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Crack Analysis, Using a New Coupled FE-EFG Method

S. Mohamadnejad', A. Darvizeh?, M. Darvizeh?, R. Ansari’, and A. Basti*

1o solve crack problems, some coupled methods have been developed in recent
years. Most of these methods have some shortcomings such as the need for a
transition region. The finite element and enriched element free Galerkin methods
are widely used for this class of problems. In order to take the advantages of these
methods while avoiding the disadvantages, it is essential to follow solution ap-
proaches based on a combination of them. Prompted by this idea, in this article,
the authors mainly aim at finding a simple way to solve the problem of a cracked
plate by using a novel coupled finite element-element free Galerkin (FE-EFG)
method. In this procedure, the usage of transition region is bypassed by employ-
ing the concept of “virtual particles”. The enriched element free Galerkin method
is applied to approximate regions near a crack tip and the finite element method
is put to use in the areas far from the crack tip. Static analysis of two-dimensional
crack problems, according to the plane stress condition under mode-I loading,
has been done. The results from the present method are indicated to be in excel-
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lent agreement with those from the existing analytical solutions.

1 Introduction

The finite element method (FEM) [1, 2] has been rec-
ognized as an appropriate simulation procedure for a
large number of problems in various branches of engi-
neering and science. This wide usage has delineated its
defects and benefits. Some problems are unsolvable or
are hard to solve by the FEM; for example, problems
which deal with crack growth and those with intricate
configuration can be noted. Therefore, researchers en-
deavor to find new solution techniques or to improve
the FEM. Among these alternative methods, one can
mention meshfree or meshless methods [3]. The first
meshfree method proposed by Lucy [6] is smooth parti-
cle hydrodynamic (SPH) [4, 5]. After that, several oth-
er meshfree methods were developed (e.g. the diffuse
elements (DEM) by Nayroles et al. [7], the element
free Galerkin (EFG) method by Belytchsko et al. [8-
10], the reproducing kernel particle method (RKPM) by
Liu et al. [11] and the meshless local Petrov-Galerkin
(MLPG) method by Atluri and Zhu [12, 13]). Meshfree
methods are suitable for solving hard differential equa-
tions in engineering and in other scientific areas. It has
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been revealed that, in some aspects, they are superior
to their conventional counterparts such as the FEM, the
boundary element method (BEM) and the finite differ-
ence method (FDM). For instance, some engineering
problems which involve very large distortion, dynamic
fracture, cracks or explosion cannot be solved by the
classical methods, whereas the meshfree approaches are
found to be capable of solving them. However, mesh-
free methods have some defects such as considerable
computational cost, difficult imposition of essential
boundary conditions and complexity in the analysis of
problems with point loads.

Considering the limitations and advantages of mesh-
free methods and those of the FEM, finding procedures
for combining these methods seems to be useful. One
reason that necessitates the need for combining the
FEM with meshless methods is associated with the fact
that imposing boundary conditions sometimes becomes
very difficult. There are many works in the literature
in which coupled meshless-finite element methods
(e.g. EFG-FEM, MLPG-BEM and MLPG-FEM) have
been developed. Using “virtual elements”, Hegen [14]
offered an approach for combining meshless methods
based on the moving least square (MLS) method and
the FEM. The EFG-FE method suggested by Belysc-
hko[15] is the most prominent coupled method.

As it is well-known, in meshless methods, instead of a
structured mesh, only a dispersed set of nodal points is
needed. This feature can be helpful for modeling crack
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propagation. In addition, although meshless methods
are adaptable for modeling crack propagation, they are
more time-consuming than the FEM because of their
changeability. Therefore, it is essential to use meshless
methods in the area of crack growth and the FEM in
other areas of the domain. Many researchers have al-
ready used different coupled methods to analyze crack
problems. For example, Rao and Rahman [16] have
used interaction integral to couple the EFG with the
FEM. Gu and Zhang [17] have used transition region
(or bridge region) that can be discretized by transition
particles. Xiao and Dhanasekar [18] have utilized a col-
location approach to couple FEM with EFG.

In this paper, based on the EFG-FEM coupling meth-
od suggested by Hsun and Ping [19], an enriched EFG-
FEM coupling method is proposed for the crack prob-
lem.

Four techniques are used to simulate discontinuities
in the meshfree method: (i) improvement of the weight
function similar to the visibility, diffraction and trans-
parency methods [20, 21], (ii) improvement of the in-
trinsic basis [22], (iii) methods established on an extrin-
sic MLS enrichment [22], and (iv) methods established
on the extrinsic PUM enrichment [23]. The increased
Lagrangian method has been employed to simulate
powerful discontinuity (crack problems) in Carpinteri
[24] and powerless discontinuity in Carpinteri [25].

2 An Overview on Element Free Galerkin Method

The EFG method suggested by Belyschko et al. [26] is
based on the diffuse element method (DEM)[27]. Some
of the important characteristics of the EFG method are
as follows:

1. In this method, moving least square (MLS) tech-
nique is employed for shape function construc-
tion,

2. The Galerkin weak form method is used to discre-
tize the system of equations, and

3. Cells of mesh are necessary for computations of
integration related to the matrix of system.

The equilibrium equation in the EFG method for a
body that occupies the domain () with the boundary of
I is written as follows:

. (1)
Vo+b=0 n Q,
where, o is th inress tensor, which fits into the displace-
ment field u, b 1s the body force and V is the divergence
operator. The boundary conditions are:
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(2)

no=tonl wu=u onl

! u

Both FE and EFG methods use a weak form of Equa-
tions 1 and 2. To apply the variational method, we em-
ploy the total potential energy as:

1 (3)

M= [¢"Dadar- [u” bicr- gr.idr,

where, D denotes the matrix of material properties, u is
the displacement field, s the perpendicular unit vec-
tor, b is the body farce, ¥ is the imposed displacement
at boundary I and ! is the imposed stress.

To approximate the displacement field, the follow-

ing polynomial functions with variable coefficients are
used:

m (4)
u' (x)= ZPI- (x)a;(x)

=p' (x)a(x)

in which, p.(x)i=12,...,m, are monomial basis
functions, m 1s the number of terms in the basis, and
a, ( x) are the coefficients of the basis functions.

Overview on Moving Least Square Method

The moving least square (MLS) method was recom-
mended by Lancaster and Salkauska [28] to approxi-
mate the shape function of the EFG. MLS approxima-
tion has two main properties: First, the approximation
of field function is continuous and smooth. Second, it
can present an approximation with the requested order
of consistency. The approximation of field function in
MLS is done via Eq. 4. The basis functions are given
by:

in two—dimensional p” = (1,x,,x,). (5)

The interpolation at x can be expressed as follows
[28]:

m (6)
u (x’xi) = Zpi (xi)ai(x)

=p" (x)a(x)
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where, x; is the point in the MLS-interpolation of x. To
obtain the interpolation of the function u(x), the differ-
ence of the interpolation 7" (x) and the function u(x)
must be minimized by a weighted least squares method.
For the functional, we have:

J= Zu'(,\‘ —x)u" (x,x,)—u(x,)) = (7)

1=l

z w(x—x, ){Z p.(x)a,(x)—=u(x, )] 5
1=l i=1

where, w(x —x,)is the weight function and
x,({ =1,2,...,n) are nodes covering the point X . We

can rewrite Equation (7) as:

J =(Pa-u)"W(x)(Pa-u), (8)
where,
u” = (u,,u,,...u,) (9)
p(x)  py(x) (X))
p= pl(‘xZ) pz(.xz) pm(.xZ) (10)
pl(xn) p2(xn) pm(xn)
wx-x,) 0 0 (11)
I
0 0 wx-x,)
Then, from:
oJ
a0 0, (12)
we have:

A(x)a(x) = B(x)u (13)
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where, A is nominated weighted moment matrix which
can be given by:

A(x)=P'"W(x)P , (14)
B(x)=P"W(x).

From Eq. 13, we have:

a(x)= A" (x)B(x)u- (15)
. . h .
The local approximation % (%) is thus:

. (16)
u' (x) = D) = ®, (),

where, @(x) is the shape function with the following
formula:

D(x) = (@, (x) D(x) ..., D, (x), (17)

=P"(x)A7"(x)B(x).

It should be noted that, in this study, linear polynomi-
als are used.

3 Weight Function

The selection of weight function in the MLS method is
very substantial. In this regard, consider the following
points:

*  weight function is explained as the function of the
distance between two points [29],

*  support must be fitted into a small space, i.e. out-
side the support domain is zero, and

» all points in the support domain must have posi-
tive values.

Different weight functions have been used in various
references.

We approximate the displacement field in the follow-
ing form:

(18)
u"(X) = {p(XOV IPIWIPT TP >
=D(X){u}

The shape function of each particle can be obtained as

D(X) = (19)
POV ([P IPT [P ]] -
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4 Enriched EFG
The goals of the enriched EFG are
* finding non-enriched and enriched particles,
e handling extra degrees of freedom,
»  calculation of stiffness matrices.

The choice of supplemented particles is clarified in Fig.
1. It is adequate to calculate the marked space from the
particles to the crack and the space from the particles to
the crack front and linked these spaces with the radius
of the support area. Because of the existence of extra de-
grees of freedom (DOF’s), the assembly process has to
be revised. Some imaginary nodes were applied to man-
age these extra dofs. These nodes are named “Phantom
nodes”. At H-enriched node and at a front enriched node,
one phantom node and four phantom nodes were added,
respectively. Addition of these imaginary nodes begins
from the complete number of exact nodes plus one.

In two-dimensional problems, at a particular node as-
signed by a number i, there are two unknowns that are
associated with equation numbers 2i — 1 and 2i in the
global matrix. If it is a discontinuous-enriched node, it
contains two supplemental unknowns that are associat-
ed with equation numbers 2 % pos(i) — 1 and 2 x pos(i)
in the global matrix. Therefore, if it is an adjacent front
enriched node, it contains eight supplemental unknowns
from equation numbers (2xpos(i)—1, 2x pos(i)), (2 %
(pos(i) +1) = 1,2 x (pos(i) + 1), (2 x (pos(i) + 2) — 1,
2 x (pos(i) + 2)) and (2 x (pos(i) + 3) — 1, 2% (pos(i) +
3)), where every couple matches every supplemented
phantom node.

Crack Crack tip

Figure 1. Assortment of enriched particles: (a) Discontinuous
enriched particles, (b) Close to front enriched particles [3].

The ordinary section and the enriched section are
components of the B matrix at a Gauss point gp. The or-
dinary section is constantly calculated but the enriched
section is just calculated if, in the nodes whose supports
comprise gp, there are enriched nodes [3].

In equation (20), B*“ is the standard B matrix and B
is the enriched B matrix: where ®I(x) can be either the
Heaviside function H(x), or the branch functions Ba(x).
The above-mentioned B matrix can be written in the
following form:
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(q)l),x +Y¥, +q)1(q)1),.\‘ 0
Blm = 0 ((D[),yLPl +(D1(qjl),y
((Dz),y% +q)[(lP]),y ((Dz),xlpl +(D[(l]11),x

(20)

B =[g% | B]

5 Numerical Examples:
Infinite Plate Having a Center Crack
We consider an infinite plate that includes a direct crack
of length 2a. The plate is subjected to a steady stress

field 6. Along ABCD, the closed form solution in polar
coordinate (1,0) is given by

20)
2+v) K (
u,(r,0)==—=~ ’\f c0s— (1 2v +sin® f)
N27
21)
21+v) K , 0 (
u (r,0)= f 2 2v —cos’
% 2z E ?
@ 6. 6.3 (22)
0, =0,,|—cos—(I-sin—sin—)
2r 2 2 2
a0 6. 30 (23)
0, =04, cos—(l+sin—sin—)
2r 2 2 2
[ .0 0 3 (24)
0, =0,,|—SIN—C0S—COS—
! 2r 2 2 2

e

b e T

Figure 2. Infinite plate having a center crack subjected to tension [3].
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Here, k, = ov/ma is the stress intensity factor, v is Pois-
son’s ratio and E is Young’s modulus. ABCD is a square
area with the size of 14mm x 14 mm. Also, a= 100 mm,
E=30x10% N/mm2, v=0.3 and ¢ = 10* N/mm?2. The ge-
ometry of ABCD is shown in Fig. 2. Displacement of
nodes on the bottom, right and top edges are obtained
from Eq’s. (20) and (21).

In other words, boundaries on the bottom, right and
top edges are exposed to the known displacements.

The stresses can be obtained from Equations (22-24).
The crack is analyzed by the coupled method that will
be explained in Section 5. Using 4x4 Gauss Quadra-
ture rule, numerical integration is performed on a back-
ground mesh of 13x13 elements. The energy error norm
for this combined method is depicted in Fig. 4- a.

KI is the stress intensity factor for mode I contingent
upon the crack length, the geometry of example and the
implemented loading, and (1,0) are the polar coordinates
of a point after utilizing trigonometric variables. It can
be shown that the entire functions which are displayed
in Equations (22, 23, 24) are extended across four basis
functions which come next:

(25)

{\/;cosg \ﬁsing \ﬁcosgsiné’
2 2 2
\/;sinzsinﬁ }

In applying the meshless method to linear elastic frac-
ture mechanics (LEFM), it is beneficial to add these
four basis functions in Eq. 25 to the linear basis func-
tions, so the stress singularity is able to be entrapped.
It was initially applied by Fleming et al. [30] in the
element-free Galerkin (EFG) method. Supplementing
these four basis functions in Eq. 25 into Eq. 5, the en-
riched basis functions for two-dimensional problems
can be achieved.

a) Complete linear monomials:

PT(x) =[Lx, y,r cos”
2 (26)

\/;sing,\/;cosgsin H,J;singsin 0]
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b) Complete second-order monomials:

T _ 2.2 \/_ 0 (27)
P (x)=[Lx,y,x",y",% ,Jrcos—,
Xy 2

\/;sing,\/;cosgsin Q,J;singsin 0]

The method that comprises the crack front enrich-
ments yields more precise answers and more superior
convergence. With extrinsic MLS enrichment, the most
precise answers and the elevated convergence are ac-
quired. Anyway, the calculative price is further costly.
Extrinsic MLS enrichment is more precise than the ex-
trinsic PU enrichment.

The identical consideration can be constructed for lo-
cal convergence. The fact that SIFs can be straightly
procured is a great utility of the extrinsic MLS enrich-
ment and this utility apparently results in more precise
answers considering local convergence. Figure 4(a)
shows the energy error norm for mode I by applying the
extrinsic MLS enrichment.

By joining two enrichment functions, cracks are sim-
ulated. One for the intricate style at the crack front and
a Heaviside step function to execute the discontinuity
through the crack. The Heaviside function carries a
quantity of 1 over the crack and -1 under the crack in-
serting a displacement discontinuity through the crack
in elements in which the crack disconnects their sup-
ports. For the tip of the crack, the enrichment function
is used which has been suggested by Fleming to be uti-
lized in the element free Galerkin method.

They were, afterwards, accepted by Belytschko® for
utilization in XFEM. These functions bridge the crack
front displacement area. In addition, observe that the
initial function is discontinuous through the crack in-
side the element including the crack tip.

5 Coupling Technique

For simultaneous utilization of the premium of both
EFG and FE Methods, up to now, various combined
methods have been submitted. For instance, a conve-
nient collocation approach has been demonstrated by
Xiao and co-workers [18]. Also, Gu and Zhang [17]
have conducted a lot of research on combining mesh-
less—finite element that uses particles in the transition
zone. Ming and Cheng [31] could reach higher preci-
sion results by offering a new ramp function to combine
element free Galerkin and the finite element method.
Combined methods that have been suggested hitherto
for combining meshless methods with the FEM can be
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categorized in the following way:

e  Coupling with ramp functions,

e  Coupling with reproducing conditions,

e Handshake (Bridging domain) coupling,
e  Strong hybrid coupling,

e  Master-slave coupling, and

e Continuous Blending Method (CBM) developed.

The method utilized in this article requires the tran-
sition region and its transition region is a line. Virtual
particles are placed in the line. Using FEM formulation,
the virtual particles have been obtained and utilized
as a particle in the element free Galerkin method. In
comparison with other coupled methods, this method
does not necessitate explanation of the ramp function,
Lagrange multipliers, bridging domain or any special
processing such as the utilization of visibility criterion
in the hybrid approximation.

The conclusive system equation for finding the an-
swer to elastic problems is shown as:

[K]{u}={f} (28)

In this formula, K is stiffness matrix (made of very
2x2 sub-matrices K ):

(29)
K,=[ B'DB +aJ'E“_ D5,

s, 0] (30)
S=| .
‘ 0 s,

s.=1 if prescribed u

x - o

s, =1 if prescribed u,

where, B;, B, are given in Equation (14) and .9,
are given in Equation (17). To couple the enriched EFG
with the FEM, we use B* with some modifications in-
stead of B, and B ;- Also, note that ¢ is a penalty num-
ber.

The corresponding load matrix f can be obtained as:

f,=[ $1dt, + [ @ paQ+a| DSu, (31
' 0 “

where, ¢ is the traction force along the line, b is the
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body force on a volume and indicates the displacement
boundary conditions.

All nodes utilized in the FEM domain possess inde-
pendent degrees of freedom. The gatherings of stiffness
matrix and load vector are alike as can be seen in Eq’s.
29 -31.

Normal and virtual particles used in the EFGM domain
are obtained from nodes and, hence, possess dependent
degrees of freedom. Stiffness values computed for vir-
tual particles are supplemented to matching nodes.

Degrees of freedom in Eq. 29 can be divided into four
sections that can be written as follows. The first section
is connected to normal particle i and normal particle j.

— (32)
K,= J‘Q B,DB,dQ + a—[r... D,5D T,

The second section is connected to virtual particle 1
and normal particle j.

K, =1}[ B/DB dO (33)

+ T,.fafjl_ 5 dr,

ui

The third section is connected to normal particle i and
virtual particle n.

K, = | B'DBdOT, + (34)
Q o o

ui® jn

a’jr | Efk‘s‘afd[“ T

The fourth section is connected to virtual particle 1 and
virtual particle n.

K

In

=1," [ BIDB dOT, (35)
i 0 i J jn

+al,” L- 5P ,dl'T,

where, D is the elasticity matrix, is the standard finite
element strain-displacement matrix and®(x)is the
shape function given in Eq. 17.

The transformation matrix is as follows:



Crack Analysis, Using a New Coupled FE-EFG Method

L=

(NG 0 .NGnp 0

0 NED .. 0 NG (36)

where 7', connects virtual particle j to element n, N
is the shape function for node i in element n and (&;m;)

is the coordinate for virtual particle j in element n.

Correspondingly, the calculation of force vector, i.e.
Eq. 31, can be extracted as goes next.

The first section is related to normal particle i:

(37)
[, =] ®idr+ | @bd0>

+af B, Sud,

The second section is connected with virtual particle 1
as:

(38)

fi=T/ | @+ | @b

+ ?J‘Traj 6}' S‘Er'('ﬂ—‘m' .

6 Determination of the Stress-intensity Factor (SIF)

Utilization of the EFG in crack analysis is very notable
and uncomplicated; therefore, it permits simulation of
clearly different geometric discontinuities. The stress
intensity factor (SIF) in the LEFM is the principal
variable capable of characterizing the stress area in the
nearby area of the crack front. Its appointment is a crit-
ical act. It can be achieved from the stress field, the dis-
placement area or through energy amounts like the fa-
mous path-independent integrals as defined by Rice and
Rosengre (1968) [33]. In agreement with the J-integral
formula, it can be obtained by using the divergence the-
orem; for instance, one can explain the rate of extricated
energy per unit crack propagation in the xk vector [33]:
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X Mode 1
z
Mode 2
z
x Mode 3
z
Figure 3. The three modes of failure [34].
(39)

J =_[\(”ix.g —Lu,, u’\» k=12

A is a general contour enclosing the crack tip (being a
part of a surface perpendicular to the crack tip), » :%o'.g
is the strain energy density and 7, = O; 1, are the trac-
tion estimated in the direction of the contour A , and nj
is an outward unit vector perpendicular to contour A
. The associations among the integrals and the SIFs are
the famous [33]:

(40)
J. 2 KK
E

in which, £ = E is for plane stress conditions and
E' = E(1-v?) is for plane strain conditions.

The utilization of Eq. 38 for combined mode fracture
is restricted due to the hardships in separating mode |
and mode II SIFs from the J-integral parts. The segrega-
tion of the elastic area into symmetric and anti-symmet-
ric parts [33, 35] leads to an ordinary estimation of the
SIFs. Actually, the integral J1, for example, can be men-
tioned as the supplement of the following two terms:

J, :Jll +J11 ) (41)
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The symmetric and anti-symmetric sections of the dis-
integration can be clearly shown as:

(42)

};1:.“ nﬁ_rul ”}i/\,

k=12M=1L1I-

The symbols I and II are assigned to the symmetric and
anti-symmetric modes, respectively. We can separate
the displacement area into a symmetric and an anti-sym-
metric part as can be seen in the following matrices:

I

U, u +u
u2 uz + uz

' I
L M
lll - - u1 +u ’

2y 2 T

where

; . (44)
u, 1| u +u,

I P T N
], 2 \u, —u,

J .
u, _ 1ju —u

7 .
1/[2 Antisymm' 2 uz + uz

The stress area can be d1V1ded into a symmetric ol and
an anti-symmetric parta which can be achieved as
described below:

O'] O-l + O-l
!
o =—{0, +0o
2 2 2 )
2 symm 2 2
1 ‘o
0y 0, +0,
I 3 .
0, Axymm =7192 + 0,
7 }
Oy Oy — 0y

S. Mohamadnejad, A. Darvizeh, M. Darvizeh, R. Ansari, and A. Basti

The concept of the tip is identical with what was men-
tioned previously about the displacements. s/ andJ{ are
calculated as [33]:

J{zk—lz,.];’ =k—’2,- e
E E

Many different methods have been used for crack
analysis. Among them, the extended finite element
method (XFEM) [36] can be mentioned. Widespread
meshfree methods [37-41] are used for crack simula-
tion. The crack discontinuities are corrected by the vis-
ibility criterion or certain changes in discontinuities.
Other new techniques which can correct twisted and
bended cracks were recommended by Ventura et al.
[42]. These techniques improved the basis functions
of MLS surrounding the crack tip and the convergence
manner meaningfully.

The extended element free Galerkin (XEFG) tech-
nique was suggested by Rabczuk and co-workers for
cohering crack beginning, expansion and connection in
two and three-dimensional statics and dynamics; how-
ever, the closing of the crack in the direction of the tip
is certified at near-tip enrichment that disappears in the
direction of this tip [43-45]. As mentioned in [44], the
polar coordinate in the direction of a crack tip is not
well-explained at the twists. While the areas covering
LEFM answers are defined for low strains, they are
not used for enormous strains. This situation makes it
difficult to find the enrichment section close to the tip.
Therefore, an improved method had to developed [46].

7 Result and Discussion

In this paper, a new direct coupling method is used to an-
alyze an infinite plate with a central crack using two dif-
ferent approaches. The first technique, i.e. “the separate
method”, uses separate elements along a crack, while
the second one, i.e. “the continuous method”, uses con-
tinuous elements. In all the figures, the obtained results
concern the plane strain condition, dmax is the domain
of the influence and nnx is the number of particles in
the enriched EFG method. The variation of the energy
error norm is shown in Fig. 4-a for these two methods.
As seen, the energy error of these two methods increas-
es by increasing the length of the crack. In Fig. 4-b, it
can be seen that nnx=16 leads to the best results. Fig-
ure 5 shows the trend of maximum displacement error
by changing dmax. As seen in these plots, error in both
methods will decrease by increasing dmax maximum.
The best dmax is between 2-2.6. Also, we use different
weight functions to solve this problem. The best weight
function in this case is exponential weight function. In
Fig. 5, the results of two different loads and are shown.
is the load we named “increased load”.
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Figure 6 compares the variation of SIF with crack
length changing of the exact solution, the coupled
method and the enriched method. As depicted, the error
of the coupled method from the exact solution is big-
ger than that of the enriched method but the two graphs
(EFG and the coupled method) are very similar to each
other.

Fig’s. 7 -10 illustrate the results of the two approaches.
We have applied 16 and 4 elements in the FEM field and
this can be seen in Fig’s. 7-10. From these four plots,
the following results are obtained: using four elements
in the FEM field provides more precise answers than
using 16 elements. The result of the continuous method
is better than those of the separate method. In Fig. 7-b,
“tip nodes” are those nodes near the crack tip and “split
node” are located on both sides of the crack trajectory.

Energy error norm changes with crack length change
16.4 T T T T T T

153 = separate

—&— conlinuous

Energy error

-28 -24 -22 -2 -14 18 14 -2 -1 0.8

Ln (a/D)
()
P Energy error norm changes with crack length change
1 T
18 + separate 4
——8— continuous
1.4

Energy error
o
=]

0.8

0.8 L L n . " L L
10 1 12 13 14 15 18 7 18

N

Figure 4. (a) the variation of energy error by changing a/D for the
separate and continuous methods, (b) the variation of energy error by
changing the number of nodes in the EFG region and using the separate
and continuous methods. (Both figures are related to mode 1.)

Y difference between this method and exact solution, continuous method

0.09 T T T T T T T T
0081 -
007t y direction{increased load) ]
v 006} -+ vy direction |
5 01
2 005k @@= x direction ]
E 004} x dierction{increased load) p
©
EU%“QI\ ‘
oo Y AR
oot ’. ”z-.#mt.“
NI P n i WL el
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8 Concluding Remarks

The FEM has fundamental troubles in fracture me-
chanics problems due to its inadequacy in re-meshing.
Meshfree methods are efficient for crack problems but
they are usually very time-consuming.

Studies of crack problems reveal that a crack area
commonly occupies just a little section in the whole
problem field. Meshless methods have a lot of advan-
tages to model a crack in comparison with the FEM, but
the FEM has some benefits to model the other regions
far from the crack. It is acceptable and advantageous to
combine meshless methods with the FEM in order to
use their profits and avoid their defects.

A new combined meshless/FEM method proposed by
Hsun and Ping [19] has been utilized in this work to
study crack problems. The meshless method was ap-
plied just in a sub-domain embracing the crack and the
remaining section was modeled by the FEM.

Numerical samples were investigated to check the re-
liability of this combined method for crack problems
and excellent answers were obtained. The combined
method maintains the benefits of the FEM and EFG
including: (1) low computational expense, (2) excel-
lent accuracy. Thus, it can be concluded that the pres-
ent combined method is an advantageous and effective
technique for the study of crack problems.

9 References

1. Zienkiewicz, O.C., and Taylor, R.L., “The Finite
Element Method”, 4th ed, McGraw-Hill, (1989).

2. Cook, R.D., Malkus D.S., and Plesha, M.E., “Con-
cepts and Applications of Finite Element Analy-
sis”, 3rd Ed, John Wiley and Sons, (1989).

3. Phu N.V,, Rabzuck T., Bordas S., and Duflot M.,
“Meshless Methods: A Review and Computer Im-
Plementation Aspects”, Mathematics and Comput-
ers in Simulation, 79( 3), pp. 763-813 (2008).

4. Monaghan J.J., “An introduction to SPH computer
Physics Communications”, 48(1), PP 89-96(1982).

5. Gingold R.A., Moraghan J.J., “Smoothed parti-
cle hydrodynamics: theory and applications to
non-spherical stars”, Mon. Not. Astronom.Soc. 181,
PP 375-389(1977).

6. Lucy L.B.,” A numerical approach to testing
of the fission hypothesis Astron “J.8, PP 1013-
1024(1977).

7. Nayroles B., Touzot G., and Villon P., “Generaliz-



72

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

ing the Finite Element Method: Diffuse Approxi-
mation and Diffuse Elements”, Computational Me-
chanics, 10(5), PP 307-318(1992).

Belytschko, T., Lu, Y.Y and Gu, L., “Element Free
Galerkin Method”, International Journal for Nu-
merical Methods in Engineering,37(2), PP 229-
256. (1994).

Krysl, P. and Belytschko, T.* Element-free Galer-
kin method: Convergence of the continuous and
discontinuous shape functions®, Comput. Methods
Appl. Mech. Eng., 48(3-4)PP 257-277, (1997).

Belytchko, T., Felming M., Organ D., Krongauz Y.,
Liu WK.,” Smoothing and accelerated computa-
tions in the element free Galerkinmethod ”.J. Com-
put. Appl. Math. 74, PP 111-126(1996).

Chen.J.S., Pan C., Wu C.T., Liu WK., “Reproduc-
ing kernel particle methods for large deformation
analysis of non-linear structures”, Comput. Meth-
ods Appl. Mech. Engrg.139 (1-4), PP195-227
(1996).

Liu, G.R., Gu, Y.T., “Meshless local Petrov—Galer-
kin (MLPG) method in combination with finite el-
ement and boundary element approach®, Comput.
Mech.26 (6), PP536-546(2000).

Atluri SNN., Zhu T., “A new meshless local
Petrov-Galerkin (MLPG) approach in computa-
tional mechanics®, Computational Mechanics22,
PP 117-127. (1998).

Hegen D.,” Element free Galerkin methods in
combination with finite element approach”, Com-
put .Methods Appl .Mech. Engrg.135, PP143-
166(1996).

Belytschko T., Organ D., Kronguaz Y., A coupled
finite element—element free Galerkin method®,
ComputMec17(3)(1995).

Rao.B.N.,S.Rahman ”A coupled meshless-finite el-
ement method for fracture analysis of crack”, Inter-
national Journal of pressure Vessels and PipingT8,
PP 647-657(2001).

Gu.Y.T., Zhang L.C., ”Coupling of the meshfree
and finite element methods for determination of the
crack tip field”, Engineering Fracture Mechanics,
75, PP 986-1004(2008).

Xiao Q.Z., Dhanasekar M., ”Coupling of FE and
FEG using collocation approach”, Advanced in En-
gineering Software, 33, PP 507-515(2002).

Chien-Hsun L., and Chan-Ping P.,” Conjunction

S. Mohamadnejad, A. Darvizeh, M. Darvizeh, R. Ansari, and A. Basti

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

of Displacement Fields of the Element Free Galer-
kin Method and Finite Element Method”. Tamkang
Journal of Science and Engineering,10(1), PP 41-
50(2007).

Krongauz Y., Belytschko T., ”EFG approximation
with discontinuous derivatives”, Int. J. Numer.
Methods Eng.41, PP 1215-1233(1998).

Organ D., Fleming M., Terry T., Belytschko T.,
”Continuous meshless approximations for noncon-

vex bodies by diffraction and transparency”, Com-
put. Mech. 18 , PP 225-235(1996).

Fleming M., Chu Y.A., Moran B., BelytschkoT.,
”Enriched element-free Galerkin methods for
crack tip fields”, Int. J. Numer. Methods Eng. 40,
PP 1483—-1504(1997).

Ventura G., Xu JX., Belytschko T,
”A vector level set method and new discontinuity
approximations for crack growth by EFG”, Int. J.
Numer. Methods Eng. 54, PP 923-944(2002).

Carpinteri A., “Post-peak and post-bifurcation
analysis of cohesive crack propagation”, Eng.
Fract. Mech. 32, PP 265-278(1989).

Carpinteri A., “A scale-invariant cohesive crack
model for quasi-brittle materials”, Eng. Fract.
Mech. 69, PP 207-217(2002).

Belytschko,T. Lu,Y.Y and Gu,L. “Element Free
Galerkin Method”, International Journal for Nu-
merical Methods in Engineering,37(2), PP 229-
256(1994).

Nayroles B., Touzot G., and Villon P., “Generaliz-
ing the Finite Element Method: Diffuse Approxi-
mation and Diffuse Elements®, Computational Me-
chanics, 10(5), PP 307-318(1992).

Lancaster P., Salkauskas K., “Surfaces generated
by moving least squares methods “ ,Math. Com-
put.37, PP 141-158(1981)

Nakai D., Kawahara M.,” A Numerical Analysis
Equation Using Element-Free Galerkin Method”,
KAWAHARALAB,VOL,3Nov,PP14(2002).

Fleming M., Chu Y.A., Moran B., and Belytschko
T., ”Enriched element-free Galerkin methods for
crack tip fields”, International Journal for Numer-
ical Methods in Engineering, 40, PP1483—1504
(1997).

Guang-ming Z., shun-cheng S., ”Applied Mathe-
matics and Mechanics element and meshless meth-
ods”, Int. J. Numer.Methods.Engrg.48, PP 1615-
1636(2000).

Huerta A., Ferna'ndez-Me'ndez S., “Enrichment



Crack Analysis, Using a New Coupled FE-EFG Method

33.

34.

35.

36.

37.

38.

39.

40.

and coupling of the finiteelement and meshless
methods, Int. J. Numer. Methods Eng, 48(11), PP
1615-1636(2000).

Portela A., Aliabadi M.H., “The dual boundary el-
ement method: effective implementation for crack
problems®,.Int J Numer Meth Engng ,33, PP 1269—
87(1992).

Mccarron A.P., “A synergistic approach to mod-
eling crack propagation in nanoreiforced polymer
composites*,MSC thesis, University of Massachu-
setts Amherst, May (2008).

Huber, O., Nickel J., Kuhn G., “On the decomposi-
tion of the J-integral for 3D crack problems*, Int J
Fract, 64, PP 339-48(1993).

Belytschko, T., Black T., “Elastic crack growth in
finite elements with minimal remeshing®. Int J Nu-
mer Meth Engng,45(5), PP601-20(1999) .

Belytschko, T., Tabbara M., “Dynamic fracture us-
ing element-free Galerkin methods®. /nt J Numer
Meth Engng; 39(6),PP923-38(1996).

Lu Y., Belytschko T., Tabbara M., “Element-free
Galerkin method for wave-propagation and dy-
namic fracture”. Comput Meth ApplMechEng-
ng,126(1-2),PP131-53(1995).

Belytschko T., Lu Y., “Element-free Galerkin
methods for static and dynamic fracture®, /nt J Sol-
ids Struct, 32, PP 2547-70(1995).

Belytschko T., Lu Y., Gu L., “Crack propagation

41.

42.

43.

44,

45.

46.

73

by element-free Galerkin methods*,EngngFract-
Mech, 51(2), PP 295-315(1995).

Krysl P, Belytschko T., “The element free Galer-
kin method for dynamic propagation of arbitrary
3-D cracks“.Int J Numer Meth Engng, 44(6), PP
767-800(1999).

Ventura G., Xu J., Belytschko T., “A vector level
set method and new discontinuity approximations
for crack growth by EFG*, Int J NuOmer Meth En-
gng,54(6), PP 923-44(2002).

Rabczuk T., Zi G., “A meshfreemethod based on
the local partition of unity for cohesive cracks®,
ComputMech39(6), PP 743-60(2007).

Rabczuk T., Bordas S., Zi G., “A three-dimension-
al meshfree method for continuous multiple-crack
initiation, propagation and junction in statics and
dynamics*, ComputMech, in online, doi:10.1007/
s00466-006-0122-1.( 2006).

Rabczuk T., Areias P., “A meshfree thin shell for
arbitrary evolving cracks based on an external en-
richment”.Comput Model EngngSci,16(2):115-130
(2006).

Brighenti R.,” Application of the element-free
Galerkinmeshless method to 3-D fracture mechan-

ics problems”, Engineering Fracture Mechanics,
72, PP 2808-2820(2005)



