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: Differential variable 
c: Command signal 

Introduction 
Autopilot design is a subject in control 
engineering and aerospace systems which is open 
to research. Nonlinear dynamics, time varying 
parameters, uncertainty in the model, variation of 
flight conditions and aerodynamic coefficients 
can cause complicated and challenging problems 
in autopilot design [1-6]. In many methods 
developed for designing the autopilot, a certain 
number of nominal points on the linear model of 
the system are considered and a linear time 
invariant autopilot is designed which provides the 
stability and performance in local areas around 
the nominal point of the nonlinear system. In this 
condition, by moving from this nominal point, 
changes in the system dynamics start to grow in 
ways that decrease the performance and stability 
of the system. 

Now adays, pursuits must not only have high 
manoeuvrability and allow the fast execution of 
input commands whilst preserving the stability, 
but also they must have a good robustness against 
the system parameters. Due to the simplicity and 
constancy of the controller, robust control 
methods have an advantage which results in 
situations where control is made possible by 
using these techniques, this method is preferred 
over the other methods of controller design. 
Different methods have been proposed in the 
design of robust controllers such as H∞ and μ 
synthesis. These methods are designed in a 
systematic way; moreover, they involve 
considerations of efficiency and robustness 
against uncertainties and have been used in 
autopilot design [6-9]. 

These methods also have disadvantages 
which make them difficult to work with. First, the 
choice of weights has a special complexity and 
the process of selecting weights must be repeated 
several times to achieve the desired stability 
margin. This is a time consuming procedure and 
it is also uncertain whether the achieved robust 
stability margin is the best stability margin. 
Moreover, in most robust design techniques, the 
designed controller has a full order, so that it is 
equivalent to the order of the weight function plus 
the order of the system [10].Therefore, its use 
leads to challenges in practical applications such 
as aerospace systems. Although, there are some 

methods for reducing the controller order, by 
approximating system models or approximating 
the high-order controller, these methods do not 
guarantee the fulfilment of the desired 
efficiencies [11]. For this purpose, fixed order 
controller has been a problem on which control 
designer shave recently focused [12-16].In this 
way the order of the controller is up to the 
designer and the performance can be achieved 
with a desired stability margin. For the controller 
design, uncertainties of physical parameters are 
modelled in a polytopand the design problem is 
converted into a convex problem by a central 
polynomial and then solved withan appropriate 
software. 

Gain-scheduling is one common method of 
controller design for parameter-dependent 
nonlinear systems, especially space systems [17-
18]. A lot of research has focused on autopilot 
design for these systems because of the 
complexity of the dynamic modelling of a 
pursuit, such as the system uncertainty, 
parameter-based dynamics and nonlinear 
aerodynamic behaviour [19-20]. 

In the traditional design method for gain-
scheduling, a nonlinear system becomes linear 
and employs local controllers at specified 
nominal points. Then, the linear controller is 
interpolated according to the existing methods in 
real time and concurrent with the system 
movement between the nominal points. There are 
different methods for conducting this 
interpolation. The advantage of these methods is 
that they are not conservative and an interpolated 
controller always exists [21-24]. The biggest 
disadvantage is that the stability of the final 
controller may not ensure a linear-based model 
interpolation invariant with time. 

Recently, several methods have been 
presented for designing gain-scheduled 
controllers for a parameter-variant closed-loop 
system by preserving the stability [18,25]. 
Among these methods based on parameter-variant 
systems and guarantees for the stability of the 
final gain-scheduling system, there is a method of 
interpolation involving observers and state 
feedback [25]. This method is complicated 
because of the interpolation of the state-space 
matrices. Another method, in which the stability 
of the final gain-scheduling system is insured, is 
the Yula-based parameter interpolation [18]. In 
this method, the most important condition for 
interpolation is stability preservation. It means 



/ 63 
Journal of  Aerospace Science and Technology 
Vol. 11/ No. 1/ Winter - Spring  2017

  
 
 

 
 

Robust Fixed-order Gain-scheduling Autopilot Design using  …

that locally designed controllers must ensure the 
stability of an open neighbourhood around a 
nominal point and an area of common stability 
must exist between the two adjacent local 
controllers so that the interpolation is possible. 

In this paper, a fixed-order robust autopilot is 
designed to ensure the stability and performance 
of the pursuit in any nominal point of the flight 
envelope. In the fixed order controller, a transfer 
function is proposed considering H norm 
constraints and using real positive and real 
bounded lemmas or small-gain theorem. Then, 
the numerator and denominator polynomials of 
this transfer function are divided by a central 
fixed-stable polynomial and the controllable 
canonical form of both transfer functions is 
obtained. The matrix inequality is solved using 
the Kalman-Yakubovich-Popov lemma assuming 
a common symmetrical positive matrix for its 
implementation. By solving this inequality, a low 
degree fixed-order controller is obtained. The 
designed controller has a high conservation 
caused by constant central polynomials for the 
vertexes of the polytopic system, which preclude 
linear matrix inequalities. To reduce the 
conservation, a variable central polynomial, 
called parameter-dependent central polynomial, is 
used. It means that a unique central polynomial is 
defined for each vertex of the polytopic system so 
that the conservation is strongly reduced and the 
autopilot is easier to design. In this way, the 
number of nominal points for the whole flight 
interval of the pursuit is reduced. Furthermore, 
the interpolation of Yula parameters has been 
applied for the stable interpolation between 
controllers which ensure stability in interpolated 
regions. Finally, a new systematic algorithm is 
proposed to design the robust autopilot while 
preserving the stability of a closed-loop system in 
the whole flight interval. The simulation results 
of the nonlinear system confirm the suitable 
performance of this autopilot. 

H Fixed-Order Controller 
The frequency response of the system and 
minimization of the H norm and robust stability 
margin can be written as: 




 )(

)(
)()(

sL

sS
sHsW

                              

 (1) 

in which, H(s) is the output sensitivity function or 
sensitivity complementary function,  is the 
robust stability margin, and S(s) and L(s) are two 
polynomials. In the small-gain theorem [10], the 
Hnorm constraint in Eq.(1) is equal to the robust 
stability of the uncertain polynomial: 

1),()( 
   sSsL                            (2) 

To design the fixed-order controller using a 
parameter-dependent central polynomial, a 
primary fixed-order stabilizer controller, K0, is 
assumed to stabilize the polytopic system without 
efficiency constraints. For each vertex of this 
polytope, the controller concludes a closed-loop 
specification polynomial as the desired central 
polynomial [14]: 

0
)()( KKii sLsE 

                                            
 (3) 

Theorem 1[14]:Consider K0 for a given polytopic 
system (without an efficiency constraint). Fixed-
order controller K(s) becomes: 
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The controller stabilizes the closed-loop 
system containing uncertainties and satisfies the 
H efficiency condition in Eq. (1) for the 
polytopic system if the symmetrical matrix

T
ii PP   and scalar i  and matrix Q exist, so that 

qi ,...,1 produces: 
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(5)  
in which ( , , , )i li liA B C D  and ( , , , )i si siA B C D  

are controllable canonical realizations of the 

transfer functions 
( )

( )
i

i

L s

E s
 and ( )

( )
i

i

S s

E s
, 

respectively. 
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Gain-Scheduled Controller Using 
Stability-Preserving Interpolation 

Definition 1 [18]: A parameter-variant linear 

system    is assumed in which nRtx )(  is 

the state matrix, mRtu )(  is the control signal, 

epRte )(  is the output, wmRtw )(  is the 

external signal, and pRty )(  is the measured 
signal: 














)()()()()(

)()()()()()()(

)()()()()()()(

212

12111

21

twJtxHty

tuJtwJtxHte

tuGtwGtxFtx






 (6)

 

 

in which lR  and  is a closed set of the 
domain of gain-scheduled variables.  
Assume  ,...,1  as time-invariant linear 

controllers for constant values q ,...,1 , so 

that each controller can preserve the stability of 
its corresponding time-invariant linear system 
 i . 

Preserving stability is the most important 
condition in a stability-preserving interpolation 
for time-invariant linear controllers. It must exist 
in open neighborhood iU that includes i  to 

stabilize the local controller i , so that i  

stabilizes the system    for all 

q.1,...,i   ,  iU  Assuming satisfaction of 

condition ,1q
i iU  the local controller 

covers all scheduling space. Hypothesis 1 
achieves the stability-preserving conditions. 

 

Hypothesis 1[26]:Assume the local controllers 

q ,...,1  as designed at points 

  Rqq   ,,..., 1`1 and that their existing 

open intervals qUU ,...,1 , so that each iU  

includes i  and i  for each iU , and 


q

i
iU

1
 stabilizes system   . Since stability-

preserving interval iU  is open, there are intervals 

  1,...,1,, 1   qiUUba iiii  so that 

controllers i and 1 i stabilize system    for 

all  ii ba , . 
Theorem 2 offers a local controller interpolation 
and shows that the interpolated controller can 
stabilize the given system. 

 

Theorem 2[18]: Assume a parameter-variant 
linear system    with dimension n in Eq. (6) 

and parameter ],[ ba .Assume time-invariant 

linear controllers 1  and 2  with dimensions 

kn  so that 1  preserves the stability of system 

   in ),[ da  and 2  preserves the 

stability of system    in ],( bc  while 
stability-preserving is satisfied. Parameter-variant 

)(  with dimension knn 2  exists where  
is stable for all ],[ ba  and )(a and )(b have 

equal transfer functions, 1 and 2 , respectively. 

The coefficients of matrix )(  are continuous 

functions of variable  . 
In the stable interpolation of the state-space 

matrix of the parameter-variant linear system and 
time-invariant linear controller, linear fractional 
transformations used to design the interpolated 
controller. Local controllers can have any degrees 
or dimensions, but the degrees and dimensions of 
two adjacent controllers with a common area 
must be equal. The process of finding the 
interpolated controller between two adjacent 
controllers with a common area [14] is: 
1. Consider a parameter-variant linear system for 

Eq. (6). Local time-invariant autopilot state-
space realizations ( iA , iB , iC , iD ) have order 

kn  so that autopilot 1  can preserve the 

stability of    in interval ),[ da  and 

autopilot 2  can preserve the stability of 

   in interval ],( bc  (c<d) and stability-
preserving is satisfied. In interval [c,d], 

10    ( 1,0  dc ). 

2. The closed-loop stable matrix )(
~ iA  is: 













ii

ii
i AHB

CGHDGF
A

)(

)()()()(
)(

~

2

222





      

(7)  

3. Using )(1 W  and )(2 W  as positive 
symmetrical matrices, the following linear 
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matrix inequality is solved and matrices )(1 W  

and )(2 W  will be obtained for all . 

 1 1

1 1

( ) ( )

( ) ( ) , [ , )

TA W

W A I a d

 
  



 




                        (8)

 
 

2 2

2 2

( ) ( )

( ) ( ) , ( , ]

TA W

W A I c b

 
  



  




                       (9)  

4. Matrices Li and Ki are obtained using the 
following linear matrix inequalities: 

1
2

1
2

( ( ) ( ) ( )) ( )

( )( ( ) ( ) ( ))

T
i i i i

i i i i

F G K R

R F G K I

   
   





 
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                 (10) 

2

2

( ( ) ( ) ( )) ( )

( )( ( ) ( ) ( ))

T
i i i i

i i i i

F L H S

S F L H I

   
   

 
  

                     (11) 

where 2,1,)(),(   iRSR nn
ii  is: 

1

( ) ( )
( ) ,

( ) ( )

( ) ( )
( )

( ) ( )i

i i
i T

i i

i i
T
i i

S N
W

N P

R M
W

M Q

 


 
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
 



 
  
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 

  
 

                                 

 (12)

  

where 2,1,)(),(  iRQP kn
ii  . 

Matrices L and K are defined as: 
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dcRRKRK
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












                                                                      (13)

 

Where: 
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
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)()()1()(
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5. Define the following matrices as: 

 (15)     

2

2

( ) ( )
( )

( ) ( ) ( ) ,

( )

i
i

i

i i i

i i

L G D
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D D
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6. )(
~ wA  is: 

 
1

1 1 2 2
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wA W

W c A c W d A d

 
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 

 
     (16) 

Where: 

 (17)    )()()1()(
~

21 dWcWW    
Eq. (16) is stable for all ],[ ba . In 

practice, matrices )(1 W  and )(2 W  are 
considered constant to simplify the solution to the 
equations. In this case, the interpolation is 
converted to a stable linear interpolation and Eq. 
(16) is written as: 

)(
~

)(
~

)1()(
~

21 dAcAAw    

Obtain matrices )(
~ A ، )(

~ B  ، )(
~ C and )(

~ D  as: 
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where matrices ( )B   ، ( )C  and ( )D   are 

obtained by replacing X. 
7. Defining systems J() and Q() as: 
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Obtains an interpolated controller using 
linear fractional transformational: 

(22)  
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where [27]: 
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(23) 
To preserve the stability of the parameter-

variant nonlinear system,  must be constrained as a 
bound on the variation rate of the gain-scheduling 
variable. (t) is considered to be an external 
continuous signal with a value from set . 
Theorem 3[26]: Consider interpolated controller 
   in the state-space from Hypothesis (1). If 

 W  is a symmetrical and piece-wise smooth 
positive definite matrix function: 
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Closed-loop matrix  
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The above theorem states that, if condition 
(25) is satisfied for the rate of gain-scheduling, 
the time-variant nonlinear system will be 
stabilized by the interpolated controller from 
linear fractional transformation (20) and (21). 

DOF Pursuit Equations  

Assuming aerodynamic symmetry of a rolling 
channel and a low rate of variation for rolling 
angle (ρ), the equations for apursuit with 6 DOF 
are [28]: 
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The aerodynamic forces and momentums of 

the above equations are [24]: 

 (27)
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Since there is no control on acceleration 
along the x axis the n body coordinate, the force 
applied along thex axis in Eq. (27) is not 
analyzed.  

Usually, two loops are used to design an 
autopilot for a pursuit. The first loop is for 
angular speed and the second is for linear 
acceleration. The transfer function of angular 
speed of pitch by displacement of the vertical 

rudder )
)(

)(
(

s

sq

e
and the transfer function of 

acceleration along the z axis by angular speed 

)
)(

)(
(

sq

saz  is written as follows after linearization 

and simplification with 6 DOF [24]: 
 (29)
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The coefficients of the above equations are: 
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(31)  
Fig. 1 shows changes in the aerodynamic 

coefficients for attack angle and mach in the 
proposed non-linear pursuit model. Fig. 2 shows 
the proposed linear model for design of the 
controller. The internal loop is stabilized by the 
selection of a suitable value for qK as a negative 
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number between 0 and –1. The transfer function 
of the actuator is: 

22

2

100160

100
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(s) 




sss
G

c

e
act 


               (32) 

 

The external loop is for control of the linear 
acceleration. The design of the autopilot is to 
have controller Kin order to ensure the stability 
and efficiency of the closed-loop system for all 
flight intervals. 

 

Figure 1. Changes of aerodynamic coefficients by mach and attack angle 

 

Figure 2. The linear model of system in pitch channel and its autopilot 

Autopilot Design and Results of 
Simulation 

A fixed-order robust autopilot was designed 
assuming the parameter-dependent central 
polynomial using the transfer functions from 
Section 4. The gain-scheduled autopilot variables 
were based on the measurable pursuit variables of 

acceleration, dynamic pressure, and mach. 
Selection of these variables as gain-scheduling 
variables created a 33 sophisticated table. To 
remove this sophistication, variables with the 
most effect on the system were selected. Dynamic 
pressure, Q, which has the most effect on the 
system, was selected to obtain the coefficients of 
the transfer functions.  
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Aerodynamic transfer functions depended on 
Q and the gain-scheduling variable was also Q (ρ 
= Q).The attack angle and mach were averaged 
for the total flight interval to obtain the transfer 
functions. The dynamic pressure variable was 
used as the gain-scheduling variable. The 
dynamic pressures interval on the pursuit was 
30000<Q<250000, which is equal to 0<h<14 km 
in height. The algorithm to systematically select 
the dynamic pressure interval and design the 
controller for that interval as: 
1. Assume minimum and maximum dynamic 

pressure in the flight interval and divide the 
dynamic pressure equally (e.g., by 1000). 

2. Begin movement at maximum dynamic 
pressure. Calculate the aerodynamic 
coefficients in Eq. (31) for each segment to 

obtain transfer functions 
)(

)(

s

sq

e
 and 

)(

)(

sq

saz

.First stabilize the internal loop (angular speed 
loop) using a suitable gain Kqas a negative 
number between 0 and –1 (Fig. 2). Then 

calculate open-loop transfer function
)(

)(

s

sa

e

z


. 

3. The maximum and minimum of each s 
coefficient in the transfer function is assumed 
to obtain the transfer function coefficients for 
the dynamic pressure from Section 2. The n 

coefficients are used to obtain n2  new transfer 
functions, each forming one vertex of the 
polytopic system. For example, the transfer 
function of the pitchchannel has 3 coefficients 
in its numerator and 5 coefficients in its 
denominator, which results in 128 systems 
from the minimum and maximum number of 
coefficients (no zero coefficient). 

4. Assume a fixed-order stabilizing controller, 
K0, to stabilize the polytopic system without 
efficiency constraints. This controller can be 

fixed-order using the constant central 
polynomial method without the efficiency 
constraints described by Khatibi et al.(2010) 
[11]. This controller produces a closed-loop 
specification polynomial similar to Eq. (3) for 
each vertex of the polytope. 

5. The sensitivity weight function is formed and 
the central polynomial for each vertex is 
calculated using Eq. (3). The central 
polynomial must be unique. 

6. Form polynomials S(s) and L(s) using Eq. (1) in 
the polytopic state and divide them by the central 
polynomials from Step 4 to obtain their 
controllable canonical realizations. The linear 
matrix inequalities from Theorem 1 are solved in 
the polytopic state and the controller is obtained. 

7. Return to Step 1 and repeat the algorithm in 
increments of the dynamic pressure interval. 
Continue until the linear matrix inequalities 
are infeasible. The stability of linear system is 
achieved with the solution of this inequality. 
Fig. 3 shows the flowchart of this algorithm. 

8. The efficiency criteria for high dynamic 
pressure (>70000) were %10pM , sts 1 , 

and str 70. .For low dynamic pressures 

(<70000),they were %10pM , sts 2 , and

str 51. . Table 1 shows the dynamic 
pressure intervals and fixed-order autopilot 
designed using this method. 

Tables 1 and 2 indicate that the number of 
local controllers decreased for the parameter-
variant central polynomial method (3) when 
compared to the constant central polynomial 
method (6). This is the result of the decrement of 
conservation in the parameter-dependent central 
polynomial method presented in Table 2. 

 

Table 1. Dynamic pressure intervals and fixed-order robust local autopilots for each interval by parameter-
dependent central polynomial 

Dynamic pressure interval Fixed-order robust local autopilot 

First interval 115,000 - 250,000 
0.5802)+(s s 

0.5397)+(s 16.46)+(s 0.0030946-  

Second interval 62,000 - 117,000 
0.5693)+(s s

0.4623)+(s 7.929)+(s 0.0070294-  

Third interval 30,000 - 64,000 
0.5184)+(s s   

0.5034)+(s 4.849)+(s 0.0081309-  
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Figure 3. Flowchart of fixed-order autopilot designing process using parameter-dependent central polynomial. 

 Table 2. Fixed-order robust local autopilots by fixed central polynomial method 

 1'st interval 2'nd interval 3'd interval 4'th interval 5'th interval 6' interval 

Q 250000145000  14700094000  9600068000 7000053000 5500038000  4000030000

C
ontroller 

)0.9273+s(

0.9767)+s(s

13.51+s
0.005428-



 
).7756+s(

0.9371)+s(s

11.25+s
0.0062323-



 
.0.361)+(s

0.3474)+s(s

8.797+s
0.0074167-



 
)0.4079+s(

0.3861)+s(s

6.295+s
0.0095875-



 
)0.4366+s(

0.4978)+s(s

6.244+s
0.0096962-



 
)0.4177+s(

0.4519)+s(s

5.246+s
0.010029-



 

 

Interpolated local autopilots were obtained 
using the algorithm in Section 3. The equal 
response of the autopilots to local autopilots 
(input/output response) is the key element of this 

system. To test this assertion, a nominal open-
loop transfer function in dynamic pressure 
interval 1 was assumed with a common dynamic 
pressure between intervals 1 and 2 and satisfying 
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stability-preserving. The point selected for 
interpolation as 116000; its pitch channel is an 
open-loop transfer function (Fig. 2) in which the 
input is pitch channel angular speed and the 
output is acceleration along the body of the z 
axis: 

5

2

1.2629*10
_

(s+13.05) (s+9.073)

    (s-24.12) (s+21.01)

 (s + 141.2s + 7364)

G OpenLoop  

            

 (33)  

Matrices 1( )A   and 2( )A  were obtained 
using local autopilots from Eq. (7). Matrices 

( )wA  were the n obtained using Eq. (16).

( )wB  , ( )wC  and ( )wD  were obtained using 

Eq. (19). For example, matrix ( )A  was: 

1
1 1

2 2

117000 116000
( ) ( )( (115000)

117000 115000
116000 115000

(117000))
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wA W W A

W A

   





 

      (34)
 

Matrices 1W  and 2W were constant and 
symmetrical in interval [115000, 117000]. The 
interpolated autopilot transfer function was 

calculated using Eqs. (20)-(23). The interpolated 
autopilot transfer function for dynamic pressure 
116000 was (index I is the interpolated autopilot): 

 
5 4

4 5

2

2

639.3 (s+1.302*10 ) (s-1.972*10 )

(s+2.982*10 ) (s+1.405*10 ) (s+84.4)
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(s+0.5336) (s+13.76)(s  + 8.261s + 34.5) 

(s+15.79)(s-24.12) (s+0.5397)

(s+59.48)(s  + 16.63s + 20
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

2

2

1.7)

(s  + 16.81s + 204.3) (s+14.99) (s+10.55)

(s  + 141.3s + 6965)(s+14.77)(s+10.52)


    (35)  

 

Fig. 4 shows the results of the stepped 
response of the closed-loop system for the 
interpolated and local autopilots. As seen, the 
responses of the closed-loop systems in both 
autopilots were equivalent. 

The constant matrix W() for the interval 
between both local controllers was obtained. 
Variation rate (t) is infinite using Eq. (25) and 
there is no constraint on it, which is an advantage 
in the design of an autopilot. 

  
A                                                                                               B 

Figure 4. Step response of closed-loop system by interpolated (A) and local (B) autopilots in dynamic pressure 
116000. 

The gain-scheduled autopilot is simulated 
using the non-linear model to illustrate that 
efficiency criteria for the flight path were 
satisfied. Local autopilots are designed using the 
parameter-variant central polynomial for 
interpolation of the nonlinear model. The pursuit 

astail-controlled structure and therefore the 
system is a non-minimum phase. Early in the 
change process in the reference acceleration, 
pursuit acceleration moved opposite to the 
direction of reference acceleration and then 
toward it. Fig. 5 shows the reference acceleration 
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which a parameter-dependent central polynomial 
is used with lower conservation than in the 
constant type. The results of simulation with 6 
DOF showed a desirable performance for the 
final gain-scheduled controller. 
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