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shells with numerical, analytical, and laboratory 
methods, and then, compared the results of these 
methods with each other. Ebrahimi and 
Najafizadeh [10] investigated the free vibration 
analysis of the FGM cylindrical shell in the two-
dimensional state, in 2014. The equations of 
motion were derived according to the LoveLaw 
and the classical theory. In this study, a 
comparison analysis of the conventional results 
available in the literature and the two-
dimensional mode results wasconducted. In 2014, 
Jin et al. [11] investigated the analysis of three-
dimensional free vibration of thick cylindrical 
shell based on elastic foundation. In their study, 
the Riley-Ritz method was used to solve the 
equations.In this paper, the study of vibrations of 
composite annular cylindrical shells with fixed 
rotary speedwhile positioned on the elastic 
foundation was conductedusing analytical and 
numerical methods. The governing equations 
were derived by means of Donnel theory. Then, 
the effect of various parameters on the frequency 
of the structure was discussed. Later, the results 
of analytical and numerical methods were 
compared with each other. 

Governing equations 
In Fig. 1, the geometry and coordinate system of a 
cylindrical shellwith length l, mean radius R, and 
thickness h are depicted. The origin o is located 
atthe top end and inthe middle plane of the shell. x, 
y, and z are in the axial, circumferential, and outer 
normal directions, respectively. 

 
Figure 1. Geometry and coordinate system of a 

cylindrical shell 

Components of the displacement vector of 
the shell are stated herein, based on the classical 
model and Donnell theory, as follows[12]: 
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In equation (1), the components of 

displacement inside the plane, along x and y 
directions are shown by the functions u(x, y) and 
v(x, y), respectively, and also,w(x, y) is the radial 
deformation. The parameter z at any point of the 
plane indicates bending, and tshows the time 
parameter.Changes in elastic strain energy U of 
an elastic object are expressed as[12]: 

 )2(   
V

ijij dVU   

Parameters ij  and ij  are components of 

Cauchy stress tensor , and   demonstrates the 
changes of straintensor. Additionally, the non-
zero components of strain based on the Donnel 
classic theory for the cylindrical shells are as 
follows [12]. 
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Under practical conditions, the amount of 
traction normal force on both the upper and lower 
sheets is relatively negligible or zero. As a result 
and due to considering the relatively small 
thickness of the sheet, the stresscomponent 33 in 

all parts of the plane, compared to other stress 
factors, is not significant; so, in order to derivethe 
formulation of  structural stress-strain, the state of 
plane-stress is applied. For the layered composite, 
the structural stress-strain relationships for each 
layer are defined as [12]: 
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In the above equations,  kQ is the stiffness matrix 

along the non-principal direction, which is expressed 
as the following [12]: 
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)5(       kk
T
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Where, Q  is the stiffness matrix in the original 

coordinates, and  kH   is the transmission matrix for 

each layerand they are defined as follows [12]: 
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Governing equations of dynamic equilibrium 
In order to extract the governing formulation of 
the static equilibrium, first,the variation of strain 
energy and external work are calculated by the 
central Traction, and then,by replacing them in 
the principle of minimization of the total 
potential,the governing equations are achieved. 
For this reason, the changes in the strain energy 
of the cylindrical shell are equal to: 
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A
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Wherein the above: 
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In  Eq. (8a), the force and moment stress resultants 
can be defined as follow: 

 

Where: 
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By applying two integrations by parts to this 
equation, we will have: 
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Thevariations of kinematic energy of the 
composite cylindrical shell ( ( . .)K E ), with a 
rotating speed, are expressed as: 
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On the other hand, according to the rotation 
of the shell,the initial circumferential tensionwill 
be created, and as a result, the initial strain energy 
that is stored is calculated as: 
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In the above equation, 2 2
0N mR   is the 

initial circumferential tension, and also, the work 
done is obtained from: 
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On the other hand, the reaction between the 
cylindrical shell and the elastic foundation,which 
is of Winkler type, aremodeled as the external 
force applied to the shell as: 
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Hamilton’s principle expressed as follows in 
the time period between 1t and 2t is noted as:  
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By replacing the changes of strain energy, 
kinetic energy, and the work done, the governing 
dynamic equilibrium equations are derived using 
classic Donnel model, as follows: 
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In addition to this, the boundary conditions at 
both ends of the shell (x = 0, L)are as follows: 
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Similarly, for the lateral boundaries of the 
shell,at y = 0, Rβ, one has: 

)17( 

0or          ,0

0or     02

0or      ,0

0or       0

11

1211

22

012



























x

w
M

w
x

w
I

y

M

x

M

vN

u
y

u
NN











 

Finally, the following conditions must be met for 
the four corners of the shell: 

)18( 0wor   012  M

Resultants of stress force and moment that are seen 
in the governing equations and boundary conditions 
should be calculated. 

The governing equations in terms of kinematic 
parameters 
By replacing the stress resultants into the 
equation (14), the following equation is obtained: 
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Similarly,for the boundary conditions at both ends 
of the shell (x = 0, L), one has: 
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Also, for the lateral boundaries of the shell at y = 
0, Rβ, one has: 
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Solution of equations 
Regarding the linear equations based on the 
expansion of  the dual-Fourier, the vibrations of the 
composite cylindrical shells on elastic foundation 
are solved. to achievethis aim, displacement 
components for the annular cylindrical shells under 
simply-supported conditions are expressed in the 
following form [9]: 
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In the above, nm, is the natural frequency of 

the cylindrical shell. 
By substituting displacement componentsinto 

the governing equations, a linear set of algebraic 
equations is obtained: 
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Where in the above, one has: 
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In the above, the components of the matrices 
[K], [G], [C] and [M] are defined as: 
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By equating the determinant of the matrix of 
coefficients to zero, the frequency equation is 
achieved: 
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The frequency equation can be rewritten as 
the following: 
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Where, in the above: 
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Finite element modeling 
The finite element model includes a rotating annular 
cylindrical shell based on the elastic foundation. 
The mechanical properties of the shell are included in 
Table 1. Fiber angles are considered to be [0,90,0,90]s. 

Table 1. Mechanical properties of the composite. 

S-glass/epoxy 

 3/ mkg 12v )(12 GpaG)(2 GpaE)(1 GpaE 

1700 0.27 3.45 11.58 43.5 

Both sides of the cylinder are regarded as 
simply-supported. Also, the shell has rotational 
speed around its central axis.The S4R element 
isused for gridding the composite cylindrical shell. 

 

 

Figure 2. Finite element model of the composite 
cylindrical. 

Verification 
Here in this section, numerical and analytical results 
for the composite cylindrical shells based on the 
elastic foundation are provided. The thickness of the 
shell is considered to be 8 mm. Also, the values of 
the natural frequencies and the rotation of the shell 
have been non-dimentionalized by means of 

ω∗ = ଵୖ ඥE ρ⁄  in the diagrams. 
In Table 2, the values of the smallest 

dimensionless natural frequency, ω/ω∗, for the 
rotational speed of Ω = ω∗ achieved from the 
analytical solution, have been presented and 
compared with the results obtained by the finite 
element software, ABAQUS, fordifferent 
geometric ratios. 

Table 2. Comparison of dimensionless values of the 
smallest dimensionless natural frequencyω/ω∗for L / 

R = 10. 

*/ Present FEM Difference (%) 
0.5 1.438 1.33 7.5 

1 2.952 2.71 8.1 

1.5 4.783 4.223 11.7 

The results indicate that the analytical 
method is of acceptableaccuracy. In Fig. 3, the 
contours achieved from the finite element method 
arepresented. 

L/R=10and 5.0/ *   

L/R=10and 1/ *   
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(b)  

Figure 10. The effect of m on the dimensionless 
natural frequencies versus the dimensionless rotational 
excitation frequency for the composite cylindrical shell 

(a) Forwardand (b) Backwardwhirling. 

Effect of fiber angle 
Regardingm = 4, n = 4, Kw = 0.1 * Kstar,R / h = 10 and 
L / R = 10,changes of */  versus changes of */
areplotted for the two Backward and Forwardstates. 
As shown, by increasing the value of fiber angles 
towards 90 degrees, at the two states of Backward and 
Forward, the values of the frequency will increase. 
 

  
(a)  

  
(b)  

Figure 11. The effect of the fiber angle on the 
dimensionless natural frequencies versus the 

dimensionless rotational excitation frequency for the 
composite cylindrical shell (a) Forwardand (b) 

Backwardwhirling. 

Final conclusion 
In this article, the impact of the main parameters 
on the vibrations of the annular composite 
cylindrical shells based on the elastic foundation, 
and rotating with a fixed angular velocity 
wereinvestigatedusingthe analytical method. The 
results were extracted and achieved for the two 

states of positive excitation angular velocity 
(forward whirling) and negative excitation 
angular velocity (Backwardwhirling). 

In our vibration analysis of the annular 
cylindrical shell,the following results were 
noticed: 
 Backward mode values are higher than those of 

theforward mode. 

 The */ value increases non-linearly as the 

value of */  increases. 
 By increase in the amount of R/h and L/R at the 

constant value of */ , the value of */  is 
increased. 

 By increasing the amount ofKw = 10000 * Kstar at 
the constant */ , the value of */ is reduced. 

 By increasing the values of n and mat, the 

constant value of */ , the value of */  is 
increased. 

 By increasing fiber angle towards 90 degrees in 
both Backward and Forwardstates, the values of 
the  frequencyareincreased. 

 The finite element analysis results are in good 
matching with the analytical results. 
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