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This paper studies theuncertain nonlinear dynamics of a MEMS optical switch addressing
electrical, mechanical and optical subsystems. Recently, MEMS optical switch has had
significant merits in reliability, control voltage requirements and power consumption.
However, an inherent weakness in designing control for such systems is unavailability of
switch position information at all times due to the saturated output characteristics, which is
aggravated by considering disturbances. In order to circumvent this problem, two nonlinear
observers based on the first order and second order sliding mode approach are designed to
estimate the state variables of the device subject to external disturbances. The nonlinear
observers are then utilized in the control system to maintain robust stability and tracking
performances. The newly invented second order sliding mode controller can remove the
chattering phenomena as the main drawback of the first order sliding mode controller.
Furthermore, since second order sliding mode control is not robust against
disturbances/uncertainties which vary with states, a new time-varying second order sliding
mode control is proposed to enhance the robust performance of the controller without
estimating any switching time. Simulation results show that the proposed observer and

control have good tracking ability and robustness against disturbances.
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optical switch

Introduction One approach to optical switching has been the

. . o ) use of MEMS technology to fabricate tiny mirrors that
The main advantageof an optical switch is the conversion perform the switching function. These tiny mirrors

of an optical signal to another signalin a direct way. Large manipulate optical signals directly without converting
scale matrix switches whichare mostly used in optical them to electronic signals. MEMS optical switches are
networks now are realized by optical-electronic very attractive because of their high capacity, low
conversion or elect‘romc sw1tchlng/elec‘gronlc—optlcal productioncost, compactness, small size and low
conversion. These switches are very expensive and have weight, fast bit rates, low power consumption,
slow bit rates capacity. To circumvent these problems,the integration, and optical transparency[l, 2].There are
optical switch has been proposed as an obvious solution. numerous applications for optical switches that require
Optical switches became important because of the desire precision in positioning of the micro-actuators. For
in_telecommunications industryto focus on all-optical instance, in medical science these devices are capable
network (AON), which means thetotal exclusion of ofconcentrating on the particular medical parameters
electronics. for the purpose of detection and therapy. Recently,
advanced space missions are offering high
technologies to dramatically enhance the safety and
reliability, while reducing the cost of space
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transportation. Generally, it costs 25,000 US$ to put
one kilogram of a payload in the Earth orbit.
Therefore, MEMS devices are essential for the future
space missions. The analog nature of MEMS actuators
and their device characteristic uncertainties, due to the
manufacturing tolerances, make the implementation of
device impractical and/or require costly calibrations.
In addition, the nonlinear characteristics of MEMS
actuators could result in instability over an extended
actuation range in the open-loop operation. This added
complexity combined with the submicron precision
requirement calls for the development of
comprehensive dynamic modeling frameworks along
with robust controllers.

Several control strategies have been proposed in
the literature for the MEMS optical switch. Owusuet
al. [3] designed a controller based on the feedback
linearization to compensate the nonlinearity in the
system dynamics, and succeeded in stabilizing
theswitch position of the MEMS optical switch.
However, the result was not acceptable by applying
the  disturbances/uncertainties to  the plant.
Ebrahimietal.[4] presented a robust controller based on
the traditional sliding mode theory for a MEMS optical
switch. Vali et al. [5] introduced the quantitative
robust feedback theory to control a nonlinear MEMS
optical switch in the presence of parameter variations
and unknown disturbances. One of the most important
differences between “macro-scale” and “micro-scale”
control design is the added modeling uncertainties and
nonlinearities in“micro-scale”. Hence, the
implementation of the proposed controller is
attenuated by increasing the inherent complexity of the
system.

For the stabilization of anoptical switch, it is
necessary to dynamically estimate the switch position
and velocity. Because, when the switch is near the
completely closed or open situation, there is no
position information available as a feedback for the
control system. Thus, state observers have been
introduced to overcome this problem. In [3] a simple
nonlinear observer is used to estimate the state
variables for a system with Lipschitz nonlinearity in
the output characteristics. In this paper, two sliding
mode observers are proposed to estimate the state
variables for an uncertain nonlinear system. The main
advantages of the sliding mode observer are robustness
against disturbances/unmodeled dynamics,
insensitivity to parameter variations, compact
implementation and efficiency for the standard output
system.

This paper consists of three major parts. In the
first part, two robust sliding mode observers are
considered to estimate the switch position and velocity
of a MEMS optical switch in the presence of an
unknown, but bounded disturbance: 1) first order
sliding mode observer (FOSMO) based on the
Lyapunov second method [6,7] and 2) second order
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sliding mode observer (SOSMO) based on the super-
twisting algorithm (STA) [8]. In practice, the second
order sliding mode observers are used to estimate the
velocity of the system independent of the controller
design and they are still successfully implemented to
solve the various problems.

In the second part, the estimated state variables
are utilized to design the sliding mode controllers.
Theyenable the compact realization of a robust
controller, tolerant of device characteristics variations,
nonlinearities, and types of inherent instabilities. The
main drawback of this approach is the high frequency
switching called chattering, which can excite the
unmodeled high frequency dynamics and make the
system unstable [9]. Second order sliding mode control
based on STA is one of the recently developed
techniques to overcome this difficulty. Here, the
discontinuous control acts on the second derivative of
the sliding variable instead of the first derivative in the
traditional sliding mode control to remove the
chattering effect while preserving the advantages of
the traditional sliding mode control [10, 11]. Despite
the popularity of the STA, it has a major flaw. STA is
not robust against disturbances/uncertainties that
change with the state variables. One of the methods to
enhance the robust performance in the SMC theory is
to eliminate the reaching phase using the time-varying
sliding mode control (TVSMC) strategy. The concept
of TVSMC was introduced by Choi et al. [12] and
Bartoszewicz [13]. TVSMC can shorten the reaching
phase via a shifting or rotating sliding surface.
Yonggianget al. [14] studied the attitude stabilization
of a rigid spacecraft based upon the different TVSMCs
by designing the switching time between sliding
surfaces. In the previous papers, the designed sliding
surface included switching time and the designed
controller pertained against the initial conditions to
shift or rotate the sliding surface. In the present paper,
we propose a new TVSMC algorithm without
describing the switching time and a designer is able to
select both time-varying function and a procedure to
shift (known as “intercept-varying”) and/or rotate
(known as “slope-varying”) the sliding surface
optionally for every initial conditions. As a result, the
main contributions of this paper are to employ:

e Robust observers and controllers simultaneously based
on the first- and second-order sliding mode control
theories for the MEMS optical switch. These devices can
be used in space missions (e.g. remote sensing and
communication satellites) because of the presence of
high resolution and reliability, and minimum weight, size
and power consumption.

e Time-varying sliding mode control technique to enhance
the robustness of the second-order sliding mode in the
presence of parameter uncertainty. The proposed
TVSMC does not need any switching time between
sliding surfaces and it can be applied to the various SMC
strategies with any initial conditions.
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Mathematical Model

A general optical switch structure consisting of an
electrostatic comb drive, the body of the device, and
a blade or shuttle is shown in Fig.1. Thevoltage
applied to the comb drive actuator generates a force
that moves the shuttle attached micro-mirror that
cuts a light beam exiting a transmitting fiber and
being collected in a receiving and modulating
density.

In order to derive a mathematical model of system
dynamics it is needed to determine parameters of the
relevant differential equation that describes forces
acting on the shuttle. It is assumed that the shuttle has
one degree of freedom and moves only in one
direction. It is important to mention that there might be
other degrees of freedom, like rotation around the
main body axes, translation along them, as well as
different vibrational modes. However, only the main
degree of freedom will be considered in this paper and
also the related materials for modeling purpose are
referred to [15].

The mathematical model of the switch has three
main components: an electrical, a mechanical and an
optical component. Altogether, the system can be
described with a second order nonlinear differential
equation as:

mi+ d(x,x)+ k(x) = f(V,x)

1
P = h(x)(1) W

wherem is the effective moving mass of the
shuttle, d is a function describing losses such as
damping and friction, k& is the stiffness of the
suspension, f is the electrostatic force acting on the
model, P is light intensity and x is the shuttle position.

Figure 1. Image of a MEMS optical switch

The system exact parameters m, d, k and f are not
easy to obtain and we will go step by step to determine
all of these parameters. First, the electrical model is
built and thenthe optical model connects the position
of the shuttle to the intensity of the sensed light.
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Electrical Model

The electrical part of the model considers generation
of the induced electrostatic force by applying voltage
to the actuator. The capacitance of the comb drive as a
function of position should be determined first.
Capacitance of the comb drive can be calculated as the
sum of all of parallel capacitances among pairs of
comb electrodes. The total capacitance is given as a
function of position by[15]:
Cl) =22
dg

_ 2ngoT(x+xg) (2)

==

whereg, = 8.854 X 1072Fm™1 is the dielectric
constant of vacuum, » is the number of the movable
comb fingers (n=150), T is thickness of the structural
layer (T = 35um),d;is the length of the gap between
fingers (d; = 2.6um ) and x, is the overlapped length
of fingers when no voltage is applied (x, = 15um). At
rest position, the capacitance of the comb drive is
about 0.27pF when x =0 and x = 15um, which
increases as force is applied and the fingers move
closer. Generally, the electrostatic force of the
capacitor is given as theproduct of squared voltage and
change of capacitance with respect to position as:

_ 1y,20C

fV,x) = Ve G
whereVis the voltage applied over the electrodes. By
combining (2) and (3) electrostatic force can be
calculated as:

fV,x) = 22y “)

= k,V?

wherek, is defined as the input gain ofthe system
with the value of k, = 17.8 nN /V?2.

It is interesting to note that capacitance (2)
depends linearly on position over a wide range of
deflections. It is one of the most important
characteristics of the comb drive. Generally, for other
configurations, this is not the case and capacitance is a
higher nonlinear function of position x. It should be
noted that the linear relationship does not hold for
extreme deflections and may cause considerable
undesired results that necessitate using a robust control
scheme to meet such uncertainties.

Mechanical Model

In order to obtain the mechanical model of the system,
three parameters namely, the effective moving mass m,
the damping coefficient d and stiffness of the
suspension khave to be determined.Effective mass for
the switch can be expressed as [15]

1
m = Myirror + Emrigid + 2.74 Mpeam Q)

when calculated, the effective mass of the system
ism = 2.39 x 107 kg.
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Stiffness is generally a nonlinear function of
position f=k(x). For most metals and for silicon spring-
like structures, it can be described as k(x) = k,x +
k,sx3. For the suspension given in this paper,
stiffness of the beam is assumed to be a linear function
of the position and its coefficient is given as k, = k =
0.46 N/m.

Damping, or energy dissipation, is the most
difficult parameter to be determined analytically,
despite usingFEA. The reason lies in the number of
different mechanisms that cause it including friction,
viscous forces, drag, etc. We will consider viscous
forces as theprimarycauses of damping. Four different
mechanisms contribute to damping, Couette flow,
Poiseuille flow, Stokes flow, and Squeeze film
damping [16]. Generally, they can be summarized as
fa=(dyx+dy)x. When actual parameters are
substituted, damping is expressed as [17]:

d(x, %) = 0.0363(x + 15 x 107)% (6)

Optical Model

The optical model is simply a function that connects
the intensity of light to the position of the blade as in
Fig.2. Light beam is intercepted by the blade,
increasing and decreasing the throughput of light. The
Rayleigh-Somerfield model is based on a Gaussian
distribution of the intensity across the light beam.
Transmitted power can be described as [17]:

= 1[1 - Erf (1)) 7)

Wi

I Output

Y

‘Tﬁ
sl 4y
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Figure 2. Optical Model

wherew; = 10.9 ym and ny = 11.2 um.

The relationship between the power ratio and the
position of the mirror is shown in Fig.3.It is important
to note that the attenuation curve is saturated by the
error function which makes it difficult to reconstruct
the states in saturation region for control design
purposes.
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Figure 3. Power ratio against displacement

Consequently, integrating the created models for
each section and applying the procedures done for
increasing accuracy of the model in [2], result in the
nonlinear mathematical model of the switch as:

1

¥ = ———[—(0.0363x + 4.5 x
2.35x10

1073)% — 0.6x +1.9x 107812 + ®)
f(t; x; 'x.'l V)]

whereV? (quadric term in voltage) is the input and &
represents the uncertainties affecting the MEMS
optical switch which is assumed to be bounded toa
positive known termn(t,x,x). As mentioned above,
these uncertainties mostly come from simplifications
in electrical and mechanical model of device.

Design of Sliding Mode Observers

Sliding mode observers are very useful means which
have been developed for many reasons like working
with reduced observation error dynamics, possibility
of obtaining a step by step design, a finite time
convergence for all the observable states and
robustness against uncertainties [6].

At first, a traditional first order sliding mode
observer (FOSMO) is proposed. The well-known
problems whenusing the FOSMOs are the relative
degree one requirement and the chattering phenomena.
In order to deal with these limitations while preserving
the main advantages of the FOSMOs such as finite-
time convergence and robustness against disturbances,
second order sliding mode observers (SOSMO) are
proposed for system state observation. This kind of
observer does not require the relative degreeof the
sliding manifold to be one, and can totally remove the
chattering effect [8].
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First Order Sliding Mode Observer (FOSMO)
Design

The state space representation of (8) can be rewritten
as:

J'CI =X2
. k 1
Xy ==X — ;(d1x1 + do)x; 9
k., 9
+;V + &(t, xq, x5, V)
y=X

where x = [X1 X2]7, and x,, x, denote the switch
position and velocity, respectively.

Lets consider a traditional sliding mode observer
for the MEMS optical switch (9) as [6]:

5&\1 = 552 + Al Sign(xl - 5(:\1)
k

2= T —X1
m

-

1
- (dyx1 + do)(%; + Ay sign(xy — %)) (10)

k
+E‘2V2 + A, sign(, sign(x; — £;))

By taking = x — X , the error observation dynamics
are obtained from (9) and (10) as:

€, = e, — Ay sign(ey)

1
é = _E(d1x1 +do)(ez — A sign(ey)) (11)
+8(t, x4, %5, V) — A, sign(4, sign(e,))

Now, let us consider the nonempty manifold s; =
{91/62 = O}in which the attractivity ofs is proved by
using the second method of Lyapunov. Let the
Lyapunov function be V; = %ef . Differentiating V;
with respect to time results in:

Vl = élel (12)
= e;(e; — 4, sign(ey))

Obviously, if A; is chosen sothat A; > |e,|max, then
V, <0 is sufficiently ensured. It means that by
decreasing the Lyapunov function with respect to time,
the convergence to the sliding surface s; = 0 will be
obtained in finite timet;. In other words, for 4; >
leslmax> X1 converges to x; in finite time and remains
equal to x; for t > t;. Moreover, for t > t;, €,.0, so
that from (11)

e, = A, sign(e;) (13)

After timet,, the observantion error dynamics are
now equal to
é; =0
é; = §(t,x1, x5, V) — 4, sign(ey) (14)

By setting V, = %(ef + e2),
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Vz = €1é1 + ezéz (15)
=€ (f(t: X1, X2, V) - /12 Sign(eZ))
Consequently,e, goes to zero in finite time t, >

t,if A, > n(t, x,%). In practice, the signum function

sign(e) can be replaced by a continuous function ﬁ

to alleviate chattering, where y is a positive scalar
constant.

Second Order Sliding Mode Observer

(SOSMO) Design

In order to estimate the state variables of the MEMS
optical switch without chattering effect, the following
second order sliding mode observer is designed as [8]

X = %, + Blxy — 2,1/ 2sign(x, — %;)

-

1 ~
2=~ % _;(d1x1 + do)%; (16)

ke :
+— V2 + asign(x; — ;)

whereX represents the observed state and «, f are the
second order sliding mode observer gains.It is
important to note that the initial moment %;(0) =
x1(0) and %,(0) = Oare taken to ensure the observer
convergence.

By taking e =x—X, the error observation
dynamics are obtained from (9) and (16) as:

é; = e, — Bley|*/?sign(e;)
) 1
é; = ——(dyx; +doley + (8, x1, %2, V) (17)
m
— a sign(e;)

In our case, the system states are bounded, then the
existence is ensured of a constantf*, sothat the
inequality

1
§(t,xq1, %, V) — ;(dlxl + dg)e,| < f+ (18)

holds for any possible t,x;,x, and |%,| <
2Vmax-Vmax@dX;,g, are defined sothat Vit €
RY, 3 xq, %50 [21] < Xmaxe s 1%2] < Vpax.  The  state
boundedness is true, sincethe control input V
isbounded(0 < V < 35Volt) based on the system
hardware [18]. Consequently, the system (8) is
bounded input bounded state stable, because for each
initial state and each bounded input, the corresponding
solution is bounded for t > 0. Therefore, f*can be
written as:

3
f+ = (d1Xmax + do)Vmax + 1 (19)
Let a and g satisfy the following inequalities:

a>ft

/ 2 (atfh)(a+p) (20)
‘8> a—-f+ 1-p
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wherep is some chosen constant, 0 < p < 1.
Theoreml: Suppose that the parameters of the
observer (16) are selected according to (20), and
condition (18) holds for system (9). Then, the variables
of the proposed second order sliding mode observer
(16) converge in finite time to the state variables of
system (9), i.e., (X1, %) = (x4, x3).

Proof. The proof was given by Davila and Fridman in

[8].
Sliding Mode Control Design

In this section, the sliding mode theory is employed to
control the switch position of a MEMS optical switch.
By ensuing that the sliding mode observation is
obtained in the previous section, a particular type of
variable structure controller (VSC) scheme is
presented to combine the controller and observer.

At first, a traditional first order sliding mode
controller (FOSMC) is proposed for the nonlinear
uncertain system. Based on the traditional sliding
mode theory, the system state satisfies the dynamic
equation that governs the sliding mode all the time.
This requires infinite switching that causes
chattering as a main drawback of this approach as it
may excite unmodeled high frequency dynamics of
the system[9]. The second order sliding mode
control (SOSMC) scheme is one of the recently
developed techniques which can overcome this
difficulty. Here, the discontinuous control acts on
the 2"derivative of sliding variable instead of the
first derivative in the traditional sliding mode. This
group of controllers does not require the relative
degree to the sliding manifold to be one, and can
totally remove chattering effect and preserve the
main advantages of the traditional sliding mode
such as finite time convergence and robustness
against uncertainties.

In each part of the control design processes, i.e.
FOSMC and SOSMC, at first, we assume that the
actual switch position and velocity are available. It
helps to investigate the effects of using the observed
state variables, rather than actual state variables, on the
characteristic response of the closed-loop system.
Then, two different controls are presented by using the
estimated state variables which are obtained by the
designed nonlinear observers in the previous section
due to the unavailability of the state variables for
measurement in practice.

First Order Sliding Mode Control (FOSMC)
Design

In the first case, to design the robust sliding mode control,
the sliding surface (s = 0)is considered using actual
states from (9) with observability assumption of the
system. This expression can be written in the form of
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S =2x, — Xg + A(xy — x4) 21
=0

To ensure that the actual states of the system approach
the sliding mode,$ = Oshould be satisfied. Substitution
of the actual states from (9), results in the following
expression for equivalent control,Us,.

Ueq = kie{kxl + (dxxl + do)X2+ m[xd -

° (22)
Alxy — %41}
Finally, the sliding mode control law (input voltage)
with availability of the system states assumption will
be as:

V2 =Upq — kﬂp sign(s) (23)

wherep is a constant parameter depending on the
disturbance exerted on the system and reaching time.
By using the second method of Lyapunov, let the

Lyapunov function be V' = %52. Differentiating V with
respect to time results in

V=ss (24)
= s(—p sign(s) + d(1))
< s(—psign(s) + dipax)

Obviously, if p = d,,g, is satisfied, then V <0 is
sufficiently ensured.

In the second case, to design sliding mode
observer-controller, the sliding surface (§ =0) is
considered using the estimated states from traditional
FOSMO dynamics (10) and/or SOSMO
dynamics(16). This expression can be written in the
form of

§= fz - xd + A(?’C\l - xd) (25)
=0

Also, to ensure that the estimated states of the system
approach the sliding mode, § = Oshould be satisfied.
Substitution of the estimated states from traditional
FOSMO (10), results in the following expression for

equivalent control, Ueq, .

ﬁeql = kie{kxl + (dyxy +do) (%, +
A, sign(x; — £,))

— mA,sign(, sign(x; — %)) (26)
+m[¥Xy — A(X; + Ay sign(x; — ;) — %g)]}

On the other hand, substitution of the estimated states
from SOSMO (16), results in the following expression

for equivalent control, Ueg, .

1
Ueq, = k_e{kxl + (d1x, + dp)

— ma sign(x; — £;) (27)
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/1(9?2 + Blxy, — 2,1 2sign(x; — %)

— %)}

Finally, the sliding mode controller will be as:

+m[xd —

- — m
V2 = U,g — = psign(s) (28)
e
wherep is a constant parameter just depending on the
reaching time. It is important to note that by using real
states from (9), p is a constant parameter depending on
the unknown bounded disturbance exerted on the
system and reaching time. By using the second method
of Lyapunov, let the Lyapunov function be V' = %.@2.
V=33 (29)
§(—p sign(§))
—pl3l

Obviously, if p >0, then V<0 is sufficiently
ensured.

Second Order Sliding Mode Control
(SOSMC) Design

Traditional sliding mode control is obtained by
constraining the sliding variable s to zero by
discontinuous control acting on the first derivative of
the sliding variable. The discontinuous control law is
applied only when the sliding variable s has a relative
degree one with respect to the control input. If the
relative degree is two or more, then a higher order
sliding mode (HOSM) can be applied for the control
purpose [10]. Here, we will concentrate only on the
second order sliding mode control scheme.

Consider an uncertain single-input nonlinear
system whose dynamics can be defined by the
differential equation

x(8) = f(t, x(0), u(t)) (30)

wherex € R" is the state vector, u € Ris the bounded
input, t is the independent variable time, and
f:R"2 5 R" is a sufficiently smooth uncertain
vector function. The control task is to accomplish the
state trajectory on a proper sliding manifold defined by

s@®) = s(t,x(t)) (31)
=0

wheres: R"*1 - R is a known single valued function
sothat its total time derivatives s, k =0,1,...,r —
1 along the system trajectories exist and are single
valued functions of the system state x. It means that
discontinuity does not appear in the first r — 1 total
time derivatives of the sliding variable s.

By differentiating the sliding variable s twice, the
following relationships are derived:

5(8) = 35(t, x(®),u®)) (32)
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= %s(t,x) + %s(t,x) f(tx,u)

$() = 3(t, x(0), u(@®), u(®))
a . a .
=53 0 u) +-3(8 %) - f(tx,u) (33)
+:—u$(t, x,u) u(t)

Depending on the relative degree with respect to
control input of the nonlinear SISO system (30), (31),
different cases should be considered:

1) relative degree p = 1, i.e., :—ué =0
. . . a ..

2) relative degree p = 2, i.e., 5= 0, a5 #* 0

In case 1, the traditional sliding mode control solves
the problem, but here second order sliding mode control
can be used to avoid the chattering effect. In this case, the
time derivative of control input 22(t)appears in the second
derivative of sliding variable. By applyingui (t)as the
actual control variable, the chattering is avoided asit(t) is
discontinuous so the plant control u(t)is continuous.
u(t)can be considered as the continuous output of a first
order dynamic system that is driven by a discontinuous
signal which may be inherently present in the system (fast
actuators) or externally introduced. So when the second
order sliding mode control approach is applied to the
system with relative degree 1, discontinuousii(t) steers
both s and sto zero [10].In case 2, problem arises when
the output control problem of the system with relative
degree 2 is faced or when the differentiation of a smooth
signal is considered [10].

In order to define the control problem based on
second order sliding mode the following conditions
must be assumed:

e The control values belong to the closed set U =
{u: |u|] < u,,}, where u,, is a real constant.

e There exists u; € (0,1), sothat for any continuous
function u(t)with |u(t)| > u,, there is t;, sothat
s(®u(t) > Ofor each t>t;. Hence, the control
u(t) = —sign(s(ty)), where tyis the initial value of time
and provides hitting of the surface s = Oin finite time.

e Given s, the total time derivate of the sliding variable s,
there are positive constants sy, Uy < 1, I';;,, I'y, so that if
|s| < sq, then

o<r,, < :—uS(t,x,u) <Ty (34)

For the MEMS optical switch such bounds were
obtained from a detailed analysis of the system
structure together with comprehensive simulation
studies, using a stabilizing control that maintains the
system in a secure operation region. As a result, the
following bounds were determined as below:

Ir,=09 'y =20
e  There is a positive holds

0 a
— 3 —3 < 35
5% st x,u) + axs(tf, xwftx,w| <o (35)

where for the MEMS optical switch, this bound
wasdetermined as ¢ = 7.6 X 1019,
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For|s| < s,, the following inequality is defined
by the following control law which is given as sum of
two components and the corresponding sufficient
conditions for the finite time convergence to the
sliding manifold are [11]:

u(t) = uy (6) + up(6)
1, (t) = —Wsign(s)

- . 36
w, (8) ={—y|sol”51gn(s) if Is| > |s (36)
’ —vIs|Psign(s) if Isl < Isol
w>2Z
Tm
Y2 > 40 In (Wre) -

T I T W—-9)
0<p<05

Note that the above algorithm does not require
measurements of the time derivative of the sliding
variable ($), thus, this controller is obviously robust
with respect to measurement noises.

Proposed Time-Varying Sliding Mode
Control (TVSMC) Design

The phase trajectory of the SMC is divided in two
phases: reaching phase and sliding phase. In the
reaching phase, the system trajectory starts from a
given initial condition and reach the sliding surface. In
the sliding phase, the system trajectory lies on the
predetermined sliding surface and converges to the
desired condition. The motion of the control system in
the reaching phase is sensitive to external disturbances
and parameter variations, while the system trajectory is
insensitive to disturbances/uncertainties during sliding
phase. There fore, one of the methods to increase the
robust performance of the SMC technique is to shorten
the reaching phase. Eventually, the following sliding
surface is suggested:

oc=¢é+H(—eé)g()Ae + H(eé)(Ae + h(t))  (3¥)

O
x“&- o
o S
X \;.‘.‘*‘ e
5//6 &?’Q 3
\\'\\a N
. (1) Initial State
N~ 2) Initial State e
.
i
. T §
Desired Sliding Surface K -%X
S=é+1e=0 ' ‘9//

Figure 4. Time-varying sliding surfaces based on the initial
condition
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whereo is a proposed sliding surface, e is the state
error, g(t) and h(t) are two nonlinear time-varying
functions. H (x)is a heaviside step function which can be
obtained by the Dirac delta function () as:

Hx) = ["_&(®dt (39)

Figure 4 schematically describes a procedure
whereby the proposed sliding surface varies over time
based on the initial conditions and consequently
converges to the desired sliding surface (green line).
This procedure suggests that when eé >0, the
intercept-varying methodology is selected until eé¢ <
0, in which the slope-varying methodology can be
used. Therefore, one can easily conclude that there is
no switching time between the designed time-varying
surfaces.

Next, the design procedure of the proposed two
nonlinear functions is studied. First, the initial values
for g(t) and h(t) functions must be defined sothat the
initial states lie on the sliding surface i.e.,

. ¢(0)

6(0) + g(0)2e(0) = 0 = g(0) = — =2

é(0) + 2e(0) + h(0) =0 = (40)
h(0) = —(&é(0) + 2e(0))

There after, functions g(t) and h(t) should be
selected sothat the slope-varying and/or intercept-
varying sliding surfaces approach the desired sliding

surface when time tends to infinity. As an example,
one may choose the following nonlinear functions:

g(®) = g(0) + (1 - g(0)) tanht (41)
h(t) = h(0)(1 — tanht)

Simulation Results

At first, the performances of the proposed nonlinear
observers(10) and (16) for estimation of the state variables,
are simulated on the MEMS optical switch with the
following initial conditions x¢ = [10"¢ 10~6]7and
Xy = [0 0]7. Moreover, we consider an unknown
disturbance exerted on the system asd(t) = D sin wt,
where D = 107% and w = m. The observation gains
A1, A, for FOSMO (10) and the observation gains a, 8 for
SOSMO (16) are chosen according to Tablel.

Table 1. Sliding mode observer parameters

FOSMO SOSMO
A =0.1 a = 40000
A, =50 B = 4000

Figures 5a and 5b show that the second order
sliding mode observation error of switch position and
switch velocity quickly converge to zero in
comparison with theconventional first order sliding
mode observation error. Moreover, it is obvious that
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the chattering effect hasbeen totally removed through
the second order sliding mode observation.
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Figure 5. a) Observation errors of switch position, b)
Observation errors of switch velocity

Table 2. Sliding mode controllerparameters

FOSMC SOSMC
W =5x10°8
p=5x10"° y = 10000
p = 0.5

In the next step, the performances of the proposed
control schemes are demonstrated. The desired
positions are x; = 5um and 23um. The parameters of
the proposed controllers are chosen according to Table
2. It is important to recall that the sliding variable is
taken as the same in both procedures. According to
(21) and (25), s = 0 is a line in the phase plane of slop
A and containing the point x4 = [x4 %4]7. In our
study, A = 2 is chosen.
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The closed-loop response, control input (applied
voltage), phase plane, and sliding variable of the system for
short (5 pm) and long (23 um) displacement ofactuator
by using classic sliding mode control scheme,

6 15
First Order Tracking

Paosition{m)
Input Voltage(V)

Sliding Surface
=0 -

Velocity(m/s)
Sliding Variable

Position(m)

x10

Figure 6. Position, Control input, Phase Plane, and Sliding
variable of the system for a short desired position x; = S5um

by using FOSMC
x10°
30
2 / s
E First Order Tracking %20
5 Z
g, S
8 — R &
8 Real state ;51 10
£
0
0 5 10 15
: Time(s)
x10

—_ Qo
:
2 Sliding Surface Sa
8, 50 Tl 2
s 24
"
0 -6
0 1 2
. ; )
Position{m) <10 Time(s)

Figure 7. Position, Control input, Phase plane, and Sliding
variable of the system for a long desired position x; =
23um by using FOSMC

are shown in Figs.6 and 7 and by using the second order
sliding mode control scheme, are shown in Figs.8 and
9.Moreover, the results of the proposed sliding mode
control schemes by using the estimated state variables are
compared with the results of proposed sliding control
schemes by using real state variables. Figures 8 and
9obviously depict the prompt convergence of the second
order sliding mode controllers in comparison with
traditional sliding mode controllers for both short and long
amplitude of desired output. In addition, it is obvious that
the second order sliding mode controllers can totally
remove the chattering effect.

Figure 10 displays the closed-loop response,
applied voltage, phase plane and sliding surface for
short displacement (5 um)of the actuator utilizing the
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time-varying second order sliding mode control. Then,
to compare the robust performance of the proposed
method with that of the SOSMC, the uncertain model

dynamics is simulated as:

%= ———[—(0.0363x + 4.5 X
2.35x10

1073)% — 0.6x + 1.9 X 1078V2 + (42)
E(t, x,x, V)]

wherea = 100 is considered as an uncertain
parameter. Figures 11 and 12 show the position and
velocity error, respectively, in the presence of a parameter
uncertainty. As can be seen from Figs.11 and 12, the
traditional second order sliding mode control (SOSMC)
is not robust enough in the contrary tothe proposed time-
varying second order sliding mode control (TVSOSMC)
with respect to the parameter uncertainty. However, the
proposed TVSOSMC could successfully enhance the
robust performance over time.
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Figure 8. Position, Control input, Phase plane, and Sliding
variable of the system for a short desired position x; = 5um
by using SOSMC
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Figure 9. Position, Control input, Phase plane, andSliding
variable of the system for a long desired position x; =
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Figure 10. Position, Control input, Phase plane, andSliding
variable of the system for a short desired position x; = 5 um

by using TVSOSMC
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Figure 11. Position error based on the traditional second
order sliding mode control (SOSMC) and the proposed time-
varying second order sliding mode control (TVSOSMC)
w.r.t uncertainty
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Figure 12.Velocity error based on the traditional second
order sliding mode control (SOSMC) and the proposed time-
varying second order sliding mode control (TVSOSMC)
w.r.t uncertainty

Conclusion

Two nonlinear observers based on the sliding mode
concept are proposed in this study, i.e. traditional first
order sliding mode observer (FOSMO) and second
order sliding mode observer (SOSMO),in order to
estimate the state variables of a MEMS optical switch
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with nonlinear terms and disturbances. Robustness and
stability of the proposed FOSMO is proved by
Lyapunov second method and SOSMO is designed
based on the super-twisting algorithm. Moreover, the
effectiveness of SOSMO in eliminating the effect of
chattering is demonstrated through simulations.
Sliding mode control laws are then designed by using
the estimated state variables from the proposed
observers to improve the dynamic closed-loop
performance of the MEMS optical switch. As a result,
second order sliding mode control law is an efficient
control scheme which iscapable oftotally removing the
chattering effect resulted by high frequency switching
in the conventional sliding mode control. Next, to
enhance the robust performance of the designed
second order sliding mode control, new time-varying
sliding surface algorithms based on shifting and/or
rotating the sliding variables are employed. Finally,
the simulation results indicate that the observer states
converge to the actual states very quickly in the
presence of disturbances. Also, tracking of the desired
position with short and long amplitudes is
accomplished within the specified limitation for the
control input.
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