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In this paper, a robust autopilot is proposed using stable interpolation based on Youla
parameterization. The most important condition of stable interpolation between local
controllers is the preservation of stability so that each local controller can ensure
stability for an open neighborhood around a nominal point. The proposed design used
fixed-order robust controller with parameter-dependent central polynomial for each
vertex of the polytope to decrease the conservation of each local controller. A stability-
preserving gain-scheduled controller was designed using a newly proposed algorithm in
the flight envelop for a parameter varying model. The results of simulation confirm the

efficiency of the proposed method.
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List of symbols

Q: Dynamic pressure
S: pursuit’s reference surface
D: pursuit’s diameter

Czai: Variations of force coefficient along z due
to changes of attack angle

Czde : Variations of force coefficient along z due
to changes of winglet angle

Czq : Variations of force coefficient along z due
to changes of angular speed, q

X: Force applied on pursuit along body x

Y: Force applied on pursuit along body y Cmou: Variations of M due to changes of attack

. . angle
Z:F lied t along bod
L l\/i)(irclfe?f;ﬁnlqeargzn%ui(s)lllll aii(smg oty 2 Czde: Variations of M due to changes of winglet
. . . le
M: Moment d pitch ang'e
N- M(?g:ﬁ;ﬁgéﬁ?d $1a\fv ai);;s Czq: Variations of M due to changes of angular
p: Angular speed around body x axis speed . .
q: Angular speed around body y axis U: Component of speed on pursuit along x in
r: Angular speed around body z axis body system . .
m: Mass of pursuit V: Component of speed on pursuit along y in
. . . body system
Ix: Moment Inertia around x axis . .
Ty: Moment Tnertia around y axis W: Component of speed on pursuit along z in
. . . body system
Iz: Moment Inertia around z axis

d: Angle of operator winglet
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o Attack angle

f: Lateral sleep angle

e: Elevator winglet angle
a: Eileron winglet angle
r: Rudder winglet angle
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d: Differential variable
c: Command signal

Introduction

Autopilot design is a subject in control
engineering and aerospace systems which is open
to research. Nonlinear dynamics, time varying
parameters, uncertainty in the model, variation of
flight conditions and aerodynamic coefficients
can cause complicated and challenging problems
in autopilot design [1-6]. In many methods
developed for designing the autopilot, a certain
number of nominal points on the linear model of
the system are considered and a linear time
invariant autopilot is designed which provides the
stability and performance in local areas around
the nominal point of the nonlinear system. In this
condition, by moving from this nominal point,
changes in the system dynamics start to grow in
ways that decrease the performance and stability
of the system.

Now adays, pursuits must not only have high
manoeuvrability and allow the fast execution of
input commands whilst preserving the stability,
but also they must have a good robustness against
the system parameters. Due to the simplicity and
constancy of the controller, robust control
methods have an advantage which results in
situations where control is made possible by
using these techniques, this method is preferred
over the other methods of controller design.
Different methods have been proposed in the
design of robust controllers such as H, and p
synthesis. These methods are designed in a
systematic way; moreover, they involve
considerations of efficiency and robustness
against uncertainties and have been used in
autopilot design [6-9].

These methods also have disadvantages
which make them difficult to work with. First, the
choice of weights has a special complexity and
the process of selecting weights must be repeated
several times to achieve the desired stability
margin. This is a time consuming procedure and
it is also uncertain whether the achieved robust
stability margin is the best stability margin.
Moreover, in most robust design techniques, the
designed controller has a full order, so that it is
equivalent to the order of the weight function plus
the order of the system [10].Therefore, its use
leads to challenges in practical applications such
as aerospace systems. Although, there are some
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methods for reducing the controller order, by
approximating system models or approximating
the high-order controller, these methods do not
guarantee the fulfilment of the desired
efficiencies [11]. For this purpose, fixed order
controller has been a problem on which control
designer shave recently focused [12-16].In this
way the order of the controller is up to the
designer and the performance can be achieved
with a desired stability margin. For the controller
design, uncertainties of physical parameters are
modelled in a polytopand the design problem is
converted into a convex problem by a central
polynomial and then solved withan appropriate
software.

Gain-scheduling is one common method of
controller design for parameter-dependent
nonlinear systems, especially space systems [17-
18]. A lot of research has focused on autopilot
design for these systems because of the
complexity of the dynamic modelling of a
pursuit, such as the system uncertainty,
parameter-based  dynamics and  nonlinear
aerodynamic behaviour [19-20].

In the traditional design method for gain-
scheduling, a nonlinear system becomes linear
and employs local controllers at specified
nominal points. Then, the linear controller is
interpolated according to the existing methods in
real time and concurrent with the system
movement between the nominal points. There are
different  methods for conducting this
interpolation. The advantage of these methods is
that they are not conservative and an interpolated
controller always exists [21-24]. The biggest
disadvantage is that the stability of the final
controller may not ensure a linear-based model
interpolation invariant with time.

Recently, several methods have been
presented  for  designing  gain-scheduled
controllers for a parameter-variant closed-loop
system by preserving the stability [18,25].
Among these methods based on parameter-variant
systems and guarantees for the stability of the
final gain-scheduling system, there is a method of
interpolation involving observers and state
feedback [25]. This method is complicated
because of the interpolation of the state-space
matrices. Another method, in which the stability
of the final gain-scheduling system is insured, is
the Yula-based parameter interpolation [18]. In
this method, the most important condition for
interpolation is stability preservation. It means
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that locally designed controllers must ensure the
stability of an open neighbourhood around a
nominal point and an area of common stability
must exist between the two adjacent local
controllers so that the interpolation is possible.

In this paper, a fixed-order robust autopilot is
designed to ensure the stability and performance
of the pursuit in any nominal point of the flight
envelope. In the fixed order controller, a transfer
function is proposed considering H.. norm
constraints and using real positive and real
bounded lemmas or small-gain theorem. Then,
the numerator and denominator polynomials of
this transfer function are divided by a central
fixed-stable polynomial and the controllable
canonical form of both transfer functions is
obtained. The matrix inequality is solved using
the Kalman-Yakubovich-Popov lemma assuming
a common symmetrical positive matrix for its
implementation. By solving this inequality, a low
degree fixed-order controller is obtained. The
designed controller has a high conservation
caused by constant central polynomials for the
vertexes of the polytopic system, which preclude
linear matrix inequalities. To reduce the
conservation, a variable central polynomial,
called parameter-dependent central polynomial, is
used. It means that a unique central polynomial is
defined for each vertex of the polytopic system so
that the conservation is strongly reduced and the
autopilot is easier to design. In this way, the
number of nominal points for the whole flight
interval of the pursuit is reduced. Furthermore,
the interpolation of Yula parameters has been
applied for the stable interpolation between
controllers which ensure stability in interpolated
regions. Finally, a new systematic algorithm is
proposed to design the robust autopilot while
preserving the stability of a closed-loop system in
the whole flight interval. The simulation results
of the nonlinear system confirm the suitable
performance of this autopilot.

H.. Fixed-Order Controller

The frequency response of the system and
minimization of the H.. norm and robust stability
margin can be written as:

S(s)
L(s)

o)., = <y )

oo
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in which, H(s) is the output sensitivity function or
sensitivity complementary function, y is the
robust stability margin, and S(s) and L(s) are two
polynomials. In the small-gain theorem [10], the
H..norm constraint in Eq.(1) is equal to the robust
stability of the uncertain polynomial:

L(s)+8S(s), o] <y @)

To design the fixed-order controller using a
parameter-dependent central polynomial, a
primary fixed-order stabilizer controller, Ko, is
assumed to stabilize the polytopic system without
efficiency constraints. For each vertex of this
polytope, the controller concludes a closed-loop
specification polynomial as the desired central
polynomial [14]:

Ei(s)=L;i(9)k=k, 3)

Theorem 1[14]:Consider K for a given polytopic
system (without an efficiency constraint). Fixed-

order controller K(s) becomes:
Moy
K(s) = y(s) _ yos~ + s Ym

x(s) M +xlsm_1 +..+x,

4)

The controller stabilizes the closed-loop
system containing uncertainties and satisfies the
H.. efficiency condition in Eq. (1) for the
polytopic system if the symmetrical matrix

P = PiT and scalar 7; and matrix Q exist, so that

i=1,...,gproduces:

0 c -l [-F
Cu Dli+D1€_T[ _DsT; 0
_Cs'i _D.\'i Tij/z 0 "
|[-P 0 0] o
(T4
BIT
0 0"+0[[4, B 0] -I]>0
| -1
(%)

il’l Wthh (Av‘aB’ Cﬁ’Dﬁ) and (Ai’B’ Q'i’Dsi)
are controllable canonical realizations of the
L) g SO
E,(s) E (s)

transfer  functions

respectively.
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Gain-Scheduled Controller Using
Stability-Preserving Interpolation

Definition 1 [18]: A parameter-variant linear

system Z(p) is assumed in which x(¢)e R" is
the state matrix, u(f)€ R™ is the control signal,
e(t)e RP¢ is the output, w(f)e R™v is the

external signal, and y(f)e R? is the measured
signal:

x(1) = F(p)x(t) + G (p)w(1) + G (p)u(t)
e(t) = Hy(p)x(t) + 11 (P)w(®) + J12 (0)u(t) (6)
y(t) = Ha(p)x(t) +J21 (0)w()

in which pel'C R' and T'is a closed set of the
domain of gain-scheduled variables.

Assume Ap,...,A p as time-invariant linear
controllers for constant values p,..., Pg € I', so

that each controller can preserve the stability of
its corresponding time-invariant linear system

(0r).
Preserving stability is the most important

condition in a stability-preserving interpolation
for time-invariant linear controllers. It must exist

in open neighborhood Ujthat includes0; to
stabilize the local controller A;, so that A;
stabilizes  the  system Z(,O) for all

peU;, i=1,..,q9. Assuming satisfaction of

condition FCU?ZIUI-, the local controller

covers all scheduling space. Hypothesis 1
achieves the stability-preserving conditions.

Hypothesis 1[26]:Assume the local controllers
A, A q as designed at points
PlsPg € Ipl,quCRand that their existing
open intervals Ul,...,Uq,
includesp; and A; for each peU;, and

so that each U;

q
I' ¢ |JU; stabilizes system Z(p). Since stability-
i=1
preserving interval U; is open, there are intervals
[ai’bi]CUiUUi+l’ i=1,...,q—1 SO that

H. Dehghani Firouzabadi and I. Mohammadzaman

controllers Ajand A, stabilize system Z(p) for
all pe [ai,bi].
Theorem 2 offers a local controller interpolation

and shows that the interpolated controller can
stabilize the given system.

Theorem 2[18]: Assume a parameter-variant
linear system Z(p) with dimension # in Eq. (6)

and parameter O€ [a,b] .Assume time-invariant
linear controllers Ay and Aj with dimensions
ny so that Ay preserves the stability of system
Z(,O) in p€la,d) and A, preserves the
stability of system Z(,O) in pe(c,b] while
stability-preserving is satisfied. Parameter-variant
A(p) with dimension 2n+ny exists where Z(,O)
is stable for all € [a,D] and A(a)and A(D) have
equal transfer functions, Ajand Ay, respectively.

The coefficients of matrix A(0) are continuous

functions of variable p .

In the stable interpolation of the state-space
matrix of the parameter-variant linear system and
time-invariant linear controller, linear fractional
transformations used to design the interpolated
controller. Local controllers can have any degrees
or dimensions, but the degrees and dimensions of
two adjacent controllers with a common area
must be equal. The process of finding the
interpolated controller between two adjacent
controllers with a common area [14] is:

1. Consider a parameter-variant linear system for
Eq. (6). Local time-invariant autopilot state-
space realizations ( 4;,B;,C;, D;) have order
ny; so that autopilot Ay can preserve the
stability ofX(p) in interval p€[a,d) and
autopilot Ay can preserve the stability of
¥(p) in interval 0€ (¢,b] (c<d) and stability-
preserving is satisfied. In interval [c,d],
0<p<l(c=0,d=1).

2. The closed-loop stable matrix Zi (p) is:

F(p)=G2(0)D;H2(0) Gz(ﬂ)Cz} (7)

4(0)= { —-B;H,(p) 4;

3. Using Wj(p) and Wr(p) as positive
symmetrical matrices, the following linear
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matrix inequality is solved and matrices W(0)
and W5 () will be obtained for all p.

A (oW (p)+

. ®)
W(p)4(p)<—1, pela,d)
A (p,(p)+ o)
W(0)A(p)<~1,  pe(cb]

4. Matrices L; and K; are obtained using the
following linear matrix inequalities:

(F(p)+ Gy (0K, (0) R (p) +
R7(P)E(p) +G(p)K (p) <=1
(F(P)+ L(OH, (o) S,(p)+ a1
S.(o)E(p)+ L(p)H, (p)<-1

(10)

where R; (0),S;(p)e R ,i=12is:

S;(p)  N,(p)
W = b
g {Nf(p) B(p)} (12)
} R(p) M,(p)
W 1 — i i
) {Mf(p) Qi(p)}
where P, (0),0;(p)€ R™* ,i=12 .
Matrices L and K are defined as:
Li(p) pela,c)
L(p) =157 (o)1~ p)S1(PIL1(0) + pS2(P)La(p)  pEle.d]
Ly (p) pE(d,b]
Ki(p) pela,c)
K(p) =1((1- p)K1(0)R (0) + K (P)R2 (PDR ™ (p)  pec.d]
K> (p) pE(d,b]
(13)
Where:
{S(p) = (1-p)S1(p) + pS2(0) 14)
R(p)=(1-p)R1(p)+ PRy (p)
5. Define the following matrices as:
~ —-L(p)+G,(p)D,
Bi (;0) = |: _B ? :|
C.(p)=[-K(p)-DH,(p) C], (15)
D(p)=D,
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6. Zw(p) is:
A,(p)=W"(p) ) ) (16)
(1= ()4 () + pW,(d) 4,(d))
Where:
W(p) = (- p)Wi(c)+ pl(d) (17)

Eq. (16) is stable for all p€[a,b]. In

Wi(o) and Wa(p) are

considered constant to simplify the solution to the
equations. In this case, the interpolation is
converted to a stable linear interpolation and Eq.
(16) is written as:

A,(0) = (1= P) A (c) + php (d)

practice, matrices

Obtain matrices 4(0) . B(0) C(pyand Dp) as:

4(p) pela,c)
A(p)=14,(p) pele,d] (8
4,(p) pe (d,b]

X,(p) pela.c) (19)
X(p)=1X,(0)=(1-p)X () +pX,(d) peled]

X,(p) pE (d,b]
where matrices E(,O) C(/O) and[)(,O) are
obtained by replacing X.

7. Defining systems J(0) and Q(p) as:

i(1) = (F(0)+ Gy (0)K (0) + L(p) H, () (1)
~L(P)w(t) + Gy (P)u(0)

e(t) = K(p)x(t) + u(t)

Y(0) = =H, (0)x(t) + w(t)

{x(r) = 4,(P)x(0)+ B, (P)W() + By, (P)u0)

A
J(o)=

=qe(t) = Cp;(0)x(t) + Dy, (0)W(t) + Dyyy (0)u(t)
(1) = Cy (0)x(1) + Dy, (P)W(2) + Dy y (p)u(2)
(20)

- {Z-(r)=z(p)z(t)+5(p>y(t) @1)

u(t) = C(p)z(t)+ D(p)y(?)

Obtains an interpolated controller using
linear fractional transformational:

NEP ;
F(0),0(0) ={x(” AP +Blo(®) — (29)
(1) = E(P)x() + Do)

where [27]:
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4;(P)+ By, (0)D(p)Cyy (p) Bz.l(p)é(ﬂ):l
B(p)Cyy () A(p)

By, (p) +~BZJ (P)b(ﬂ)Dlz./ (ﬂ)}
B(p)D,,;(p)

C(0) =[ Cly () + Diay (P)D(P)Cay (p) Diay(P)C () ]

DA(,U) =| Dy, (0)+ Dy, (ﬂ)D(p)D21J (,O)J

B(p)

m{
|

(23)

To preserve the stability of the parameter-

variant nonlinear system, p must be constrained as a

bound on the variation rate of the gain-scheduling

variable. o(f) is considered to be an external
continuous signal with a value from set I'.

Theorem 3[26]: Consider interpolated controller

A(p) in the state-space from Hypothesis (1). If

W(/O) is a symmetrical and piece-wise smooth
positive definite matrix function:

A (o (p)+W(pAp) <1, pelo.m]  (24)

Closed-loop matrix
i) :[ Fio) G <p>C<p>} is stable (without
B(p)H(0) A(p)

considering input) for ,O(t ) € [,01 , ,02] , if:

0 WM b

|ole) < % , 120 (25)

The above theorem states that, if condition
(25) is satisfied for the rate of gain-scheduling,
the time-variant nonlinear system will be
stabilized by the interpolated controller from
linear fractional transformation (20) and (21).

DOF Pursuit Equations

Assuming aerodynamic symmetry of a rolling
channel and a low rate of variation for rolling
angle (p), the equations for apursuit with 6 DOF
are [28]:

X (U +qW —rV) L] [Ip
Y|=m (+rU) |, M |=|1, | (26)
Z (W —qU) N| | Lr

The aerodynamic forces and momentums of
the above equations are [24]:
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Y = QS(Cyﬁ,H +Cy. 8, +C) .%r]

(27)
Z=08C C, 0.+C D
=0 2, 0Tz, Ot Z,,'Eq
L= QSD[C,%éa +C, .%p)
M= QSD(Cmaa +Cp 8,4 Cy .%q] (28)

N= QSD[C%(Z+ Cpy0e+Cy. %rj

Since there is no control on acceleration
along the x axis the n body coordinate, the force
applied along thex axis in Eq. (27) is not
analyzed.

Usually, two loops are used to design an
autopilot for a pursuit. The first loop is for
angular speed and the second is for linear
acceleration. The transfer function of angular
speed of pitch by displacement of the vertical

rudder (ﬂ) and the transfer function of
Be(s)

acceleration along the z axis by angular speed
(aZ (S)

q(s)
and simplification with 6 DOF [24]:

) is written as follows after linearization

(29)
qls) Mgs+(ZsMy—ZogMs.)

&ls) 2 (M, +Zg V) +(2aMy Moz, )V -My)

(30)

a(s) Zast+Mgzy-2aM gl +(ZoMg ~Z5M )

q6) 52 —(My+ 2oV )5+ (zaMy ~Muz, )y -My)

The coefficients of the above equations are:

- Nepes e = S0PCny _SODCy,,
q » M6, Ma
m € 1 y 1 y
2
e - s0C; _S0C; Y- SOD"Cy,
ST fem T My
Y
G1)

Fig. 1 shows changes in the aerodynamic
coefficients for attack angle and mach in the
proposed non-linear pursuit model. Fig. 2 shows
the proposed linear model for design of the
controller. The internal loop is stabilized by the

selection of a suitable value for K gasa negative
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number between 0 and —1. The transfer function
of the actuator is:

o) 1002
3c() 2 41605 +1002

Gyt = (32)
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The external loop is for control of the linear
acceleration. The design of the autopilot is to
have controller Kin order to ensure the stability
and efficiency of the closed-loop system for all
flight intervals.

20 B—
—+— Mach=15 —
15| —*— Mach=2.0 |
—6—Mach=25 %/ T Hhﬁ&
=
& 10| —B—Mach=3.0 ,—v"iﬁj 1 & | —=—macn=15 ~
- 20| —*— Mach=2.0 ~
5 — —B— Mach=25
| e %0 —&— Mach=3.0
0O 2 4 6 8 10 12 14 16 18 22 0 2 4 6 & 10 12 14 16 186 20
alpha(degree) alpha(degree)
40 4 : T
—E—Mach=1.5 e
N W s e
—— Mach=2.5 L 50 T
§ 20| —— Mach=3.0 ] 5 F — -
Q — = hd P 5 —+— Mach=15 ~
e T
— 100 —+— Mach=20 —
10 __—f 100 3
[ IR N E——— — —&— Mach=25
\ | 150 —H—Mach=30]
o 2 4 6 8 10 12 14 16 18 20 g 2 4 6 8 10 12 14 16 18 20
alpha(degree) alpha(degree)
%&I—u—. 5 T T T T
——— -
Ry = [ —HB— Mach=15
2 e S
—— ach=2.0
8 4 S~ g 0 —— Mach=25
a o T Men=15 z \'ﬁ\ —5— Mach=3.0
5 | ——men=20 N 8 st | | .
8| —B—Mch=25 Y
gL =B Men=30 0 | L L L
o 2 4 6 8 10 12 14 16 18 N0 2 4 6 8 10 12 1

Figure 1. Changes of aerodynamic coefficients by mach and attack angle

Nominal
OpenLoop
______________________________________ ,
1
69 q a % : (253
K £ | G > 5 g >
i
1
1
1
Figure 2. The linear model of system in pitch channel and its autopilot
acceleration, dynamic pressure, and mach.

Autopilot Design and Results of
Simulation

A fixed-order robust autopilot was designed
assuming the parameter-dependent central
polynomial using the transfer functions from
Section 4. The gain-scheduled autopilot variables
were based on the measurable pursuit variables of

Selection of these variables as gain-scheduling
variables created a 3x3 sophisticated table. To
remove this sophistication, variables with the
most effect on the system were selected. Dynamic
pressure, O, which has the most effect on the
system, was selected to obtain the coefficients of
the transfer functions.
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Aerodynamic transfer functions depended on
0 and the gain-scheduling variable was also O (p
= ()).The attack angle and mach were averaged
for the total flight interval to obtain the transfer
functions. The dynamic pressure variable was
used as the gain-scheduling variable. The
dynamic pressures interval on the pursuit was
30000<Q<250000, which is equal to 0<h<14 km
in height. The algorithm to systematically select
the dynamic pressure interval and design the
controller for that interval as:
1. Assume minimum and maximum dynamic
pressure in the flight interval and divide the
dynamic pressure equally (e.g., by 1000).

2. Begin movement at maximum dynamic
pressure.  Calculate  the  aerodynamic
coefficients in Eq. (31) for each segment to

4S) g 426
e (s) q(s)
.First stabilize the internal loop (angular speed
loop) using a suitable gain K,as a negative
number between 0 and —1 (Fig. 2). Then
az(5)
e(s) .

obtain transfer functions

calculate open-loop transfer function

3. The maximum and minimum of each s
coefficient in the transfer function is assumed
to obtain the transfer function coefficients for
the dynamic pressure from Section 2. The n

coefficients are used to obtain2” new transfer
functions, each forming one vertex of the
polytopic system. For example, the transfer
function of the pitchchannel has 3 coefficients
in its numerator and 5 coefficients in its
denominator, which results in 128 systems
from the minimum and maximum number of
coefficients (no zero coefficient).

4. Assume a fixed-order stabilizing controller,
Ky, to stabilize the polytopic system without
efficiency constraints. This controller can be
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fixed-order wusing the constant central
polynomial method without the efficiency
constraints described by Khatibi et al.(2010)
[11]. This controller produces a closed-loop
specification polynomial similar to Eq. (3) for
each vertex of the polytope.

5. The sensitivity weight function is formed and
the central polynomial for each vertex is
calculated wusing Eq. (3). The central
polynomial must be unique.

6. Form polynomials S(s) and L(s) using Eq. (1) in
the polytopic state and divide them by the central
polynomials from Step 4 to obtain their
controllable canonical realizations. The linear
matrix inequalities from Theorem 1 are solved in
the polytopic state and the controller is obtained.

7. Return to Step 1 and repeat the algorithm in
increments of the dynamic pressure interval.
Continue until the linear matrix inequalities
are infeasible. The stability of linear system is
achieved with the solution of this inequality.
Fig. 3 shows the flowchart of this algorithm.

8. The efficiency criteria for high dynamic
pressure (>70000) were M, <10%, ¢, <Is,
and?, <0.7 s .For low dynamic pressures
(<70000),they were Mp <10%, t, <2 s, and

t, <l.5s. Table 1

pressure intervals and fixed-order autopilot
designed using this method.

shows the dynamic

Tables 1 and 2 indicate that the number of
local controllers decreased for the parameter-
variant central polynomial method (3) when
compared to the constant central polynomial
method (6). This is the result of the decrement of
conservation in the parameter-dependent central
polynomial method presented in Table 2.

Table 1. Dynamic pressure intervals and fixed-order robust local autopilots for each interval by parameter-
dependent central polynomial

Dynamic pressure interval

Fixed-order robust local autopilot

First interval 115,000 - 250,000

-0.0030946(s +16.46) (s +0.5397)
s (s+0.5802)

Second interval 62,000 - 117,000

-0.0070294(s +7.929) (s + 0.4623)
s (5+0.5693)

Third interval 30,000 - 64,000

-0.0081309 (s + 4.849) (s + 0.5034)
s(s+0.5184)
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Obtaining maximum and minimum
values for dynamic pressure in total
flight interval and its equal

fragmentation

Considering a stability-preserving
controller for the previous step
polytopic system and extracting the
close-loop specification polynomial:
Ei(s)= Li(s)lK:KO

Formation of an interval starting
from maximum dynamic pressure
and its decrement by each segment

v

Formulation of weight function and
calculation of the central polynomial
pointed in the previous step

coefficients in each dynamic
pressure and extracting open-loop
transfer functions for that pressure

v

Obtaining maximum and minimum
of each coefficient in the previous
step transfer functions and obtaining
2" new transfer functions (n is the
number of coefficients in the
previous step transfer functions)

v

Extraction of matrix
inequalities and solving them

Return to the

Are the matrix previous
inequalities solvable? selected
interval

Increment of dynamic
pressure interval

Figure 3. Flowchart of fixed-order autopilot designing process using parameter-dependent central polynomial.

Table 2. Fixed-order robust local autopilots by fixed central polynomial method

1'st interval 2'nd interval 3'd interval 4'th interval 5'th interval 6' interval
Q 145000— 250000 94000— 147000 68000— 96000 53000— 70000 38000— 55000 30000— 40000
9 ~0.005428 —TBSL 1o 0060303 ST 1 g 0074167 —ST8TT | 0005875 —SFO25 | 0006062 —STO2H 1 010009 —ST246 |
= SGs +0.9767) s(s +0.9371) S(s +0.3474) S(s +0.3861) S(s + 0.4978) S(s + 0.4519)
| x(s+0.9273) X (s +.7756) X (s +.0.361) (s +0.4079 ) X (5+0.4366 ) X (s+0.4177 )
=
)
-

Interpolated local autopilots were obtained

system. To test this assertion, a nominal open-

using the algorithm in Section 3. The equal
response of the autopilots to local autopilots
(input/output response) is the key element of this

loop transfer function in dynamic pressure
interval 1 was assumed with a common dynamic
pressure between intervals 1 and 2 and satisfying
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stability-preserving. The point selected for
interpolation as 116000; its pitch channel is an
open-loop transfer function (Fig. 2) in which the
input is pitch channel angular speed and the
output is acceleration along the body of the z
axis:

1.2629*10° y
(s+13.05) (s+9.073)
(s-24.12) (s+21.01)
(s>+ 141.2s + 7364)

G _OpenLoop =
(33)

Matrices ;11(,0) and 1:12(,0) were obtained
using local autopilots from Eq. (7). Matrices
A, (p)were the n obtained using Eq. (16).

B, (p), éw(p) and D, (p)were obtained using
Eq. (19). For example, matrix A(p)was:

~ = 117000-116000
=W (o) (—————
4.(0) ('0)(1 17000-115000

116000—-115000
117000-115000

Matrices W] and Wpwere constant and

symmetrical in interval [115000, 117000]. The
interpolated autopilot transfer function was

Wi 4,(115000) +

Wy 4, (117000)) (34

Step Response

Amplitude

Amplitude

H. Dehghani Firouzabadi and I. Mohammadzaman

calculated using Eqs. (20)-(23). The interpolated
autopilot transfer function for dynamic pressure
116000 was (index I is the interpolated autopilot):

_639.3 (s+1.302%10%) (s-1.972%10%)
L (6+2.982%10%) (s+1.405%10°) (s+84.4)
(s+82.27) (s+61.82) (s+21.01)
(s+0.5336) (s+13.76)(s> + 8.261s + 34.5)
(s+15.79)(s-24.12) (s+0.5397)
(s+59.48)(s> + 16.63s + 201.7)

(s> +16.81s + 204.3) (s+14.99) (s+10.55)
(s2 + 141.3s + 6965)(s+14.77)(s+10.52)

(35)

Fig. 4 shows the results of the stepped
response of the closed-loop system for the
interpolated and local autopilots. As seen, the
responses of the closed-loop systems in both
autopilots were equivalent.

The constant matrix W(p) for the interval
between both local controllers was obtained.
Variation rate o(f) is infinite using Eq. (25) and
there is no constraint on it, which is an advantage
in the design of an autopilot.

Step Response
12 T T T T

Time (seconds)

A

1) 0z 0.4 0g 0g 1 12 1.4 16
Titne (seconds)

B

Figure 4. Step response of closed-loop system by interpolated (A) and local (B) autopilots in dynamic pressure
116000.

The gain-scheduled autopilot is simulated
using the non-linear model to illustrate that
efficiency criteria for the flight path were
satisfied. Local autopilots are designed using the
parameter-variant  central  polynomial  for
interpolation of the nonlinear model. The pursuit

astail-controlled structure and therefore the
system is a non-minimum phase. Early in the
change process in the reference acceleration,
pursuit acceleration moved opposite to the
direction of reference acceleration and then
toward it. Fig. 5 shows the reference acceleration
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order compared to the real acceleration of a
pursuit. As shown, the efficiency criteria were
satisfied. Fig. 6 shows the changes in input
control signal by time and indicates that changes
in the wing angle were desirable and acceptable.

Fig. 7 shows the dynamic pressure and height
curves for different flight times. The dynamic
pressure increased up to 240000 and all nominal
points were stimulated according to the order of
input acceleration. Switching between the local
controllers was evident. Since the aerodynamic
coefficients are usually extracted experimentally
and numerically and may be inaccurate, the gain-
scheduled autopilot for 25% tolerance for each
aerodynamic coefficient was examined. Fig. 8
shows an efficiency criterionof25% tolerance and
indicates that the input order was closely
followed.

Refrence and Real Trajectory of Accelerometer in Pitch Axes
G0 T T T T T T T

ris?

10 20 30 40 a0 60 70 80

Figure 5. Pursuit acceleration in pitch axes.

Elevator defflection

degres

o 10 20 3o 40 a0 G0 70 a0

Figure 6. Input control signal.
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x 10 Dynarmic Pressure
25 T

Interpolation between first & second Interval | -

Interpolation between first & second Interval |
05k

Interpolation between Second & Third Interval | :

o 1 20 =0 40 50 60 70 80
S

height
14000 . . T :

12000

10000

8000

BO00

Arnplitude(m)

4000

2000

o L R R
1] 10 20 30 40 =0 [=n] 7o 80

Figure 7. Changes in dynamic pressure and height by
flight time.

Refrence and Real Trajectory of Accelerometer in Pitch Axes
210 T T T T T T T

m/s?

Figure 8. Pursuit acceleration with 25% tolerance of
aerodynamic coefficients.

Conclusion

A stable interpolation method in state-space is
proposed and used to design a pursuit autopilot.
This method interpolates local autopilots and
ensures stability of the parameter-variant system.
A new algorithm is proposed employing the
fixed-order controller design method for local
autopilots at nominal points with SSP between
adjacent autopilots. The fixed-order robust
controller design method uses the H.. approach in
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which a parameter-dependent central polynomial
is used with lower conservation than in the
constant type. The results of simulation with 6
DOF showed a desirable performance for the
final gain-scheduled controller.
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