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transportation. Generally, it costs 25,000 US$ to put 
one kilogram of a payload in the Earth orbit. 
Therefore, MEMS devices are essential for the future 
space missions. The analog nature of MEMS actuators 
and their device characteristic uncertainties, due to the 
manufacturing tolerances, make the implementation of 
device impractical and/or require costly calibrations. 
In addition, the nonlinear characteristics of MEMS 
actuators could result in instability over an extended 
actuation range in the open-loop operation. This added 
complexity combined with the submicron precision 
requirement calls for the development of 
comprehensive dynamic modeling frameworks along 
with robust controllers. 

Several control strategies have been proposed in 
the literature for the MEMS optical switch. Owusuet 
al. [3] designed a controller based on the feedback 
linearization to compensate the nonlinearity in the 
system dynamics, and succeeded in stabilizing 
theswitch position of the MEMS optical switch. 
However, the result was not acceptable by applying 
the disturbances/uncertainties to the plant. 
Ebrahimietal.[4] presented a robust controller based on 
the traditional sliding mode theory for a MEMS optical 
switch. Vali et al. [5] introduced the quantitative 
robust feedback theory to control a nonlinear MEMS 
optical switch in the presence of parameter variations 
and unknown disturbances. One of the most important 
differences between “macro-scale” and “micro-scale” 
control design is the added modeling uncertainties and 
nonlinearities in“micro-scale”. Hence, the 
implementation of the proposed controller is 
attenuated by increasing the inherent complexity of the 
system. 

For the stabilization of anoptical switch, it is 
necessary to dynamically estimate the switch position 
and velocity. Because, when the switch is near the 
completely closed or open situation, there is no 
position information available as a feedback for the 
control system. Thus, state observers have been 
introduced to overcome this problem. In [3] a simple 
nonlinear observer is used to estimate the state 
variables for a system with Lipschitz nonlinearity in 
the output characteristics. In this paper, two sliding 
mode observers are proposed to estimate the state 
variables for an uncertain nonlinear system. The main 
advantages of the sliding mode observer are robustness 
against disturbances/unmodeled dynamics, 
insensitivity to parameter variations, compact 
implementation and efficiency for the standard output 
system. 

This paper consists of three major parts. In the 
first part, two robust sliding mode observers are 
considered to estimate the switch position and velocity 
of a MEMS optical switch in the presence of an 
unknown, but bounded disturbance: 1) first order 
sliding mode observer (FOSMO) based on the 
Lyapunov second method [6,7] and 2) second order 

sliding mode observer (SOSMO) based on the super-
twisting algorithm (STA) [8]. In practice, the second 
order sliding mode observers are used to estimate the 
velocity of the system independent of the controller 
design and they are still successfully implemented to 
solve the various problems. 

In the second part, the estimated state variables 
are utilized to design the sliding mode controllers. 
Theyenable the compact realization of a robust 
controller, tolerant of device characteristics variations, 
nonlinearities, and types of inherent instabilities. The 
main drawback of this approach is the high frequency 
switching called chattering, which can excite the 
unmodeled high frequency dynamics and make the 
system unstable [9]. Second order sliding mode control 
based on STA is one of the recently developed 
techniques to overcome this difficulty. Here, the 
discontinuous control acts on the second derivative of 
the sliding variable instead of the first derivative in the 
traditional sliding mode control to remove the 
chattering effect while preserving the advantages of 
the traditional sliding mode control [10, 11]. Despite 
the popularity of the STA, it has a major flaw. STA is 
not robust against disturbances/uncertainties that 
change with the state variables. One of the methods to 
enhance the robust performance in the SMC theory is 
to eliminate the reaching phase using the time-varying 
sliding mode control (TVSMC) strategy. The concept 
of TVSMC was introduced by Choi et al. [12] and 
Bartoszewicz [13]. TVSMC can shorten the reaching 
phase via a shifting or rotating sliding surface. 
Yongqianget al. [14] studied the attitude stabilization 
of a rigid spacecraft based upon the different TVSMCs 
by designing the switching time between sliding 
surfaces. In the previous papers, the designed sliding 
surface included switching time and the designed 
controller pertained against the initial conditions to 
shift or rotate the sliding surface. In the present paper, 
we propose a new TVSMC algorithm without 
describing the switching time and a designer is able to 
select both time-varying function and a procedure to 
shift (known as “intercept-varying”) and/or rotate 
(known as “slope-varying”) the sliding surface 
optionally for every initial conditions. As a result, the 
main contributions of this paper are to employ: 

 Robust observers and controllers simultaneously based 
on the first- and second-order sliding mode control 
theories for the MEMS optical switch. These devices can 
be used in space missions (e.g. remote sensing and 
communication satellites) because of the presence of 
high resolution and reliability, and minimum weight, size 
and power consumption. 

 Time-varying sliding mode control technique to enhance 
the robustness of the second-order sliding mode in the 
presence of parameter uncertainty. The proposed 
TVSMC does not need any switching time between 
sliding surfaces and it can be applied to the various SMC 
strategies with any initial conditions. 
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Mathematical Model  
A general optical switch structure consisting of an 
electrostatic comb drive, the body of the device, and 
a blade or shuttle is shown in Fig.1. Thevoltage 
applied to the comb drive actuator generates a force 
that moves the shuttle attached micro-mirror that 
cuts a light beam exiting a transmitting fiber and 
being collected in a receiving and modulating 
density. 

In order to derive a mathematical model of system 
dynamics it is needed to determine parameters of the 
relevant differential equation that describes forces 
acting on the shuttle. It is assumed that the shuttle has 
one degree of freedom and moves only in one 
direction. It is important to mention that there might be 
other degrees of freedom, like rotation around the 
main body axes, translation along them, as well as 
different vibrational modes. However, only the main 
degree of freedom will be considered in this paper and 
also the related materials for modeling purpose are 
referred to [15]. 

The mathematical model of the switch has three 
main components: an electrical, a mechanical and an 
optical component. Altogether, the system can be 
described with a second order nonlinear differential 
equation as: ݉ݔሷ + ,ݔ)݀  ሶݔ ) + (ݔ)݇  =  ݂(ܸ, ܲ (ݔ = ℎ(ݔ)(1) 

(1) 

wherem is the effective moving mass of the 
shuttle, d is a function describing losses such as 
damping and friction, k is the stiffness of the 
suspension, f is the electrostatic force acting on the 
model, P is light intensity and x is the shuttle position. 

 

 

Figure 1. Image of a MEMS optical switch  

The system exact parameters m, d, k and f are not 
easy to obtain and we will go step by step to determine 
all of these parameters. First, the electrical model is 
built and thenthe optical model connects the position 
of the shuttle to the intensity of the sensed light. 

Electrical Model 

The electrical part of the model considers generation 
of the induced electrostatic force by applying voltage 
to the actuator. The capacitance of the comb drive as a 
function of position should be determined first. 
Capacitance of the comb drive can be calculated as the 
sum of all of parallel capacitances among pairs of 
comb electrodes. The total capacitance is given as a 
function of position by[15]: (ݔ)ܥ = ఌబ஺ௗಸ   = ଶ௡ఌబ்(௫ା௫బ)ௗಸ   

(2) 

whereߝ଴ = 8.854 × 10ିଵଶି݉ܨଵ is the dielectric 
constant of vacuum, n is the number of the movable 
comb fingers (n=150), T is thickness of the structural 
layer (ܶ =  is the length of the gap betweenீ݀,(݉ߤ35
fingers (݀ீ =  ଴ is the overlapped lengthݔ and ( ݉ߤ2.6
of fingers when no voltage is applied (ݔ଴ =  At .(݉ߤ15
rest position, the capacitance of the comb drive is 
about 0.27ܨ݌ when ݔ = 0 and ݔ =  which ,݉ߤ15
increases as force is applied and the fingers move 
closer. Generally, the electrostatic force of the 
capacitor is given as theproduct of squared voltage and 
change of capacitance with respect to position as: ݂(ܸ, (ݔ = ଵଶ ܸଶ డ஼డ௫  (3) 

whereVis the voltage applied over the electrodes. By 
combining (2) and (3) electrostatic force can be 
calculated as: ݂(ܸ, (ݔ = ௡ఌబ்ௗಸ ܸଶ  = ݇௘ܸଶ  

(4) 

where݇௘ is defined as the input gain ofthe system 
with the value of ݇௘ = 17.8 ݊ܰ ܸଶ⁄ . 

It is interesting to note that capacitance (2) 
depends linearly on position over a wide range of 
deflections. It is one of the most important 
characteristics of the comb drive. Generally, for other 
configurations, this is not the case and capacitance is a 
higher nonlinear function of position ݔ. It should be 
noted that the linear relationship does not hold for 
extreme deflections and may cause considerable 
undesired results that necessitate using a robust control 
scheme to meet such uncertainties. 

Mechanical Model 

In order to obtain the mechanical model of the system, 
three parameters namely, the effective moving mass m, 
the damping coefficient d and stiffness of the 
suspension khave to be determined.Effective mass for 
the switch can be expressed as [15] ݉ = ݉௠௜௥௥௢௥ + ଵଶ ݉௥௜௚௜ௗ + 2.74 ݉௕௘௔௠  (5) 

when calculated, the effective mass of the system 
is݉ = 2.39 × 10ିଽ ݇݃. 
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Stiffness is generally a nonlinear function of 
position f=k(x). For most metals and for silicon spring-
like structures, it can be described as ݇(ݔ) =  ݇௫ݔ + ݇௫ଷݔଷ. For the suspension given in this paper, 
stiffness of the beam is assumed to be a linear function 
of the position and its coefficient is given as ݇௫ = ݇ =0.46 ܰ ݉⁄ . 

Damping, or energy dissipation, is the most 
difficult parameter to be determined analytically, 
despite usingFEA. The reason lies in the number of 
different mechanisms that cause it including friction, 
viscous forces, drag, etc. We will consider viscous 
forces as theprimarycauses of damping. Four different 
mechanisms contribute to damping, Couette flow, 
Poiseuille flow, Stokes flow, and Squeeze film 
damping [16]. Generally, they can be summarized as ௗ݂ = (݀௫ݔ + ݀଴)ݔሶ . When actual parameters are 
substituted, damping is expressed as [17]: 

 
,ݔ)݀  ሶݔ ) = ݔ)0.0363  + 15 × 10ି଺)ݔሶ   (6) 

Optical Model 

The optical model is simply a function that connects 
the intensity of light to the position of the blade as in 
Fig.2. Light beam is intercepted by the blade, 
increasing and decreasing the throughput of light. The 
Rayleigh-Somerfield model is based on a Gaussian 
distribution of the intensity across the light beam. 

Transmitted power can be described as [17]: 
 
 = ଵଶ ቂ1 − Erf ቀ√ଶ(௫ିఎబ)௪భ ቁቃ              (7) 

 

Figure 2. Optical Model 

whereݓଵ = ଴ߟ and ݉ߤ 10.9 =  .݉ߤ 11.2
The relationship between the power ratio and the 

position of the mirror is shown in Fig.3.It is important 
to note that the attenuation curve is saturated by the 
error function which makes it difficult to reconstruct 
the states in saturation region for control design 
purposes. 

 

Figure 3. Power ratio against displacement 

Consequently, integrating the created models for 
each section and applying the procedures done for 
increasing accuracy of the model in [2], result in the 
nonlinear mathematical model of the switch as: 
ሷݔ  = ଵଶ.ଷହ×ଵ଴షవ ݔ0.0363)−] + 4.5 ×10ିଷ)ݔሶ − ݔ0.6 + 1.9 × 10ି଼ܸଶ ,ݐ)ߦ+ ,ݔ ሶ,ݔ ܸ)]  
 

 
(8) 

whereܸଶ (quadric term in voltage) is the input and ߦ 
represents the uncertainties affecting the MEMS 
optical switch which is assumed to be bounded toa 
positive known termݐ)ߟ, ,ݔ ሶݔ ). As mentioned above, 
these uncertainties mostly come from simplifications 
in electrical and mechanical model of device.  

Design of Sliding Mode Observers 

Sliding mode observers are very useful means which 
have been developed for many reasons like working 
with reduced observation error dynamics, possibility 
of obtaining a step by step design, a finite time 
convergence for all the observable states and 
robustness against uncertainties [6].   

At first, a traditional first order sliding mode 
observer (FOSMO) is proposed. The well-known 
problems whenusing the FOSMOs are the relative 
degree one requirement and the chattering phenomena. 
In order to deal with these limitations while preserving 
the main advantages of the FOSMOs such as finite-
time convergence and robustness against disturbances, 
second order sliding mode observers (SOSMO) are 
proposed for system state observation. This kind of 
observer does not require the relative degreeof the 
sliding manifold to be one, and can totally remove the 
chattering effect [8]. 
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First Order Sliding Mode Observer (FOSMO) 
Design 

The state space representation of (8) can be rewritten 
as: ݔሶଵ = ሶଶݔ  ଶݔ = − ௞௠ ଵݔ − ଵ௠ (݀ଵݔଵ + ݀଴)ݔଶ            + ௞೐௠ ܸଶ + ,ݐ)ߦ ,ଵݔ ,ଶݔ ݕ  (ܸ =   ଵݔ

 
(9) 

 

where ݔ = ଵݔ] ,ଵݔ ଶ]், andݔ  ଶ denote the switchݔ
position and velocity, respectively.  

Lets consider a traditional sliding mode observer 
for the MEMS optical switch (9) as [6]: 
ොሶଵݔ  = ොଶݔ + ଵݔ)ଵ signߣ − ොሶଶݔ (ොଵݔ = − ݇݉ −           ଵݔ 1݉ (݀ଵݔଵ + ݀଴)൫ݔොଶ + ଵݔ)ଵ signߣ − +           ොଵ)൯ݔ ݇௘݉ ܸଶ + ଵݔ)ଵ signߣ)ଶ signߣ −  ((ොଵݔ

 
 
 
(10) 

 
By taking = ݔ −  ො , the error observation dynamicsݔ
are obtained from (9) and (10) as: 
 ሶ݁ଵ = ݁ଶ − ଵ sign(݁ଵ) ሶ݁ଶߣ = − 1݉ (݀ଵݔଵ + ݀଴)൫݁ଶ − ଵߣ sign(݁ଵ)൯           +ݐ)ߦ, ,ଵݔ ,ଶݔ ܸ) −  (ଵ sign(݁ଵ)ߣ)ଶ signߣ

 
 
(11) 

 

Now, let us consider the nonempty manifold ݏଵ =൛݁ଵ ݁ଶൗ = 0ൟin which the attractivity ofݏ is proved by 
using the second method of Lyapunov. Let the 

Lyapunov function be ଵܸ = ଵଶ ݁ଵଶ . Differentiating ଵܸ 

with respect to time results in: 
 ሶܸଵ = ሶ݁ଵ݁ଵ      = ݁ଵ൫݁ଶ −  ଵ sign(݁ଵ)൯ߣ

(12) 

 
Obviously, if ߣଵ is chosen sothat ߣଵ > |݁ଶ|௠௔௫, then ሶܸଵ < 0 is sufficiently ensured. It means that by 
decreasing the Lyapunov function with respect to time, 
the convergence to the sliding surface ݏଵ = 0 will be 
obtained in finite timeݐଵ. In other words, for ߣଵ >|݁ଶ|௠௔௫, ݔොଵ converges to ݔଵ in finite time and remains 
equal to ݔଵ for ݐ > ݐ ଵ. Moreover, forݐ >  ଵ, ሶ݁ଵ≈0, soݐ
that from (11) 
 ݁ଶ =  ଵ sign(݁ଵ) (13)ߣ
 

After timeݐଵ, the observantion error dynamics are 
now equal to  ሶ݁ଵ = 0 ሶ݁ଶ = ,ݐ)ߦ ,ଵݔ ,ଶݔ ܸ) −  ଶ sign(݁ଶ)ߣ

 
(14) 

 

By setting ଶܸ = ଵଶ (݁ଵଶ + ݁ଶଶ), 

 

ሶܸଶ = ݁ଵ ሶ݁ଵ + ݁ଶ ሶ݁ଶ = ݁ଶ൫ݐ)ߦ, ,ଵݔ ,ଶݔ ܸ) − ଶߣ sign(݁ଶ)൯ 
 (15) 

Consequently,݁ଶ goes to zero in finite time ݐଶ ଶߣ ଵifݐ< > ,ݐ)ߟ ,ݔ ሶݔ ). In practice, the signum function sign(݁) can be replaced by a continuous function 
௘|௘|ାఊ  

to alleviate chattering, where ߛ is a positive scalar 
constant. 

Second Order Sliding Mode Observer 
(SOSMO) Design 

In order to estimate the state variables of the MEMS 
optical switch without chattering effect, the following 
second order sliding mode observer is designed as [8] 
ොሶଵݔ  = ොଶݔ + ଵݔ|ߚ − ොଵ|ଵݔ ଶ⁄ sign(ݔଵ − ොሶଶݔ (ොଵݔ = − ݇݉ ଵݔ − 1݉ (݀ଵݔଵ + ݀଴)ݔොଶ + ݇݁݉ ܸଶ + ߙ sign(ݔଵ −  (ොଵݔ

 
 

(16) 

whereݔො represents the observed state and ߙ,  are the ߚ
second order sliding mode observer gains.It is 
important to note that the initial moment ݔොଵ(0) ොଶ(0)ݔ ଵ(0) andݔ= = 0are taken to ensure the observer 
convergence. 

By taking ݁ = ݔ −  ො, the error observationݔ
dynamics are obtained from (9) and (16) as: 
 ሶ݁ଵ = ݁ଶ − ଵ|ଵ݁|ߚ ଶ⁄ sign(݁ଵ) ሶ݁ଶ = − 1݉ (݀ଵݔଵ + ݀଴)݁ଶ + ,ݐ)ߦ ,ଵݔ ,ଶݔ ܸ)− ߙ sign(݁ଵ)  

 
 

(17) 

 

In our case, the system states are bounded, then the 
existence is ensured of a constant݂ା, sothat the 
inequality ฬݐ)ߦ, ,ଵݔ ,ଶݔ ܸ) − 1݉ (݀ଵݔଵ + ݀଴)݁ଶฬ < ݂ା 

(18) 

 

holds for any possible ݐ, ,ଵݔ |ොଶݔ| ଶ andݔ ݐ ∀ ௠௔௫ are defined sothatݔ௠௔௫andݒ.௠௔௫ݒ2≥ ∈ℝା, ,ଵݔ ∃ |ଵݔ| :ଶݔ ≤ , ௠௔௫ݔ |ଶݔ| ≤  ௠௔௫. The stateݒ
boundedness is true, sincethe control input V 
isbounded(0 < ܸ <  based on the system (ݐ݈݋ܸ 35
hardware [18]. Consequently, the system (8) is 
bounded input bounded state stable, because for each 
initial state and each bounded input, the corresponding 
solution is bounded for ݐ > 0. Therefore, ݂ାcan be 
written as: ݂ା = ଷ௠ (݀ଵݔ௠௔௫ + ݀଴)ݒ௠௔௫ +  (19)  ߟ

 
Let ߙ and ߚ satisfy the following inequalities: 

ߙ  > ݂ା  ߚ > ට ଶఈି௙శ ൫ఈା௙శ൯(ଵା௣́)ଵି௣́   
(20) 
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wheré݌ is some chosen constant, 0 < ́݌ < 1. 
Theorem1: Suppose that the parameters of the 
observer (16) are selected according to (20), and 
condition (18) holds for system (9). Then, the variables 
of the proposed second order sliding mode observer 
(16) converge in finite time to the state variables of 
system (9), i.e., (ݔොଵ, (ොଶݔ → ,ଵݔ)  .(ଶݔ
 
Proof. The proof was given by Davila and Fridman in 
[8]. 

Sliding Mode Control Design 

In this section, the sliding mode theory is employed to 
control the switch position of a MEMS optical switch. 
By ensuing that the sliding mode observation is 
obtained in the previous section, a particular type of 
variable structure controller (VSC) scheme is 
presented to combine the controller and observer. 

At first, a traditional first order sliding mode 
controller (FOSMC) is proposed for the nonlinear 
uncertain system. Based on the traditional sliding 
mode theory, the system state satisfies the dynamic 
equation that governs the sliding mode all the time. 
This requires infinite switching that causes 
chattering as a main drawback of this approach as it 
may excite unmodeled high frequency dynamics of 
the system[9]. The second order sliding mode 
control (SOSMC) scheme is one of the recently 
developed techniques which can overcome this 
difficulty. Here, the discontinuous control acts on 
the 2ndderivative of sliding variable instead of the 
first derivative in the traditional sliding mode. This 
group of controllers does not require the relative 
degree to the sliding manifold to be one, and can 
totally remove chattering effect and preserve the 
main advantages of the traditional sliding mode 
such as finite time convergence and robustness 
against uncertainties. 

In each part of the control design processes, i.e. 
FOSMC and SOSMC, at first, we assume that the 
actual switch position and velocity are available. It 
helps to investigate the effects of using the observed 
state variables, rather than actual state variables, on the 
characteristic response of the closed-loop system. 
Then, two different controls are presented by using the 
estimated state variables which are obtained by the 
designed nonlinear observers in the previous section 
due to the unavailability of the state variables for 
measurement in practice. 

First Order Sliding Mode Control (FOSMC) 
Design 

In the first case, to design the robust sliding mode control, 
the sliding surface (ݏ = 0)is considered using actual 
states from (9) with observability assumption of the 
system. This expression can be written in the form of 

ݏ = ଶݔ − ሶௗݔ + ଵݔ)ߣ − = (ௗݔ 0 (21) 

 
To ensure that the actual states of the system approach 
the sliding mode,ݏሶ = 0should be satisfied. Substitution 
of the actual states from (9), results in the following 
expression for equivalent control, ௘ܷ௤. 
 ௘ܷ௤ = ଵ௞೐ ଵݔ݇} + (݀௫ݔଵ + ݀଴)ݔଶ+ ݉[ݔሷௗ ଶݔ)ߣ− −   {[(ሶௗݔ

 
(22) 

 
Finally, the sliding mode control law (input voltage) 
with availability of the system states assumption will 
be as: ܸଶ = ௘ܷ௤ − ௠௞೐ ߩ sign(ݏ)  (23) 

whereߩ is a constant parameter depending on the 
disturbance exerted on the system and reaching time. 
By using the second method of Lyapunov, let the 

Lyapunov function be ܸ = ଵଶ  ଶ. Differentiating ܸ withݏ

respect to time results in 
 ሶܸ = =  ሶݏݏ ߩ−൫ݏ sign(ݏ) + ≥  ൯(ݐ)݀ ߩ−)ݏ sign(ݏ) + ݀௠௔௫)  

(24) 

 
Obviously, if ߩ ≥ ݀௠௔௫ is satisfied, then ሶܸ < 0 is 
sufficiently ensured. 

In the second case, to design sliding mode 
observer-controller, the sliding surface (̂ݏ = 0) is 
considered using the estimated states from traditional 
FOSMO dynamics (10) and/or SOSMO 
dynamics(16). This expression can be written in the 
form of 
ݏ̂  = ොଶݔ − ሶௗݔ + ොଵݔ)ߣ − =  (ௗݔ 0  

(25) 

Also, to ensure that the estimated states of the system 
approach the sliding mode, ̂ݏሶ = 0should be satisfied. 
Substitution of the estimated states from traditional 
FOSMO (10), results in the following expression for 
equivalent control, ෡ܷ௘௤భ. ෡ܷ௘௤భ = ଵ௞೐ ଵݔ݇} + (݀ଵݔଵ + ݀଴)൫ݔොଶ ଵߣ+ sign(ݔଵ − −  ොଵ)൯ݔ ଵߣଶsign൫ߣ݉ sign(ݔଵ − +  ොଵ)൯ݔ ሷௗݔ]݉ − ොଶݔ)ߣ + ଵߣ sign(ݔଵ − (ොଵݔ − {[(ሶௗݔ

 
 
 

(26) 

 
On the other hand, substitution of the estimated states 
from SOSMO (16), results in the following expression 
for equivalent control, ෡ܷ௘௤మ. 
 ෡ܷ௘௤మ = 1݇௘ ଵݔ݇} + (݀ଵݔଵ + ݀଴) − ߙ݉ sign(ݔଵ − (ොଵݔ  

 
(27) 
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ሷௗݔൣ݉+   − ොଶݔ൫ߣ    + ଵݔ|ߚ − ොଵ|ଵݔ ଶ⁄ sign(ݔଵ − −(ොଵݔ  {ሶௗ)൧ݔ
Finally, the sliding mode controller will be as: 
 ෠ܸ ଶ = ෡ܷ௘௤ − ݉݇௘  (28) (ݏ̂)ොsignߩ

whereߩො is a constant parameter just depending on the 
reaching time. It is important to note that by using real 
states from (9), ߩ is a constant parameter depending on 
the unknown bounded disturbance exerted on the 
system and reaching time. By using the second method 

of Lyapunov, let the Lyapunov function be ܸ = ଵଶ ଶ. ሶܸݏ̂ = =      ሶݏ̂ݏ̂ =      ൯(ݏ̂)sign ߩ−൫ݏ̂  (29)  |ݏ̂|ߩ−

 
Obviously, if ߩො > 0, then ሶܸ < 0 is sufficiently 
ensured. 

Second Order Sliding Mode Control 
(SOSMC) Design 

Traditional sliding mode control is obtained by 
constraining the sliding variable ݏ to zero by 
discontinuous control acting on the first derivative of 
the sliding variable. The discontinuous control law is 
applied only when the sliding variable s has a relative 
degree one with respect to the control input. If the 
relative degree is two or more, then a higher order 
sliding mode (HOSM) can be applied for the control 
purpose [10]. Here, we will concentrate only on the 
second order sliding mode control scheme. 

Consider an uncertain single-input nonlinear 
system whose dynamics can be defined by the 
differential equation 
(ݐ)ሶݔ  = ,ݐ)݂ ,(ݐ)ݔ  (30) ((ݐ)ݑ

 
whereݔ ∈ ℝ௡ is the state vector, ݑ ∈ ℝis the bounded 
input, ݐ is the independent variable time, and ݂: ℝ௡ାଶ → ℝ௡ is a sufficiently smooth uncertain 
vector function. The control task is to accomplish the 
state trajectory on a proper sliding manifold defined by (ݐ)ݏ = ,ݐ൫ݏ =          ൯(ݐ)ݔ 0 

(31) 

whereݏ: ℝ௡ାଵ → ℝ is a known single valued function 
sothat its total time derivatives ݏ(௞), ݇ = 0,1, … , ݎ −1 along the system trajectories exist and are single 
valued functions of the system state ݔ. It means that 
discontinuity does not appear in the first ݎ − 1 total 
time derivatives of the sliding variable ݏ.  

By differentiating the sliding variable ݏ twice, the 
following relationships are derived: 

(ݐ)ሶݏ  = ,ݐሶ൫ݏ ,(ݐ)ݔ  ൯  (32)(ݐ)ݑ

= డడ௧ ,ݐ)ݏ (ݔ + డడ௫ ,ݐ)ݏ (ݔ ∙ ,ݐ)݂ ,ݔ   (ݑ

(ݐ)ሷݏ  = ,ݐሷ൫ݏ ,(ݐ)ݔ ,(ݐ)ݑ ሶݑ =  ൯(ݐ) డడ௧ ,ݐ)ሶݏ ,ݔ (ݑ + డడ௫ ,ݐ)ሶݏ ,ݔ (ݑ ∙ ,ݐ)݂ ,ݔ +  (ݑ డడ௨ ,ݐ)ሶݏ ,ݔ   (ݐ)ݑ (ݑ

(33) 

Depending on the relative degree with respect to 
control input of the nonlinear SISO system (30), (31), 
different cases should be considered: 

     1) relative degree ݌ = 1, i.e., 
డడ௨ ሶݏ ≠ 0 

     2) relative degree ݌ = 2, i.e., 
డడ௨ ሶݏ = 0 , డడ௨ ሷݏ ≠ 0 

 

In case 1, the traditional sliding mode control solves 
the problem, but here second order sliding mode control 
can be used to avoid the chattering effect. In this case, the 
time derivative of control input ݑሶ  appears in the second(ݐ)
derivative of sliding variable. By applyingݑ ሶ  as the(ݐ)
actual control variable, the chattering is avoided asݑሶ  is (ݐ)
discontinuous so the plant control (ݐ)ݑis continuous. (ݐ)ݑcan be considered as the continuous output of a first 
order dynamic system that is driven by a discontinuous 
signal which may be inherently present in the system (fast 
actuators) or externally introduced. So when the second 
order sliding mode control approach is applied to the 
system with relative degree 1, discontinuousݑሶ  steers (ݐ)
both s and ݏሶto zero [10].In case 2, problem arises when 
the output control problem of the system with relative 
degree 2 is faced or when the differentiation of a smooth 
signal is considered [10]. 

In order to define the control problem based on 
second order sliding mode the following conditions 
must be assumed:  
 

 The control values belong to the closed set ܷ |ݑ| :ݑ}= ≤  .௠ is a real constantݑ ௠}, whereݑ
 There exists ݑଵ ∈ (0,1), sothat for any continuous 

function (ݐ)ݑwith |(ݐ)ݑ| > (ݐ)ݑ(ݐ)ݏ ଵ, sothatݐ ଵ, there isݑ > 0for each ݐ > (ݐ)ݑ ଵ. Hence, the controlݐ = −sign(ݏ(ݐ଴)), where ݐ଴is the initial value of time 
and provides hitting of the surface ݏ = 0in finite time. 

 Given ݏሶ, the total time derivate of the sliding variable ݏ, 
there are positive constants ݏ଴, ݑ଴ < 1, Г௠, Гெ, so that if |ݏ| < ଴, then 0ݏ < Г௠ ≤ డడ௨ ,ݐ)ሶݏ ,ݔ (ݑ ≤ Гெ  (34) 

For the MEMS optical switch such bounds were 
obtained from a detailed analysis of the system 
structure together with comprehensive simulation 
studies, using a stabilizing control that maintains the 
system in a secure operation region. As a result, the 
following bounds were determined as below: Г௠ = 0.9         Гெ = 20 

 There is a positive holds  ฬ ݐ߲߲ ,ݐ)ሶݏ ,ݔ (ݑ + ݔ߲߲ ,ݐ)ሶݏ ,ݔ ,ݐ)݂(ݑ ,ݔ ฬ(ݑ ≤ ߮ (35) 
 

where for the MEMS optical switch, this bound 
wasdetermined as ߮ = 7.6 × 10ଵ଴. 



56 / Journal of  Aerospace Science and Technology 
Vol. 10/ No. 2/ Summer-Fall  2013 

 
 
 

Rahimi F. and Fazeli H. 

For|ݏ| <  ଴, the following inequality is definedݏ
by the following control law which is given as sum of 
two components and  the corresponding sufficient 
conditions for the finite time convergence to the 
sliding manifold are [11]: 
(ݐ)ݑ  = (ݐ)ଵݑ + ሶݑ  (ݐ)ଶݑ ଵ(ݐ) = −ܹsign(ݏ)  ݑଶ(ݐ) = ൜−ݏ|ߛ଴|௣sign(ݏ)      ݂݅  |ݏ| > |ݏ|  ݂݅       (ݏ)௣sign|ݏ|ߛ−|଴ݏ| ≤ |଴ݏ|   

(36) 

 ܹ > ఝГ೘  ߛଶ ≥ ସఝГ೘మ Гಾ (ௐାఝ)Г೘ (ௐିఝ)  0 < ݌ ≤ 0.5  

(37) 

Note that the above algorithm does not require 
measurements of the time derivative of the sliding 
variable (ݏሶ), thus, this controller is obviously robust 
with respect to measurement noises.  

Proposed Time-Varying Sliding Mode 
Control (TVSMC) Design 

The phase trajectory of the SMC is divided in two 
phases: reaching phase and sliding phase. In the 
reaching phase, the system trajectory starts from a 
given initial condition and reach the sliding surface. In 
the sliding phase, the system trajectory lies on the 
predetermined sliding surface and converges to the 
desired condition. The motion of the control system in 
the reaching phase is sensitive to external disturbances 
and parameter variations, while the system trajectory is 
insensitive to disturbances/uncertainties during sliding 
phase. There fore, one of the methods to increase the 
robust performance of the SMC technique is to shorten 
the reaching phase. Eventually, the following sliding 
surface is suggested: 
ߪ  = ሶ݁ + ݁−)ܪ ሶ݁)݃(ݐ)݁ߣ + ݁)ܪ ሶ݁)൫݁ߣ + ℎ(ݐ)൯ (38) 

 

Figure 4. Time-varying sliding surfaces based on the initial 
condition 

whereߪ is a proposed sliding surface, ݁ is the state 
error, ݃(ݐ) and ℎ(ݐ) are two nonlinear time-varying 
functions. (ݔ)ܪis a heaviside step function which can be 
obtained by the Dirac delta function (ߜ) as: (ݔ)ܪ = ׬ ௫ିஶݐd(ݐ)ߜ   (39) 

Figure 4 schematically describes a procedure 
whereby the proposed sliding surface varies over time 
based on the initial conditions and consequently 
converges to the desired sliding surface (green line). 
This procedure suggests that when ݁ ሶ݁ > 0, the 
intercept-varying methodology is selected until ݁ ሶ݁ ≤0, in which the slope-varying methodology can be 
used. Therefore, one can easily conclude that there is 
no switching time between the designed time-varying 
surfaces. 

Next, the design procedure of the proposed two 
nonlinear functions is studied. First, the initial values 
for ݃(ݐ) and ℎ(ݐ) functions must be defined sothat the 
initial states lie on the sliding surface i.e., ሶ݁ (0) + (0)݁ߣ(0)݃ = 0 ⇒ ݃(0) = − ௘ሶ(଴)ఒ௘(଴)  ሶ݁ (0) + (0)݁ߣ + ℎ(0) = 0 ⇒  ℎ(0) = −൫ ሶ݁(0) +   ൯(0)݁ߣ

(40) 

There after, functions ݃(ݐ) and ℎ(ݐ) should be 
selected sothat the slope-varying and/or intercept-
varying sliding surfaces approach the desired sliding 
surface when time tends to infinity. As an example, 
one may choose the following nonlinear functions: 
(ݐ)݃  = ݃(0) + ൫1 − ݃(0)൯ tanh (ݐ)ℎ  ݐ = ℎ(0)(1 − tanh (ݐ  

(41) 

Simulation Results 

At first, the performances of the proposed nonlinear 
observers(10) and (16) for estimation of the state variables, 
are simulated on the MEMS optical switch with the 
following initial conditions ࢞૙ = [10ି଺ 10ି଺]்and ࢞ෝ૙ = [0 0]். Moreover, we consider an unknown 
disturbance exerted on the system as݀(ݐ) = ܦ sin  ,ݐ߱
where ܦ = 10ି଺ and ߱ = ,ଵߣ The observation gains .ߨ ,ߙ ଶ for FOSMO (10) and the observation gainsߣ  for ߚ
SOSMO (16) are chosen according to Table1.  

Table 1. Sliding mode observer parameters 

FOSMO SOSMOߣଵ = 0.1 ߙ = ଶߣ40000 = 50 ߚ = 4000
Figures 5a and 5b show that the second order 

sliding mode observation error of switch position and 
switch velocity quickly converge to zero in 
comparison with theconventional first order sliding 
mode observation error. Moreover, it is obvious that 
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with nonlinear terms and disturbances. Robustness and 
stability of the proposed FOSMO is proved by 
Lyapunov second method and SOSMO is designed 
based on the super-twisting algorithm. Moreover, the 
effectiveness of SOSMO in eliminating the effect of 
chattering is demonstrated through simulations. 
Sliding mode control laws are then designed by using 
the estimated state variables from the proposed 
observers to improve the dynamic closed-loop 
performance of the MEMS optical switch. As a result, 
second order sliding mode control law is an efficient 
control scheme which iscapable oftotally removing the 
chattering effect resulted by high frequency switching 
in the conventional sliding mode control. Next, to 
enhance the robust performance of the designed 
second order sliding mode control, new time-varying 
sliding surface algorithms based on shifting and/or 
rotating the sliding variables are employed. Finally, 
the simulation results indicate that the observer states 
converge to the actual states very quickly in the 
presence of disturbances. Also, tracking of the desired 
position with short and long amplitudes is 
accomplished within the specified limitation for the 
control input.  
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