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There is a growing interest in the modeling and control of model helicopters using
nonlinear dynamic models and nonlinear control. Application of a new intelligent
control approach called Brain Emotional Learning Based Intelligent Controller
(BELBIC) to design of autopilot for an autonomous helicopter is addressed in this
paper. This controller is applied to a nonlinear model of a helicopter. This meth-
odology has been previously proved to present robust characteristics against dis-
turbances and uncertainties existing in the system. The simulation results of this
controller arecompared with a PID controller. The policies for PID and BELBIC
controller are the same. The controller design goal is that the helicopter tracks a
special maneuver to reach the commanded height and heading. The performance
of the controllers is also evaluated for robustness against perturbations with in-
serting a high frequency disturbance. Simulation results show a desirable perfor-
mance in both tracking and improved control signal by using BELBIC controller.
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1 Introduction

Helicopter flight is a task that requires a great amount of
experience and skills. This is due to the strong coupling
that exists between all degrees of freedom and make
the control difficult. The same strong coupling of the
degrees of freedom and the same (maybe even more,
due to smaller helicopter size, greater sensitivity to con-
trol inputs and disturbances as well as higher bandwidth
of dynamics) amount of experience and skills are also
required for flight of small-size remote controlled heli-
copters. The use of such small-sized helicopters is in-
creasing for surveillance purposes by the police, filming
industry, hobby, the army, etc., and therefore, the need
for assistance of non-experienced helicopter pilots has
also increased. These reasons triggered the initiation of
research for development of autopilots that were able to
navigate a helicopter autonomously according to com-
mands that were given by an inexperienced user.
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Most of the existing results for helicopter control have
been based on the linearization model or through sever-
al linearization techniques [1, 2]. A very thorough sur-
vey of linear techniques for helicopter control has been
given by Garrad and Low [1]. Miniature helicopter con-
trol problems have also been discussed by Furuta et al.
[3]. The work of Pallett et al. [4] has served as the basis
for our understanding of the helicopter model.

Helicopter is a highly nonlinear dynamical system for
which linear control designs are far from adequate. The
classical control systems designed to provide satisfacto-
ry performance under nominal operating conditions, are
unable to cope with severe unknown nonlinearities in-
cluding inter-axis couplings and variation in helicopter
model due to difficulty in accurate modeling. We have
been exploring nonlinear controllers to provide auto-
matic vehicle control for a helicopter. In recent years
theory and applications of intelligent control systems
have been a focus of attention in control engineering.
Intelligent control of uncertain, unknown dynamical
systems with ever changing dynamics, where conven-
tional model-based control theory fails because of low
information and data about the plant dynamics, has
been studied extensively and several strategies have
been addressed [5-7]. Among intelligent control tech-
niques, there are Artificial Neural Networks [8], Fuzzy
Control [9], and Genetic Algorithms [10]. Recently, a
computational model of emotional learning in mamma-
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lians brain has been developed [11, 12]. Using the pro-
posed model, a control algorithm has been introduced,
which is called Brain Emotional Learning Based Intel-
ligent Controller (BELBIC), and has been successfully
employed for decision making and control of non-linear
systems.

In this paper we apply two methods to the system and
compare their performance. First method is an intelli-
gent controller named BELBIC. This controller has a
certain structure, but it can be changed to achieve the
control objectives. There are both continuous and dis-
crete time BELBIC controllers [13, 14]. We use the
continuous one to compare that with another continu-
ous time control method (PID controller). To design the
BELBIC controller, we should choose the appropriate
reward function according to physical aspects of the
control problem, and tune the training coefficients of
the controller to achieve the desired control objectives.

The sections of the paper are as follows. Section 2
describes the nonlinear model of the helicopter. The-
oretical aspect and controller design PID method and
autopilot policy has been elaborated on in the section 3.
Section 4 contains a brie review of the general formu-
lation of BELBIC. Section 5 shows the controller setup
and simulation results. Finally, conclusions are present-
ed in section 6.

2 Helicopter mathematical model

2.1 Rigid Body Dynamic
This section presents the dynamic model of a single
main rotor and tail rotor Model helicopter equipped
with a Bell-Hiller stabilizing bar. We based the control
system design on a nonlinear model of the helicopter
valid in the hover and low velocity regime. A number of
researchers [15,16] have proposed nonlinear models for
the aerodynamics of the main rotor and the tail rotor in
hover or in forward fight. In this paper we used the dy-
namic model that was developed by Mokhtari et al [17].
The equations of motion are obtained by equating the
sum of force and moment terms in each direction to the
time derivatives of the linear and angular momentum.
We treat the helicopter as the lumped parameter sys-
tem that consists of main rotor, tail rotor, fuselage and
horizontal and vertical stabilizers. In near-hover condi-
tion, the effect of fuselage and stabilizers are neglect-
ed and the forces and moments generated by the main
rotor,tail rotor and control rotor are substituted into the
equation of motion described in the body-coordingty
system. The rigid body fuselage dynamics are modeled
using equations of motion that describe the motion of
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the helicopter body. These are the three force, three mo-
ment equations and three kinematic equations that are
derived using Newtonian mechanics. The derivation of
these equations is discussed in detail in [18], which are
given below:

u =-(wq —VI‘)+£— g sinf
M 1)

vV =—(ur —Wp)+Yﬁ'+ g cosOsing

w =—(vp —up)+%+ g cosfcosg
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Total forces and moments in three directions obtained

as following:

X=X, +X, +X, + X, +X,

Y =Y, +Y, +Y, +Y  +Y,

=2, +2.+2,+2 . +Z,

@

L=L,+L +L, +L, +L,
M=M,+M, +M_,+M_ +M,
N=N,+N, +N, +N, +N,

()

The various subscripts that accompany the forces and
torques are: (), for Main Rotor, (), for Tail Rotor, (),
for Fuselage, On for Vertical Fin and Or for Horizon-
tal Stabilizer. As it was said before, we can neglect the
effect of fuselage and stabilizers.

The helicopter is controlled by four inputs: main rotor
collective U, , longitudinal U, and lateral U cyclic
pitch, and tail rotor collective pitch U ;. Servo actu-
ators are linked to these control surfaces and are mod-



Intelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach 35

eled by first-order transfer functions. A separate engine
governor regulates the throttle in order to maintain a
constant rotor speed.

2.2 Main rotor Thrust Magnitude

To determine main rotor thrust magnitude, two compli-
mentary methods are used: momentum and blade ele-
ment theory. The first method presented is momentum
theory which yields an expression for thrust based on
the induced velocity through the rotor disk. Because
this is a single equation with two unknowns, a second
expression is needed to make a solvable set of equa-
tions. This second equation is generated using blade
element theory, which is based on the development of
thrust by each blade element. The result of this section
is a set of thrust equations that are solved by a recursive
algorithm. The final thrust equation derived from mo-
mentum theory becomes: [15]

T=pAN’+V,-0) 2v, (6)

Again, partially solving the equation for the induced
velocity V| we get

v = I~ "“4’,(\4’, —311)+ (V‘ +Wr(wr —311) )2 i T )2 ™
: 2 2 204

In the final expression both thrust and induced velocity
are unknown, in order to solve this, another expression
for either thrust or velocity is needed. Therefore, blade
element theory is used. The new total thrust equation
that is generated by the main rotor blades is:

T =bL= %(Q.R)%.C.R.a.(a ~4) ®)

Finally the results of the thrust generation section are
obtained using the following equations:

~
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2.3 Thrust Vector

Here the main rotor and control rotor flapping equations
are derived. The outputs of these equations are the TPP
inclination described by the angles ﬁls s ﬂlc ,ﬂcr,ls and

« 1 for the main rotor and control rotor, respective-
ly. The inputs to these equations are the moments af-
fecting each blade element about the effective flapping
hinge. The moments are comprised of the following:
Gyroscopic Moments, Aerodynamic Moment Centrif-
ugal Moments, Spring Moments, Inertial Moments and
Gravitational Moments. By finding the equilibrium
point between all moments affecting the blade, TPP an-
gles can be found. [17]

ﬂ = ﬁls Sinl//MR + ﬁlc COSY/\r
(13)

M
ﬁMR+Q2MRﬁMR = I -

bMR

2.4 Rotor control

The control rotor acts as a lagged rate feedback in the
pitch and roll axes, reducing the bandwidth and control
sensitivity to cyclic inputs. From the swash plate, the
control rotor receives longitudinal and lateral inputs,
much like the main rotor. But unlike the main rotor, it
does not receive any collective input, and thus does not
produce any lift which would result in a coning angle of
the control rotor. The control rotor tip path plane flap-
ping can be modeled by [17]:

ﬂcr == cr,ls Sln(ll’) + ﬂcr,lc COS(W) (14)

The procedure for obtaining the flapping angles are
the same for the control rotor as was followed by the
main rotor. By equating all of the moments that act
on each paddle or rotor blade, it is possible to find the
blade flapping angle.

ﬁCR = ﬁcCR COSY/ o, + ﬂsCR Sinl//CR

(15)

M
ﬂCR +QZCRﬁCR = I =

ber
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The moments that have an effect on flapping angle are
aerodynamic, inertial, centrifugal and gyroscopic. To
find the flapping angle, the moments are equated to zero.
From the longitudinal (M __; ) and lateral (M ) mo-
ments, two differential equations describing longitudinal
and lateral flapping are isolated. This gives the final re-
sult of the control rotor flapping equations.

. 1 1
t)=——QyeB_ ——vyepl(t
B..®) T 1B~ 17 p(t)

1 1 ) (16)
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16 16
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Where the term & is equal to:
R4
£= (14 o) (18)

The flapping of the control rotor is mixed with the in-
put from the swash plate (A, ,,B,, ) to form the com-
plete pitch input of the main rotor. The mixing ratio
between swash plate input and the control rotor input is
governed by the mechanical links connecting the swash
plate, control rotor and the main rotor. These gains (K.,
and K ) can be found by measurements of the pitch
responds to a swash plate tilt or a control rotor flapping
angle. The resulting inputs are thus:

Al = KSWASW W1 + Kcrﬁcr,ls
Bl = szBsw W1 - Kcrﬁcr,lc (19)

2.5 Main rotor Forces

After obtaining thrust magnitude, rotor control flap-
ping angles and main rotor control angles, the total
force produced by main rotor can be obtained by fol-
lowing equations:

X MR _TMR .sin ﬂlc
YMR =TMR 'Sln ﬁls
Z,w =T, x-cos P, .cosp,

MR

(20)
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2.6 Tail rotor

The equations defining the magnitude of the thrust are
derived with respect to the main rotor blades; however,
the same principles apply to the tail rotor, where 3, .and
B,. are zero. Furthermore the tail rotor rotational direc-
tion and the yaw rate, r, must be considered with respect
to W, and 7, ; thus the tail rotor thrust equations are
[15]:

F2 2 2
V., =u"+w

w,, =v—1.r @n

rir

o View, o, ~2u,) [V 4w ., —2u,), T, . 22
u, __J 5 +\/< 5 V) 22

T = l.p.Qlf.R}.b c,a,.[(0,

tr g tr " col tr

+w. ] (23

Ltr Ttr

+ é.Qw )-u
4
The force produced by tail rotor is shown as follows:

Ytr :-Ttr (24)

2.7 Tail plane and vertical fin

As it was stated before, tail plane produces force in Z
direction and vertical fin produces force in Y direction
[15].

uo =u _uwind
VO =V _Vwind - ltr _Vltr (25)
Vo=V =V Ha -V,
Vo=V " Viina — lrr _Vltr

(26)
Vo=V Vi T lhr q _Vlmr
Y, =0.5pS, (C" fu, I, +u,fu,)

(27)

Z,=05pS,(C" g [w, + W w,)

The overall model is implemented in MATLAB &
SIMULINK environment for the design and evaluation
of the controllers introduced in the following chapters.
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3 PID Controller Design

It is well known that the elimination of offset is a major
objective in the control of any system. The PID con-
troller has been widely applied in engineering. Apart
from its simple structure and relatively easy tuning,
one of the main reasons for its popularity is that it pro-
vides the ability to remove offset by using integral ac-
tion. Moreover, since PID (PI or PD) controllers are so
widely used, one might expect that the structure should
arise naturally, given reasonable assumptions of system
internal dynamics and control performance specifica-
tions. A single-variable PID controller is composed of
three terms, namely, (1) proportional, (2) integral, and
(3) derivative [19]. Controller commands are executed
in four channels. Two channels are controlled by longi-
tudinal and lateral motion of cyclic and the two another
are controlled by pedal and collective, respectively.

u - {u u cyclic uloncycllc uped } (28)
Input commands are defined separately in the two
different phases of flight. For the first phase, vertical

climbing, the commands are defined as follows:

col lat,

=0, 29)

l//com’ com 2~ com

vzmm is determined so that helicopter vertical velocity
is increased in the first one third of climbing. After that,
vertical velocity remains constant and in the last one
third, helicopter gains negative acceleration to reach to
purposed height at V, =0 . Define
et)=X__-X

comm Meas ( 3 0)

X =[p,y,0V,] o

uj(t):Ke(t)+Kdj—te(t)+Ki'[e(t)dt,j:1,2,3,4 (32)

As mentioned, the goal of the second phase is to
change the yawing angle from zero to 90 deg. Input
commands are defined as:

(Pcom > 9 = 0’

com

V,V..v =0 (33)

W om is selected as follows:

0 t <20

W (t)=12(t-20) 20<t <30
2 (34)
T

30<t

3.2 PID controller verification

The Ziegler—Nichols tuning method has been used
for tuning PID controllers. For verifying designed pid
controller, we check the step response of both control
channels. As shown below, the result of step response
reveals good tuning of pid controller for both vertical
speed and yaw channel.

AL P 4
B e e 4

B e Y e e e L _

o i 10 15 20 25
Tima(s)

Figure 1. Step response of vertical speed controller channel V,

10 15 20 25
Time(s)

Figure 2. Step response of yaw controller channel

4 Brain emotional based intelligent controller (BEL-
BIC) [20-21]

Emotions and their nature have been studied for a long
time and psychologists have proposed a wide-range of
different theories of emotion. Emotion has traditional-
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ly been conceived as something that is irrational and
detractive from reasoning. But scientists have recently
learned about the surprisingly positive roles played by
human emotions especially in decision-making process-
es. A major motivation to mimic emotions in control en-
gineering applications is the belief strongly held by the
authors that in the development of intelligent control
systems, too much attention has been focused on fully
rational deliberative approaches, whereas in many real
world decision-making situations human agents select
their action via bounded rationality. Various factors like
computational complexity, multiplicity of objectives,
and prevalence of uncertainty leads desirability of
more ad hoc rule-of-thumb decisions. Emotional deci-
sion-making is particularly appealing since it is neither
completely cognitive nor entirely behavioral.

Orbitofrontal _
Cort
o e):l / Controller
output
Y
Amygdala
B
Sensory input Emotional

signal

Figure 3. The abstract structure of the computational model
mimicking some parts of mammalian brain.

The limbic system is seen as the seat of emotion, mem-
ory and attention in the brain [21]. Researchers have
found that the amygdala and OFC, parts of the limbic
system, play an important role in the coding of the emo-
tional significance of sensory stimuli [22, 23, and 24].
Also neurons in the amygdala are driven particularly
strongly by stimuli with emotional significance. During
experiments to investigate the role of emotion in brain
mechanisms, the amygdala and OFC have been impli-
cated as the focal points that determine the emotional
significance of many kinds of emotional stimuli [22, 23,
and 24]. The emotional learning model in amygdala and
OFC is illustrated in Fig. 1. BELBIC is essentially an
action generation mechanism based on sensory inputs
and emotional cues (reward signals). The emotional
learning occurs mainly in amygdala. The learning rule
of amygdala is given in following formula:
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AV, =a S, max(0,REW - ) A) (35)

Where is the gain in amygdala connection, ¢, is the
learning step in amygdala, S, is sensory input at each
instance, and REW and 4 are the values of reinforcing
signal and amygdala output at each time. The term max
in the formula (13) is for making the learning changes
monotonic, implying that the amygdala gain can nev-
er be decreased as it is modeled to occur in biological
process in amygdala [11]. Similarly, the learning rule in
OFC is shown in formula (14).

AW =a S (E'-REW) (36)

Where W, the weight of OFC connection and «, is
OFC learning rate. The £ node sums the outputs from
A except 4, (thalamic connection (4)) and then sub-
tracts from inhibitory outputs from the O nodes, where
it can be calculated as formula (15):

E'ZZ A - ZO,- (not including 4, G

in which, O represents the output of OFC. The thalam-
ic connection (4,,) is calculated as the maximum overall
stimuli S and becomes another input to the amygdala
part:

A, =max(s,) o

There is one output node common in all outputs of
the model, called E. The E node simply sums the out-
puts from the 4 nodes, and then subtracts the inhibitory
outputs from the O nodes. The result is the output from
the model:

EZZ Ai - Zoi

(including 4,,) (39)

In fact, by receiving the sensory input, the model cal-
culates the internal signals of amygdala and OFC by the
relations in (18) and eventually yields the output:

A =SV, (40)
0, =SW,

Since amygdala does not have the capability to un-
learn any emotional response that it ever learned, inhi-
bition of any inappropriate response is the duty of OFC.
Controllers based on emotional learning have very
good robustness and uncertainty handling properties,
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while being simple and easily implementable. To utilize
our version of the Moren—Balkenius model as a control-
ler, it should be noted that it essentially converts two
sets of inputs (sensory input and emotional cue) into the
decision signal as its output. Closed loop configurations
using this block (termed BELBIC) in the feed-forward-
loop of the total system in an appropriate manner have
been implemented so that the input signals have the
proper interpretations. The block implicitly implement-
ed the critic, the learning algorithm and the action selec-
tion mechanism used in functional implementations of
emotionally based (or generally reinforcement learning
based) controllers, all at the same time. In utilization of
BELBIC, it should be pointed out that since this mod-
el has originally been proposed for descriptive purpose
with no control engineering motivation, the model is es-
sentially open-loop. To be used as a controller, the de-
signer has to choose the sensory input fed back from the
system response as well as the reward function in accor-
dance with the control engineering requirements of the
problem on hand and not merely from neuro-cognitive
insights. The design of BELBIC, is therefore, no differ-
ent from the design of any other non-linear and adaptive
control schemes. The structure of the control circuit we
implemented in this study is illustrated in Fig. 2.

L
ha— |
Input
—* ¥,
BELEIC u Mon-linear P
Controlles Helicapter
Modsl
5,
" ° Reward
Signal
|—> Enilder

Figure 4. Control system configuration using BELBIC.

The implemented functions in emotional cue (REW)
and sensory input blocks are given in (19):

REW =J (S .e,y,)

S, =f(u.e,y,y,)
0, =SW,

(41)

As it is illustrated in (19), sensory input and reward
signal can be arbitrary function of reference output, y,
controller output, # and error (e) signal, and the design-
er must find a proper function for control.

5 BELBIC Controller setup and simulation results

In this section, the design procedure for intelligent Heli-
copter vertical speed, yaw channel control, and obtained
simulation results are presented. V', and yaw programs
were explained in PID controller section.

It was mentioned in Section 4 that the BEL based
controller must be provided with a set of sensory input
signal in addition to a reward signal. To accomplish the
desired performance we have used sensory input and
reward signal for V_ control channel as follows:

S =[100V, V)10 V] “2)

REW =10, —V,,) 5[V, -V, )+ 1050, V,) - @)

While the learning rate in amygdala and OFC was set
at o= le—3and a = 1le— 1, respectively. The sensory
input chosen for the helicopter control (20) has the ref-
erence command signal and the feedback error signal
as its two components. The coefficients are chosen via
trial and error. The reward function (21) is similar to a
PID control scheme seeking a suitable tradeoff between
quick adjustment of error and long-time elimination of
the steady-state error. Using above data we can now
proceed with simulations. The inputs to the controllers
are V_ and yaw programs are illustrated in Fig.3and
Fig.5 which have been previously designed in PID con-
troller section. Simulation results for nominal trajectory
following, in absence of any disturbance, are shown in
Fig. 3-6. It can be seen clearly that the command signal
is followed by BELBIC very closely with slight error in
both V_and yaw programs in respect to PID controller.

To demonstrate the robustness of proposed BELBIC,
the control algorithm was executed in presence of a high
frequency disturbance. The examination of simulation
results (Fig. 9(b)) reveals that the proposed BELBIC is
quite robust facing exerted disturbances and is able to
reject them. While using PID controller, the system is
not able to cope with the disturbances and instability
occurs (Fig. 9(a)). The disturbance diagram is depicted
in Fig. 8.
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Figure 7. Vertical Velocity program tracking. (a) PID controller (b) BELBIC controller
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Figure 11. Vertical velocity tracking in presence of high frequency disturbances. (a) PID controller (b) BELBIC controller
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Figurel2- Vertical velocity tracking error in presence of high frequency disturbances. (a) PID controller (b) BELBIC controller

6 Conclusions

In this paper, application of on-line brain emotional
learning based intelligent adaptive controller (BELBIC)
has been introduced to maintain commanded attitude of
a scale-model helicopter. A survey of results obviously
implies that BELBIC shows effective performance in
the presence of exerted uncertainties and disturbances
when compared to classical PID controllers. Besides,
due to simplicity of the proposed BELBIC which ma-
jorly is because of requiring little information about the
system dynamics, implementing the controller is easily
possible. Requiring less number of calculations com-
pared to other adaptive controller strategies, meanwhile
having better robustness performance are other advan-
tages of BELBIC. The results show the applicability of
the BELBIC for real world functions where high oscil-
lated disturbances and unknown conditions make con-

trol process difficult for other controllers like classical
PID. 10 Acknowledgment
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