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have been devoted to investigate the behavior of 
the wings: 

In 1987, Thuresson and Abelin[1] performed 
the fatigue test on a composite wing of MFI-18 
high-lift aircraft. Librescu and Nosier [2] 
investigated the response of fibrous composite 
plates subjected to sonic boom and explosive blast 
loading. The instability of a fully composite wing 
was investigated by Shokrieh and Taheri Behrooz in 
2001 [3]. Hadadpoor and his colleagues examined 
aeroelasticinstability of the composite wings of 
aircraft in an incompressible flow [4]. 

Gomez [5] performed a numerical analysis of 
composite wings made of carbon fibers.Ozozturk 
[6]in his master’s thesis analyzed the composite 
tactical unmanned air vehiclestructure made of 
carbon fiber and epoxy resin. Chitte andJadhav 
[7] employed Nastran finite element software to 
simulatestatic and dynamicalbehaviorof typical 
wing structure. They used shell elements for skin 
and beam elements for spars and ribs. They also 
examined the effects of thickness of the 
longitudinal spars on theirdisplacement and stress 
variations. Zhang et al. [8] applied a numerical 
simulation to design and optimize the composite 
wing structure of the minitype unmanned aerial 
vehicle. Kennedy and Martins [9] compared and 
optimized the design of the wing by replacing 
metal wings with composite wings. Kuntjoroet 
al.[10] used super-element,in finite element 
simulation to analyzethe stresses ina wing 
structure. Harakare andHeblikar[11], employed 
finite element approach and evaluated the static 
strength and critical buckling load of a wing 
box.They showed that the buckling does not 
occur in the wing box in normal loading 
conditions. Splichal et al.[12] investigated the 
dynamical behavior of composite wing skin 
experimentally. Detection, inspection, and failure 
analysis of the composite wing skin of a tactical 
airplane was carried out by Müller et al. 
[13].Chowdhury et al. [14] studied bolted, bonded 
and hybrid step lap joints of thick carbon 
fiber/epoxy panels used in the aircraft structures, 
experimentally and numerically. 

In the design and construction of aircraft 
wings, after mechanical fatigue load and its 
stresses, the thermal fatigue and its thermal 
stresses caused by the alternating temperaturealso 
have great importance. 

To the best of the author’s knowledge, to-
date there has beenno published study on the 
simultaneousthermal and mechanical fatigue 

analysis of composite airplane wing.Therefore, 
inthis research, by employing Abaqus finite 
element software, thefatigue lifeof composite 
airplane wing subjected to variable mechanical 
and thermal loads is estimated. 

Modeling Method 
The assumptions used in this simulation are as 
follows: 
 In the fatigue analysis,the period and 

amplitude of mechanical and thermal loads 
remain constant. 

 The perfect bond (Tie constraint) is used to 
attach skin to the wing structure. 

 The beginning of the spar beams isconnected to 
the stiff and thick bulkhead of the fuselage. 
Therefore,fixed boundary condition is selected 
for this connection point. 

 The finite element coupled Temperature-
Displacement is carried out in a transient state. 

 Thegeometrymodeling and analysis of the aircraft 
engine and fuel tanks are ignoredand only their 
weightsare applied inthe appreciate places.  

 Materials behavior (whether composite or 
aluminum) are considered as linear elastic. 

 Aluminum has isotropic material behavior and 
laminated composites haveorthotropic behavior. 

Here, in additiontoapplying lift, drag and 
structural weight (as shown in Fig. 1), the engine and 
fuel weights are applied to the wing structuresto 
increase the accuracy of the wing airplane modeling.  

In Fig. 2, an image of the wing 
structuredrawn in Catia software is shown and 
Table 1, illustrates the geometric characteristics 
of the selected wing. 

The three-dimensional model of the wing 
plane is drawn inCatia software as follows: 

In the first step, the internal structure of the 
wing consisting of spars and ribs isdrawn as 
shown in Fig. 3. 

 
Figure 1. Gravitational, lift and dragforces [15] 
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Figure 2. The drawing of the skin and wing structure 

Table 1. Geometric characteristics of the wing [11] 

Parameter Value 

Wing length 14 m 

Length of the chord atthe wing root  6 m 

Chord length atbreak section 3.75 m 

Chord length atthe tip of the wing 1.8 m 

Cone ratio (Ctip/Croot) 0.3 

Number of longitudinal spars 2 

Number of transverse ribs 27 

Distance from break section to root 4.5 m 

 

 
Figure 3. Internal wing structure 

Then, the wing skin is plotted on the internal 
structure as shown in Fig. 2. Finally, the entire 3-
D model is transferred to Abaqus finite element 
software. 

In this modeling, all of the internal wing structures 
such as spars and ribs are made of aluminum T7075 with 
theroom temperature mechanical and thermal properties 
as shown in Table 2. 

Table 2. Mechanical and thermal properties of 
aluminum T7075 at room temperature [16] 

Unit Value Properties 

Kg m-3 2710 Density 

MPa 516 Yield stress 

- 0.33 Poisson coefficient 

MPa 587 Tensile strength 

% 9.1 Ultimate strain 
GPa 72 Modulus of elasticity 

µm/m-k 23 Thermal expansion coefficient 
W/m-k 130 Thermal conductivity 
J/kg-k 870 Specific heat capacity 

Table 3. Mechanical and thermal properties of 
unidirectional carbon-epoxy composite at room 

temperature [16] 

Unit Value Properties 

Kgm-31490 Density 

GPa 121 Modulus of elasticity X 

GPa 8.6 Modulus of elasticity in Y 

GPa 8.6 Modulus of elasticity in Z 

- 0.27 Poisson ratio XY 

- 0.4 Poisson ratio YZ 

- 0.27 Poisson ratio XZ 

GPa 4.7 XY Shear Module 

GPa 3.1 YZ Shear Modulus 

GPa 4.7 XZ Shear Module 

MPa 2230 Tensile strength X direction  

MPa 29 Tensile strength Y direction  

MPa 29 Tensile strength Z direction 

MPa -1082 
Compressive strength X 
direction  

MPa -110 
Compressive strength Y 
direction  

MPa -110 
Compressive strength Z 
direction  

MPa 60 Shear Strength  XY 

MPa 32 Shear Strength  YZ 

MPa 60 Shear Strength  XZ 

c-1 4.7×10-7 
Thermal expansion 
coefficient X 

c-1 3×10-5 
Thermal expansion 
coefficient Y 

c-1 3×10-5 
Thermal expansion 
coefficient Z 

W/mk78.8 Thermal conductivity 

J/kg-k1130 Specific heat capacity 

Table 4. Mechanical and thermal properties of woven 
roving carbon-epoxy composite at room temperature [16] 

Unit Value Properties 

Kgm-3 1420 Density 

GPa 61.3 Modulus of elasticity X 

GPa 61.3 Modulus of elasticity in Y 

GPa 6.9 Modulus of elasticity in Z 

- 0.04 Poisson ratio XY 

- 0.3 Poisson ratio YZ 

- 0.3 Poisson ratio XZ 
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Unit Value Properties 

GPa 19.5 XY Shear Module 

GPa 2.7 YZ Shear Modulus 

GPa 2.7 XZ Shear Module 

MPa 805 Tensile strength X direction 

MPa 805 Tensile strength Y direction 

MPa 50 Tensile strength Z direction 

MPa -509 Compressive strength X direction 

MPa -509 Compressive strength Y direction 

MPa -170 Compressive strength Z direction 

MPa 125 Shear Strength  XY 

MPa 65 Shear Strength  YZ 

MPa 65 Shear Strength  XZ 

c-1 2.2×10-6 Thermal expansion coefficient X 

c-1 2.2×10-6 Thermal expansion coefficient Y 

c-1 1×10-5 Thermal expansion coefficient Z 

W/mk 78.8 Thermal conductivity 

J/kg-k 1130 Specific heat capacity 

In the design of the composite wing 
skins,carbon fibers laminated in two cases of: 
unidirectional fiber strand and woven roving 
fabrics with epoxy resin are used. Tables 3 and 4, 
listed the mechanical and thermal properties of 
unidirectional and woven roving of carbon-epoxy 
composite laminates, respectively. 

The following stacking sequences 
areconsidered for design of the composite wing skin: 
[0 Carbon Uni/ 0,90 Carbon Woven/ 0 Carbon Uni/0,90 
Carbon Woven/ 0Carbon Uni] 

The thickness of each layer is 0.4 mm.It is 
worth mentioning that woven fabrics with 45° 
layout used to withstand shear stresses and 
unidirectional fibers, were selected to withstand 
normal stresses along the longitudinal and 
transverse directions of the wings.To compare the 
performance of a composite wing skin with a 
common aluminum skin, the described fatigue 
analysis for the wing with 2 mm aluminum skin 
thickness is also carried out. 

In this research, 3-node triangular shell 
element for laminated skin and 4-node 
tetrahedron solid elements are usedfor meshing 
the ribs and spars. 

Here, the applied mechanical and thermal loads 
are functions of time; therefore, their responses such 
as temperature, displacement, strain, and stress are 
also time-dependent.The following loads are 
applied on the wing structure: 

 Wing weight (including: wing structure and skin 
weight)  

 Aircraft engine weight 

 Fuel and its tanksweight 
 Lift and drag forces 
 Temperature variation loads 

The first three forces are gravitational forces 
that are considered to be constant.The second last 
forces are alternating dynamic loads andeach 
loading cycle is introduced in three steps as follows: 

The first stage is park of the aircraft on the 
runway with an empty fuel tank andat the 
temperature of 25° C. 

The second stageis the horizontalflight at a 
steady speed of 870 km/h and temperature of -40 
°C. In this case, the resultant of drag and thrust 
forces is equal to zero. Also,the weight of the 
tanks, motor weight and other gravitational forces 
are calculated and applied. 

The last stage is the landing of the aircraft at 
a speed of 240 km/h and at temperature of 25 
°C.In this case, the thrust force is negligible 
compared to the drag force. Also, all gravitational 
forces are considered in this stage. 

Table 5 presented the capacity of all airplane 
fuel tanks. 

Table 5. Capacity of fuel tanks in the aircraft [17] 

Capacity (liter) Tank 

6924 The inner tank of the wing / right 

6924 The inner tank of the wing / left 

880 External reservoir of wing / right 

880 External reservoir of wing / left 

8250 Central reservoir 

 
The weight of the fuel tanks in a perfectly 

filled state, as shown in Fig. 4, isapplied as 
distributed loads on spars and ribs. The weight of 
the aircraft engine is 2190 kg. According to Fig. 
5, this weight force is applied as distributed loads 
onparts of the spars and ribs. 
 

 
Figure 4. Location of  applying the gravitational fuel 

tanks forces 
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Table 6. Tensile strength of Inconel 617 in terms of 
temperature [22] 

Strength (Mpa) Temperature (C°) 
755 0 – 150 
769 150 – 595 
789 595 – 650 
872 650 - 1200 

The temperature variations of mechanical 
and thermal properties for the underlying layer, 
bonding coat, the aluminum oxide layer and the 
upper coating layerof the specimen are listed in 
Tables 7 to 11. 

 

Table 7. Specific heat capacity, conductivity and density ofbonding coat NiCoCrALY [22] 

Specific heat 
capacity (J/kgK) 

Temperature 
(C°) 

Thermal 
conductivity 

(W/mK) 
Temperature (C°) 

Density (Kg/m3)  
 

Temperature 
(C°) 

542.9 21.3 4.3042 28.1 6189 24.9 
659.2 251.7 5.9646 299.5 5664 300.3 
712.1 499.6 6.9534 500.4 5844 500.3 
738.5 698.6 9.7197 700.5 6423 710.9 
757.5 901.1 10.6836 899.9 6479 900.5 
746.9 1000.8 13.1745 1100.0 6521 1100.9 
772.0 1198.8 16.1223 1200.7 6590 1200.3 

Table 8. Specific heat capacity, conductivity and density of upper coating (ZrO2-8wt% Y2O3 (YSZ)) [22] 

Specific heat capacity  
 (J/kgK) 

Thermal conductivity  
 (W/mK)  

Density 
(Kg/m3) 

Temperature  
(C°)

455.60 1.4998 4820 25 
516.14 1.4998 4820 126.85 
568.08 1.4998 4820 326.85 
595.67 1.4998 4820 526.85 
616.77 1.4998 4820 726.85 
635.44 1.4998 4820 926.85 
652.48 1.4998 4820 1126.85 
655.73 1.4998 4820 1156.85 
719.84 1.4998 4820 1176.85 

 

Table 9. Modulus of elasticity, poisson ratio and thermal expansion coefficient of coating layers [22] 

Table 10. Specific heat capacity, conductivity and density ofoxide layer (α-AL2O3) [22] 

Specific heat capacity 
 (J/kgK) 

Thermal conductivity  
 (W/mK)  

Density 
(Kg/m3) 

Temperature  
(C°)

755 33.00 3984 20 
1165 11.40 3943 500 
1255 7.22 3891 1000 
1285 6.67 3863 1200 

Link overlay (NiCoCrALY) Dioxide layer (α-AL2O3) 
Upper cover density(ZrO2-

8wt%Y2O3(YSZ)) 
Temperature  

(C°) Young’s 
modulus 

(Gpa) 

Poisson’s 
ratio 

Thermal 
expansion 
coefficient 

(1/C) 

Young’s 
modulus 

(Gpa) 

Poisson’s 
ratio  

 

Thermal 
expansion 
coefficient 

(1/C) 

Young’s 
modulus 

(Gpa) 

Poisson’s 
ratio  

 

Thermal 
expansion 
coefficient 

(1/C) 
151.86 0.3189 1.24*10-5 380.37 0.27 5.08*10-6 17.5 0.2 9.68*10-6 20 
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108.92 0.3466 1.62*10-5 336.03 0.27 8.38*10-6 12.86 0.2 1.00*10-5 820 

71.89 0.3515 1.77*10-5 308.71 0.27 9.20*10-6 11.7 0.2 1.04*10-5 1020 
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According to the results of Table 13, after 
908611 loading cycles,the critical point of the 
laminated composite skin began to rupturedue to 
tensile fiber failure mode. 

Also, by comparing the diagrams of Fig.s 14 
and 18, it is observed that replacing composite 
skininstead of aluminum skin, not only leads to 
increasein skin life, but also leadsto the 
enhancedlife of the aluminum ribs and spars up to 
443267 cycles.  

It is noteworthy that the critical condition 
happened in the same loading stage for both 
aluminum structures and composite skin. 

In other words, by replacing the aluminum-
skin with a carbon-epoxy laminated composite 
skin, in addition to a weight reduction of 48%, a 
32% increase in fatigue life of the internal structure 
and a 270% increase in fatigue life of the wing 
skinoccurred. 

Conclusion 
In this study, a three-dimensional modeling of 
airplane wing including:spars, ribs andwing skin, 
was drawn with Catia software and transferred to 
Abaqus software. 

 

Table 13. Hashin’sindex at the critical point of the 
composite skin 

Cycle 
Tensile 

fiber 
failure 

Compressive 
fiber failure 

Tensile 
Matrix 
failure 

Compressive 
Matrix 
failure 

1 1.65*10-2 5.09*10-4 4.19*10-4 2.09*10-4 
50000 3.89*10-2 7.48*10-3 6.94*10-4 3.64*10-3 

100000 7.36*10-2 3.56*10-2 5.68*10-3 1.36*10-2 
130000 0.14 7.53*10-2 7.52*10-2 7.52*10-2 
180000 0.20 0.11 0.10 0.11 
200000 0.22 0.12 0.11 0.12 
440000 0.48 0.27 0.24 0.26 
600000 0.61 0.32 0.30 0.31 
700000 0.77 0.42 0.39 0.42 
908611 1.00 0.55 0.51 0.55 

To create the finite element modeling of the 
wing, three-dimensional solid elements were 
employed for the internal structures and shell 
elements were usedfor the wing skin. 

In order to study the performance of composite 
wings compared to conventional aluminum wings, 
two design cases for the airplane wingwere analyzed. 

The first design is the metallic wings made of 
aluminum T7075.In the second design, the ribs and 
spars are aluminum and the wing skin is made of 
laminated composite with 5 layers of carbon-
epoxy. 

Each loading cycle of the wing structure 
consists of the three following stages: 1. To park on 
the runway with an empty fuel tank, 2. To 
flyhorizontally at a constant speed and 3. To land 
the aircraft.In each cycle, alternating mechanical 
and thermal loads related to that condition were 
applied to the wing structure. 

By studying the effect of element size on 
fatigue behavior of the wing structures, the suitable 
number of elements for modeling was 
selected.Also, the results of fatigue analysis 
calculated by Abaqus software are compared 
successfully with the experimental results of a 
specimensexposed to the mechanical load and 
thermal fatigue provided by other researchers. 

By performing fatigue analysis of the wing 
under periodic mechanical and thermal loads, 
fatigue life of the internal structures and wing skin 
were estimated in both cases of aluminum and 
compositewings. 

It was observed that the ribs and spars are the 
first segments of wing that suffer from fatigue 
failure. Also, replac ingaluminum skin with a 
carbon-epoxy composite skin, leads to a 48% 
weight reductionas well as a 32% increase in 
fatigue life of the internal structure and alsoa 270% 
increase in fatigue life of the wing skin. 
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