in the closed-loop system are ultimately 
bounded. 
Proof:Assume that J  is positive definite 
matrix, the Lyapunovcandidateis defined as 
follows: 

3 3 32 22
1 2 2

1 1 1
1 1 1 1
2 2 2 2

T
ii i Fi i iV

V V


    
      

w
z Jz w V 

 (30) 
     
Notingthat *w  and *V  are the ideal constant 
weights of neural network, defined in (21), 
then, from (23), = w w   and = V V  . 
Differentiating (30) and substituting from 
(13) yields: 

   3 3 3
1 2 2

1 1 1
1 1 1trT T T

i i i i i i
i i iw V

V V


    
       z Jx Jν w w V V       

(31)

 

Using (12) gives:     
 

1 2 2 2 2 2 1
3 3 3

1 1 1
1 1 1tr

T

T T
i i i i i i

i i iw V

V V


    

   
    

ω α δz x Jx + A x + A η + A δ + Δ x , x ,δ Jν
w w V V

  

     
applying the combined control law (19) 
results: 

    3 3 3
1 2 2 2 2 1 2 2 1

1 1 1
1 1 1trT T T T T T T

R NN i i i i i i
i i iw V

V V


    
          k z z z Q C Cx z Δ x ,x ,δ u u w w V V      

Substituting 1V  from (15) gives: 
  

 
1 1 1 1 1 2 2 2 2 2 1

3 3 3

1 1 1

( ) ( )
1 1 1tr

T T T T T T
R ad

T T
i i i i i i

i i iw V

V k


    

     
    

x C CQ x Q x C Cx k z z z Δ x , x ,δ u u
w w V V



    

  (32) Which can be rewritten as: 
   

 
3 32 2

1 1 1 min 2 2 2 2
1 1
3 3 3

1 1 1

( )
1 1 1tr

T T i i
i adi Ri

i i
T T
i i i i i i

i i iw V

V k z u z u




  

 

  

      
  
 
  

Q x C Cx k z

w w V V



    

(33) 
Substituting i NNiu   from (23), gives: 

   
 

32 2
1 1 1 min 2 2 2

1
3 3 3

2 2
1 1 1

1( )
1 1tr

T TT T i
i i i i i

i w

T Ti i
i i i i Ri i i

i i iV

V k z

z z u


 
   



  

        
           


  

Q x C Cx k z w σ σ V ζ w

V ζw σ V

   

   

(34) Applying the adaptation rules (25), yields: 

 
 

2 2
1 1 1 min 2 2
3 3

2
1 1

( )
1      

T T

i
i Ri i i

i i

V k
z u




  

  
   



 

Q x C Cx k z
                

(35) 

Now, from the bound(26),the robustifying 
control term (27) and considering the fact that 

tanh( / )x xx x x k     with 0.2785k  , 
then,the time derivative of V  satisfies the 
following inequality: 

 

 
 

2 2
1 1 1 min 2 2
3 3* 22 2
1 1

2 2
1 1 1 min 2 2
3 *

2
1

( )
1     tanh

( )
1      

T T

ii i
i i i i iRi i

T T

i
i i i i i R

i

V k
zz z

k
z k U






     


    

 



  
        

  
       

 





 

 

Q x C Cx k z

Q x C Cx k z

 
(36) 

Where 3

1
M i

i
U U


 . Applying the adaptation rule 

(28) gives: 

 
2

1 1 1
2

min 2 2

( )
     

T T

R

V k
k U 

 
 

 Q x C Cx
k z

                              (37) 

Now, letsdefine the following compact set 
around the origin: 

 
 
2

1 2 1 1
2

2
1 min 2

, ( )
:  max( , )

T T

Rk U
k



        

x z Q x C Cx
z k

                     (38) 

Inequality (37) indicates that when the error 
signals are outside the compact set  , then,

0V  [23].  Hence, based on the extension of the 
standard Lyapunov theorem, the error trajectories

2 andz 1 1( )T TQ x C Cx  and consequently, 1x  are 
ultimately bounded, where the radius of bound 
can be reduced by increasing the gains k1and  min 2 k . Also, bysetting 0R  , which means 
substituting  tanh  with ( )sign  in (27), the 
result would be: 

 2 2
1 1 1 min 2 2( )T TV k   Q x C Cx k z             (39) 

Integrating of both sides of later inequality gives:        2 2
1 1 20 1 min 2

0( ) max ,
T T V V

k 
    Q x C Cx z k  (40) 

Since V  is a positive function and 0V  ;so, the 
right hand side of (40) is bounded, therefore, 
according to Barbalet’s lemma, 2

1 1 2lim ( ) 0T T
t  Q x C Cx z  and  consequently,
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1 1lim ( ) 0T T
t Q x C Cx  and  2

2lim 0
t

z
 

or 
equivalently from (18), lim 0t q  and 

2lim 0
t

z . In addition, from (13) and (14), it 
can be concluded that 2lim 0t x , so the 
asymptotic stability of the overall system is 
guaranteed. 
 Remark: Attitude controller design is usually 
performed in some fixed operation points of 
nominal translational trajectory. Here, the 
angular motion dynamic (eq. 3) depends on 
velocity; V and altitude; h (through

  21
2q h V ) of operation points. So, in 

each point, the nominal fixed values * *,h V
are assigned to these parameters. Since the 
adaptive controller (19) senses the variations 
of operation points through matrixes   , , ,V h V hω αA A  and  ,V hδA , the 
acceptable performance of closed loop 
system is guaranteed as it is proved in 
theorem 1. Moreover, since the real motion 
trajectory may be a little different from the 
nominal one, this difference is considered 
as part of model uncertainties in controller 
design through , ωA  αA  and  δA , which 
are compensated using the neural network 
part of control law ; uad(eqs. 19 and 22).  
Simulation results 
The simulations are performed using the 
following parameters: 

0.2, 0.5, 0.5
0.2, 0.5, 0.5,
0.1, 0.1

l n m
lp mr mq
m m

c c c
c c c
c c

  

 

               
and

 40, 400, 400diagJ  
Three neural networksof MLP type are 

applied to construct 1,2,3adiu i  where each one 
has 5 neurons in one hidden layer. Also, the 
tangent hyperbolic activation function is applied 
in hidden layer neurons. The weights are 
initialized randomly with small numbers, the 

learning coefficients are selected as 
3000  w V and the controller gains as

1 2k  , 2 (300,3000,3000)diagk . Moreover, 
the following relations are applied to convert the 
Euler angles reference command to quaternion 
command [24]. 

1

2

3

sin cos cos2 2 2
       cos sin sin2 2 2

cos cos sin2 2 2
       sin sin cos2 2 2

cos sin cos2 2

c c cc

c c c

c c cc

c c c

c cc

q

q

q

  
  
  
  
  

                
                
                
                
          

4

2
       sin cos sin2 2 2

cos cos cos2 2 2
       sin sin sin2 2 2

c

c c c

c c cc

c c c

q

  
  
  

   
                
                
                  Simulation results are shown in Fig.s1-7. 

First, performance of the closed-loop system 
is evaluated without parameters uncertainties, 
namely   0 1,2.3i i    . In thiscase, the 
controller is applied without adaptive parts 

adiu and Riu . AsFig.1 shows, the quaternions 
track the desired reference commands, also, 
the corresponding Euler angles which are 
depicted in Fig. 2 track the desiered trajectory 
asymptotically. Fig. 3, shows that the other 
states of system such as angular rates and 
deflection commandsremain bounded.To 
evaluate the performance and robustness of 
system in the presence of uncertainties, the 
simulation is repeated in presence of the 
following parameters uncertainties, 

10 50 70
50 60 60 , 0.3
70 60 50

                               , 0.3 , 0.3

        
    

ω ω

α α δ δ

J A A

A A A A

 

As Fig.4 shows, if the adaptive parts of 
control signals are neglected, the quaternions 
cannot track the desired reference signals and 
consequently, the Euler angels which are plotted 
in Fig. 5 have a large tracking error,but when the 
adaptive terms are added to control signal,as 
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depicted in Fig. 6, the matched uncertainties are 
cancelled out adaptively and as depicted in Fig.s 4 and 
5, an acceptable tracking performance is 
achieved.Moreover, according to stability theorem, all 
error signals including neural network weights error 
should remain bounded. As it is shown in Fig. 7, the 
NN’s weightsare bounded and since the ideal weights 
in (21) are bounded so, the weights errorsremain 
bounded. In continuance, a sinusoidal external 
disturbance as defined in eq. (3) is applied to the 
closed loop system, as Fig. 8, shows in the absence of  
adaptive parts of control law, the disturbance effects 
on tracking performance and increases the tracking 
errors.The tracking errors are improved as soon as 
these adaptive parts are added to the control law. 

 

 
Figure 1. Quaternion trackingin the absence of 

uncertainties, solid line: reference signal, dashed line: 
quaternion 

 
Figure 2. Corresponding Euler angles trackingin the 
absence of uncertainties, solid line: reference signal, 

dashed line: Euler angle 

 
Figure 3. States trajectory in the absence of 

uncertainties. 

 
Figure 4. Quaternion tracking in the presence of  

uncertainty, solid line: reference, dotted line: control 
without adaptive parts, dashed-dotted line: control 

with adaptive parts. 

 
Figure 5. Corresponding Euler angle tracking in the 
presence of  uncertainty, solid line: reference, dotted 
line: control without adaptive parts, dashed-dotted 

line: control with adaptive parts. 

0 20 40 60 80 100 120-0.5
0

0.5

q 1

0 20 40 60 80 100 120-0.4
-0.2

0

q 2

0 20 40 60 80 100 120-0.5
0

0.5

q 3

0 20 40 60 80 100 120
0.8
0.9

1

q 4

t(sec.)

0 20 40 60 80 100 120-50

0

50

(d
eg)

0 20 40 60 80 100 120-50

0

50

(d
eg)

0 20 40 60 80 100 120-60
-40
-20

0

(d
eg)

t(sec.)

0 20 40 60 80 100 120
-0.2

0
0.2
0.4

 

 
x
y
z

0 20 40 60 80 100 120-1
0
1
2

 

 




0 20 40 60 80 100 120-0.5

0

0.5

t(sec.)
 

 
a
r
e

0 20 40 60 80 100 120-1
0
1

q 1

0 20 40 60 80 100 120-1
-0.5

0

q 2

0 20 40 60 80 100 120-0.5
0

0.5

q 3

0 20 40 60 80 100 120
0.7
0.8
0.9

q 4

t(sec.)

0 20 40 60 80 100 120-100
-50

0
50

(d
eg)

0 20 40 60 80 100 120-50

0

50

(d
eg)

0 20 40 60 80 100 120-100

-50

0

(d
eg)

t(sec.)



/ 31  Journal of  Aerospace Science and Technology 
Vol. 11/ No. 2/ Summer - Fall  2017 

  
 
 Adaptive Quaternion Attitude Control of Aerodynamic Flight …  

 
Figure 6. Uncertainty approximation with NN 

adaptive part of control signal. 

 
Figure 7. Norm of adaptive weights. 

 
Figure 8. Quaternion tracking in the presence of 

externaldisturbance , solid line: reference, dotted line: 
control with adaptive parts, dashed-dotted line: control 

without adaptive parts. 

CONCLUSIONS 
A robust nero-adaptive quaternion controller 
based on back-stepping techniquehas been 
proposed for areodynamic control flight 
vehicleswhich are nonlinear in aerodynamics 
with  inertia uncertainties, atmospheric moment 
uncertainties and bounded disturbances. The 
proposed controller includes a neuro-adaptive 
and an adaptive robustifying parts. The neural 
network is designed to approximate the 
matched uncertainties of the system and the 
adaptive robustifying control term applied to 
guarantee the robustness of system against 
approximation error of the neural network. The 
adaptation laws for the neural network weights 
and adaptive gain are obtained using the 
Lyapunov’s direct method. The ultimate 
boundedness of the error signals are 
analytically shown using Lyapunov’s method. 
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