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The aim of this study is to investigatethe effective parameters on vibrations of circular
cylindrical shells with fixed rotary speed andresting elastic foundation by means of
analytical and finite element numerical simulation. First, the governing equations are
derived using the theory of Donnell, considering the centrifugal forces,Coriolis
acceleration, and the initial annular tension. Then, the analytical solution for cylindrical
shells isintroduced under simply supported conditions. Further, the effect of parameters
such as therotational speed of the shell, its lay-up, fiber angle, and the stiffness of the
elastic foundation on the values of natural frequency and the critical velocity of the shells
are studied. The analytical solution results are in good compatibility with the results

achieved from the finite element method.
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I ntroduction

A lot of studies have been done on the free
vibration of cylindrical shells. Egle and Sewall
[1] have studied the effect of stiffeners on the
variations of natural frequencies of the shells
reinforced with rings and stringer, under different
boundary conditions. Stiffeners are treated
asdiscrete elements, and Hamilton’s principle and
the energy methods have been applied so as to
obtain the equations of motion. Reinhart and
Wong [2] have investigated the vibrations of the
shells reinforced with stringer, which are
considered asdiscrete elements. Amabili  [3]
studied the large amplitude (geometrically non-
linear)vibrations of annular cylindrical shells,
under different boundary conditions, exposed to

EaN T

harmonic radial excitationin both empty and full
of fluid states. Karagiozisaet a. [4] investigated
the nonlinear vibrations of circular cylindrical
shellsin two states of empty and full of fluid,with
cantilever conditions, exposed to harmonic radial
excitation force. Pellicano[5] studied linear and
nonlinear vibration analysis of circular cylindrical
shells under various boundary conditions. He
used the Sanders-Kwittertheory, and extended the
displacement fields as combination of double
series ofharmonic functions.

Shaoand Ma [6] analyzed the layered circular
cylindrical shells under arbitrary boundary
conditions using Fourier series expansion.
Eipakchi et al. [7] extracted the homogeneous and
isotropic equations for variable wallby means
ofFSDT and later solved them using the
perturbation theory. Zhao and Liew [§]
investigated the vibrations of composite annular
cylindrical shells reinforced with orthogonal
stiffeners. Jafariand Bagheri [9] investigated the
free vibration anaysis of isotropic cylindrical
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shells with numerical, analytical, and laboratory
methods, and then, compared the results of these
methods with each other. Ebrahimi and
Najafizadeh [10] investigated the free vibration
analysis of the FGM cylindrical shell in the two-
dimensional state, in 2014. The equations of
motion were derived according to the LoveLaw
and the classical theory. In this study, a
comparison analysis of the conventional results
available in the literature and the two-
dimensional mode results wasconducted. In 2014,
Jin et al. [11] investigated the analysis of three-
dimensional free vibration of thick cylindrical
shell based on elastic foundation. In their study,
the Riley-Ritz method was used to solve the
equations.In this paper, the study of vibrations of
composite annular cylindrical shells with fixed
rotary speedwhile positioned on the elastic
foundation was conductedusing analytical and
numerical methods. The governing equations
were derived by means of Donnel theory. Then,
the effect of various parameters on the frequency
of the structure was discussed. Later, the results
of analytical and numerical methods were
compared with each other.

Governing equations

In Fig. 1, the geometry and coordinate system of a
cylindrical shellwith length /, mean radius R, and
thickness # are depicted. The origin o is located
atthe top end and inthe middle plane of the shell. x,
y, and z are in the axial, circumferential, and outer
normal directions, respectively.

Figure 1. Geometry and coordinate system of a
cylindrical shell

Components of the displacement vector of
the shell are stated herein, based on the classical
model and Donnell theory, as follows[12]:
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u (X, y,2,1) :u(x’y,,)_ZM’
ox
uZ(x’y’Z’t):v(x’y’l)_Zwa (1)
Y

uy (x, y,z,t) = w(x, y,t).

In equation (1), the components of
displacement inside the plane, along x and y
directions are shown by the functions u(x, y) and
v(X, y), respectively, and also,w(X, y) is the radial
deformation. The parameter z at any point of the
plane indicates bending, and tshows the time
parameter.Changes in elastic strain energy U of
an elastic object are expressed as[12]:
oU = I(O',.I.(Sg[j )dV )

14

Parameters 0; and 58ij are components of

Cauchy stress tensor & , and 9 demonstrates the
changes of straintensor. Additionally, the non-
zero components of strain based on the Donnel
classic theory for the cylindrical shells are as
follows [12].

_du_ 9w
T ox ox*
_dy . w 9w
2 _$+E_Zay2 (3)
du ov o’w
26, =—+—-2z
dy ox oxdy

Under practical conditions, the amount of
traction normal force on both the upper and lower
sheets is relatively negligible or zero. As a result
and due to considering the relatively small

thickness of the sheet, the stresscomponent 0;;in

all parts of the plane, compared to other stress
factors, is not significant; so, in order to derivethe
formulation of structural stress-strain, the state of
plane-stress is applied. For the layered composite,
the structural stress-strain relationships for each
layer are defined as [12]:

oy &y
Oy =§k(9 )
O 2e,
0, 0. O, @
Q(@): Qz sz st
Os O O

In the above equations, @, (6)is the stiffness matrix

along the non-principal direction, which is expressed
as the following [12]:
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Qk (‘9) = [H (ek )]T OH, (ek) &)
Where, Q is the stiffness matrix in the original
coordinates, and H (ek) is the transmission matrix for

each layerand they are defined as follows [12]:

El VIZEI
1_V12V21 1_V12V21
Q= VIZEI E2 O
1- VioVy 1- VioVy
0 0 G,
- - - (6)
Cos*(6,) Sin*(6,) Sin(26,)
H(O,)= % Cos*(8,) —sin(26,)
12721
_Sin(26,)  Sin(26,) Cos(26,)
L 2 2 "

Governing equations of dynamic equilibrium
In order to extract the governing formulation of
the static equilibrium, first,the variation of strain
energy and external work are calculated by the
central Traction, and then,by replacing them in
the principle of minimization of the total
potential,the governing equations are achieved.
For this reason, the changes in the strain energy
of the cylindrical shell are equal to:

&]5 = J.PdXdy (7)

Wherein the above:

(8a)

8(5\/) N [a(a‘u)+ a(&)J
ay 2oy ox

In Eq. (8a), the force and moment stress resultants
can be defined as follow:

N, = j a..dz:A.(x>%+(A.(x>—2Az(x))(@+ﬂ>

_[0' dz=(A(x)- 2A(x))—+A( )(@+1)
h/2

No= | alzdz—A(x)<@+—)

—h/2 (8b)
M, —Jzo‘,]dz— aw
h’2 a w
My, = [ z 0pdz=—(D,(x)-2D, (x» - D)5,
dy

—hi2
hi2 aZ

M, = [ zo,dz=-2D, ()5

—h/2
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Where:
(4,(x),D, (X))

[h( ) (h(x)) j

(h(X))
(4,(x), D,(x)) = 20+ )( (x), J

By applying two 1ntegrations by parts to this
equation, we will have:

(8¢c)

y=27R x=L
U, = [sU™da J{ | é‘(]”““”ddy:l 9)
4 y=0 x=0

Thevariations of kinematic energy of the
composite cylindrical shell (d(K.E.)), with a

rotating speed, are expressed as:

[ii5u+(i}+2§2w—£22v)§v+]d
4

SNKE)=-
(KE) Im (- 2Qv - Q7 w)Sw

S s

+I1(aw ayW wdd — j(l—dwjd (10)
( Jd I [aw a; J& dA

+I FGal I [ ]d

On the other hand, according to the rotation
of the shell,the initial circumferential tensionwill
be created, and as a result, the initial strain energy
that is stored is calculated as:

_ ou o ow) w . vY
0o ! &ayj (5 Ej J{ EX RJ jdA )
In the above equation, N, =mR’Q’ is the

initial circumferential tension, and also, the work
done is obtained from:

2
e
ol \OY y y »

’ {azvf—w—,ﬁj&v (12)

x=L o [ Ou Jdv ow v
+L=0NO([ayJ&l+[ay+R]5\»+{ay—RJ}dx

On the other hand, the reaction between the
cylindrical shell and the elastic foundation,which
is of Winkler type, aremodeled as the external
force applied to the shell as:

oW = —jka(x,y)dA 132

Hamilton’s principle expressed as follows in
the time period between f,and ¢, is noted as:
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j(5(K.E.)—§U+§W)dt=O (14)
By replacing the changes of strain energy,
kinetic energy, and the work done, the governing
dynamic equilibrium equations are derived using
classic Donnel model, as follows:
ou :

oN,, +aN12 +N6ﬂ

ox oy * 9y’ -
ov:
ON, +8N2]
ox dy
2
Nog a_:+£a_W_L2 =
dy° Rdy R
;n(iﬁ+2£2w—£22v) (15)
W

IM,  OIM,y,y L IM,
ox’ oy’ dxdy
Na, (a_w 29 w}

2 _2ov_
iy w =m0 —2Qv - Q’w)

9% 9%
I ot
ox~ dy

In addition to this, the boundary conditions at
both ends of the shell (x = 0, L)are as follows:
N, =0, or du=0

N22+N6(gv+RJ 0, or ov=0
y
aM22+ZaM12+
ay ox (16)
N2V 196 =0
dy R dy

0
M, =0, 0r5(aw] 0

X

Similarly, for the lateral boundaries of the
shell,at y = 0, Rf, one has:

N]2+N(fa—u:0 or fu=0
dy

N, =0, or &v=0
oM, oM, Al (17)
2—=4+1—=0 ow=0
ox * dy * ox or

M, =0, or 5[?})

X

Finally, the following conditions must be met for
the four corners of the shell:

M,=0oréw=0 (18)
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Resultants of stress force and moment that are seen
in the governing equations and boundary conditions
should be calculated.

The governing equations in terms of kinematic
parameters

By replacing the stress resultants into the
equation (14), the following equation is obtained:

AH‘322 (4, + Ay )=— azay
Nﬁa” (x)u 0

ov:

A, g; (A12+A66)aazay+
T

N(az 2 ow v]
» Ry R

— m(x)(i + 2@+ Q%) =0 (19)
% + _aN21
ox dy
2
+N? 8_\21 + 2ow_ iz =
d~ Rdy R
{3+ 2Qu— Q)
ow:
d'w o'w
D=+ 2(D, + 2D"6)W +

Similarly,for the boundary conditions at both ends
of the shell (x = 0, L), one has:
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A”a“+A,2(aV+ZJ=o ordu =0

ox dy
Jdv 0
Aﬁﬁ[a;+a;jj=0 orév=0
*w ’w
Dn ¥ + (DIZ + 4D66 )A66 W (20)
- a—w =0 orow=0
ox
2 2
D“a—vﬁplza—?:o or 5(a—wj=o
ox dy X

Also, for the lateral boundaries of the shell at y =
0, R, one has:

Agg @+a—u +Noga—u:0 or ou=0
ox dy ay

ou v w
Alzg‘“‘lzz (8y+RJ+

Ny

PV g o Gv=0
Jd R

o’w o’w
D22§+(D12+4D66)W

1)

- a—W=O or ow=0

dy

2 2
Dlzg—vzv+Dng—vzv=0 or 5(8W]=0
x y

Solution of equations

Regarding the linear equations based on the
expansion of the dual-Fourier, the vibrations of the
composite cylindrical shells on elastic foundation
are solved. to achievethis aim, displacement
components for the annular cylindrical shells under
simply-supported conditions are expressed in the
following form [9]:

u(x, y) =u COS(— x) cos(—n y+w tj
mn [ R mn
v(x y) =v sin(— x] sin(—n y+w tj 22
’ " L R " ( )
w(x,y) =w sin(— x) cos(—n y+ow tj
mn [ R mn

In the above, @, , is the natural frequency of

the cylindrical shell.

By substituting displacement componentsinto
the governing equations, a linear set of algebraic
equations is obtained:

u

[K]—QZ[G]_Qa)mn[c]_a)mnz[M] vm” (23)

mn
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Where in the above, one has:

ki ky ok g 0 0
[K]=|ky ky ky|[G]l=| 0 g, O
ky  ky ks 0 0 gy (24)
0 0 0 M, 0 0
[C]I=|0 0 Cyl|[M]=| 0 M, O
0 ¢, O 0 0 M,

In the above, the components of the matrices
[K], [G], [C] and [M] are defined as:

By equating the determinant of the matrix of
coefficients to zero, the frequency equation is
achieved:

kligzglliwjmmll klZ kn
ku kzz 792&’22 7wjmmzz kﬂ 792&’21 790)11”1("21 =0
km k}z _ngzz _menczz k}z _ngzx _wuzmmxz

(26)

The frequency equation can be rewritten as
the following:
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a0’ +a,Q° +a,w Q° +a,0 Q' +
a,w., +a,Q' + a0, Q° +aw;, +a,Q’ 27)
a,,Q,, +a,=0
Where, in the above:
a) = =My My, My,
) =—818083:
a; = —81/Myphy; — mll(g22m33 + m22g33)
Ay =M 18583 ~ gll(m22g33 + gzzmzz)
as = kymymy; + mll(k22m33 + mzzkzz)
as = ky18n8ss + gll(k22g33 + g22k33)
a; = kn(gzzmzz + m22g33)+
& (kzzmss + My ks, ) +my, (kzzgss + gzzkss) (28)
ag = _ku(kzzmss + mzzkzz)_
my ko ks + myskpkyy + mykisksy
ay = —ky, (kzzgss + g22k33)_ Zoskioks, +
Gsskinkyy = askaikys + 8ok 5k,
g = —Cp (k12k31 + k21k13)
ay = kykyksy + ki (k3]k23 —ky ks ) +
le (k21k32 - k31k23 )

Finite element modeling

The finite element model includes a rotating annular
cylindrical shell based on the elastic foundation.

The mechanical properties of the shell are included in
Table 1. Fiber angles are considered to be [0,90,0,90].

Table 1. Mechanical properties of the composite.

S-glass/epoxy

E(Gpa) | E2(Gpa) | G(Gpa) | wa | plke/m?)

43.5 11.58 345 0.27 1700

Both sides of the cylinder are regarded as
simply-supported. Also, the shell has rotational
speed around its central axis.The S4R element
isused for gridding the composite cylindrical shell.

Figure 2. Finite element model of the composite
cylindrical.
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Verification

Here in this section, numerical and analytical results
for the composite cylindrical shells based on the
elastic foundation are provided. The thickness of the
shell is considered to be § mm. Also, the values of
the natural frequencies and the rotation of the shell
have been non-dimentionalized by means of
o= % E/p in the diagrams.

In Table 2, the values of the smallest
dimensionless natural frequency, o/®*, for the
rotational speed of Q = " achieved from the
analytical solution, have been presented and
compared with the results obtained by the finite
element software, ABAQUS, fordifferent
geometric ratios.

Table 2. Comparison of dimensionless values of the
smallest dimensionless natural frequencym/w*for L /

R = 10.
Q0" [ Frmm T FEN [ Difaame®
05 | 1438 | 133 7.5
1 2952 | 271 8.1
15 | 4783 | 4223 11.7

The results indicate that the analytical
method is of acceptableaccuracy. In Fig. 3, the
contours achieved from the finite element method
arepresented.

L/R=10and Q/@" = 0.5

L/R=10and Q/ " =1
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L/R=10and Q/w" =1.5

Figure 3. Results of the numerical solution, with R / h
= 125 and various Q/w" .

Analysis of results

In this section, the results of the half-analytical
solutions for the free vibration of the annular
cylindrical shells on elastic foundation, which
were presented in the previous chapter,
areprovided. The results are obtained for the
values of m=1 and n=4.

The results are plotted as curves of thevalues
of dimensionless natural frequencies of the shell
versus values of the rotationalex citation
frequencies. It is worth mentioning that the
diagrams are plotted for positive excitation angular
velocity (Forward whirling) and also negative
(Back ward whirling). The composite material of
the cylindrical shell is considered to be as of the
mechanical properties listed in Table (1).

Table 3. Geometric specifications of the cylindrical
composite with lay-up [0,90,0,90];.

hy (mm) L(mm) R(mm)

8 10000 1000

Backward wave

2L
3 Forward wave
1 -

1 L 1 1 L
0 02 04 0.6 [X] 1
Qlo*

Figure 4. Diagrams of the dimensionless natural
frequencies withthe dimensionless excitation
frequency of rotation for the shell, with following
geometries: (a) L/R=10andR/h=10and K,, = 0.1
* Kgar and m = / andn = 4.

As is clear from the results, thebackward
mode values are greater than forward mode. Also,
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the ratio of /@' increases non-linearly with the

%
increase of Q/@ . Later in the paper, the effect
study of the changes in various parameters on the
natural frequency is conducted.

Effect of radiusto thicknessratio
Consideringm = I,n =4,L /R =10 and K,, = 10000 *

£ *
K., the changes of @/ @ versus Q/@ areplotted
for two cases of Backward and Forward(as in Fig. 5).
As is seen, by increasing the amount of R/hfor the

* *
same L2/ @ , the amount of @/ @ increases. Also, by

3
increasing Q/ @ , first the diagram has a linear state
and then,it will have an increasing trend.

(b)

Figure 6. The effect of R/h on the dimensionless
natural frequencies versus the dimensionless rotational
excitation frequencyfor the composite cylindrical shell

(a) Forwardand (b) Backwardwhirling.

Effect of length toradiusratio:

Considering m = I, n = 4,R/h=10 and K, =
10000 * K,,, changes of w/o"versus Q/o"have
beendrawn for the two Backward and Forward
states (as in Fig.7). As is clear, with the increase
inthe amount of L/Rat the constantamount of
Q/w", the value of w/w"increases. Also, by
increasing the@/w", first the diagram has a linear
stateand then, it will have an increasingtrend. As
1s seen, in the two modes of Backward and
Forward, at different R/L, and fixed @/ ", there is
no obvious change noticed in the values of the
diagram.
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W
.

L/R=10,20,30,40

Figure7. The effect of L/R on the dimensionless
natural frequencies versus the dimensionless rotational
excitation frequency for the composite cylindrical
shell(a)Forwardand(b) Backwardwhirling.

Effect of stiffnessof the elastic foundation

Considering m = I, n = 4 and L / R = 10, changes of
w/ o' versus Q/o" areplotted for the two Backward
and Forwardstates. As shown, by increasing the
amount ofK,, = 10000 * K,at the same amount of

Q/a)*, the value of @/@ is reduced. Also, by

increasing the Q/w", first the diagram is in the linear
state, and later, it will increase.

(b)

Figure 8. The effect of the elastic foundation on the
dimensionless natural frequencies versus the dimensionless
rotational excitation frequency for the composite cylindrical

shell (a)Forwardand(b) Backwardwhirling.
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Effect of parameter n

Considering m = 1, K,, = 0.1 * Ky, R/h =10and L /
R/ 10,changes of /@ versus changes of parameter
n areplotted for the two Backward and Forwardstates.
As shown, by increasing the value of nat the same

amount of Q/@", the value of @/ is increased.

Also, by increasing Q/@’, the values of @/ @ at a
similar Q/ @’ will have more discrepancies.

(b)

Figure 9. The effect of n on the dimensionless natural
frequencies versus the dimensionless rotational
excitation frequency for the composite cylindrical shell
(a) Forwardand (b) Backwardwhirling.

Effect of parameter m

Considering n = 4, K, = 0.1 * K,,,R/h=10and L/
R = 10,changes of w/w@" versus changes of Q/@"
areplotted for the two Backward and Forwardstates.
As shown, by increasing the value of m at the same

* *. .
amount of Q/@", the value of @/@ is increased.

Also, by increasing the Q/ ", the values of @/ o ata

similar Q/@" will have fewer discrepancies with each

other. Also, the values of the Backwardstate are more
than the values of the forward state.

[3
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| I
0 0.2 0.4 0.4 0.8

1 12 L4 L6 18 2
Qlw*

(b)

Figure 10. The effect of m on the dimensionless
natural frequencies versus the dimensionless rotational
excitation frequency for the composite cylindrical shell

(a) Forwardand (b) Backwardwhirling.

Effect of fiber angle

Regardingm =4, n =4, K, = 0.1 * Kyy,R/h = 10 and
L /R = 10,changes ofw/w" versus changes of Q/w"
areplotted for the two Backward and Forwardstates.
As shown, by increasing the value of fiber angles
towards 90 degrees, at the two states of Backward and
Forward, the values of the frequency will increase.

/

/ wooo,
L ©0.20,00,90], ;
4 ! L (00,90,

wl@a*

/
oo,

[00090),

Qla*

(b)

Figure 11. The effect of the fiber angle on the
dimensionless natural frequencies versus the
dimensionless rotational excitation frequency for the
composite cylindrical shell (a) Forwardand (b)
Backwardwhirling.

Final conclusion

In this article, the impact of the main parameters
on the vibrations of the annular composite
cylindrical shells based on the elastic foundation,
and rotating with a fixed angular velocity
wereinvestigatedusingthe analytical method. The
results were extracted and achieved for the two
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states of positive excitation angular velocity
(forward whirling) and negative excitation
angular velocity (Backwardwhirling).

In our vibration analysis of the annular
cylindrical shell,the following results were
noticed:

e Backward mode values are higher than those of
theforward mode.

*
e The w/@ value increases non-linearly as the

value of Q/w" increases.
e By increase in the amount of R/ and L/R at the

constant value of Q/ a)*, the value of @/ a)* is
increased.
e By increasing the amount ofK,, = 10000 * K, at
the constant Q/ ", the value of /" is reduced.
e By increasing the values of n and mat, the

constant value of Q/@", the value of @/ w s
increased.

e By increasing fiber angle towards 90 degrees in
both Backward and Forwardstates, the values of
the frequencyareincreased.

e The finite element analysis results are in good
matching with the analytical results.
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