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Process Improvement of Experimental
Measurements, Using D-optimal Models

F. Shahmiri' and M. Baghban Salehi®

In this paper, the application of D-optimal models as an alternative to response
surface models (RS models) for design of experiments (DOE) was examined.
Two D-optimal models for tilt-rotors in the wind tunnel experiment, as a form
of quadratic functions, were generated based on a chosen optimality criterion.
This optimality criterion was used to generate the optimized sampled points
in the design space in order to minimize the variance of the coefficients for
the quadratic functions. The main advantage of D-optimal modeling process
is alleviating the high computational burden of constructing the RS models.
Error analysis of the developed models was performed using analysis of variance
(ANOVA). The ANOVA of the D-optimal thrust and rolling moment models
for tilt-rotors showed that the lateral position of the downwind tilt-rotor relative
to the upwind tilt-rotor is the most significant variable affecting the rolling
moment and thrust variations. The results also showed that all the models
were significant with more than 95% confidence level.
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NOMENCLATURE MSR Mean square due to model =
A Rotor area SSR/(m —1)
c Blade chord length MSE Mean square due to error =
Cr Thrust coefficient(T/2pA(RQ)?) SSE/(n —m)
Cux Rolling moment coefficient n Number .of response values
(M, /2pAR(RQ)?) (observation)
D Rotor diameter N Number of rotor blade
f(x) Quadratic portion of a D-optimal (X/D,Y/S, Z]S)Longitudinal, lateral and vertical
model location of downwind air vehicle w.r.t.
F —value Ratio of MSR to MSE upwind air vehicle
R Blade radius Y Actual response
S Wing span ] Mean value of actual response
SSE Sum of squares due to error 1 Predicted or model response
O (i = (92))?) € Random errors
SSR Sum of squares due to model 15} Response coefficients of predicted
(i (B = (:))?) model .
SST Total sum of square = SSE + SSR K Advance ratio = Voo / RQ
m Number of model coefficients Q Rotational speed (RPM)
P Air density
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INTRODUCTION

Generally, the Design of Experiments (DOE) is an at-
tractive tool for planning experiments so that the data
obtained can be analyzed to yield valid conclusions.
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Planning an experiment starts with determining the
objectives of an experiment and proceeds with selecting
the variables, DOE, execution of the design, checking
the data and data interpretation and analysis. The ob-
jectives of an experiment are commonly classified into
comparative, screening, response surface and regression
modeling. In all cases, the data sampled are used to
derive the fitted models, linking the output and input
(variables). It has been found that the characteristics
of the fitted models strongly depend on the number and
the arrangement of sample points [1]. Consequently,
DOE is a major part of an experiment before doing
that experiment.

Studies have shown that the most popular meth-
ods for DOE are Response Surface Methods (RSMs)
[1]. Response surface models (RS models) obtained
from RSMs are commonly quadratic functions (second-
order polynomial) in which they fit to the sampled
data using least-squares regression (LSR). In RSMs,
the data are sampled using classic methods such as
Central Composite Design (CCD), Box-Behnken De-
sign (BBD), etc. Each method has special features for
data collection and RS model building. Once the RS
model is generated, a maximum, a minimum or an area
where the response is stable over a range of factors can
be obtained. Recent reviews of RSMs in aerospace and
mechanical engineering are available in the literature
[2-4] so they have not been repeated here.

In all classic methods, the number of sampled
points depends on the number of variables (factors)
in the RS model. As the number of factors increases,
the number of sample points required for RS models
quadratically increases. Moreover, classic methods are
not sufficient for non-linear design space. These are,
in fact, the major limitations for the CCD and the
BBD application in the non-linear DOE. Barton [5]
has shown that higher-order RS models (e.g. cubic,
quarteric...) can be used for modeling a non-linear
design space, but they are unstable and they need
a broad range of sample points, particularly in high
dimensions. Many researchers recommend the use of
a sequential RSM with move limits [6], or a trust
region method [7], instead of higher-order RS models.
In addition, the Hierarchical and Interactive Decision
Refinement Methodology (HIDRM) is a sequential
RSM that is used to separate the design space into
sub-regions. Then, it fits each region with a separate
model [8]. Most of the sequential methods have been
developed for single-objective optimization problems
whereas much of the engineering design is multi-
objective. Barton [5] has reported that the design space
cannot be separated into sub-regions that are good
for all objectives of the multi-objective optimization
problems. Moreover, Koch et.al. [9] have discussed
about the difficulties of RS models for multi-objective
designs. Unlike classic RSMs, D-optimal is a comput-
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erized design method, which is suitable for modeling
non-linear design space. The optimized sample points
calculated from the design space can approximate the
quadratic coefficients well. The main advantage of D-
optimal models is to alleviate the high computational
expense of constructing models for high-dimensional
problems. For the same example problems with five
factors, D-optimal models require at least 21 sampled
data to construct the quadratic model whereas RSMs
consider 50 observations at different locations with only
8 center points. Comparisons of DOE methods are
available elsewhere in the literature [10-14].

In this research, two numerical and one categori-
cal factors in 3-level (i.e., low, medium and high) were
used to construct the quadratic D-optimal models. All
the 12 unknown coefficients of the models were esti-
mated on the basis of optimized data points. A total
of 22 optimized points were calculated from 51 initial
candidate points using the steepest descent technique.
The candidate points were vertices, center points,
centers of edges, triple blends, interior points, etc. all
of which are located all through the design space. In
this direction, D-optimal models were developed for
the tilt-rotor aerodynamic interaction problem. The
error analysis of the models showed that the thrust
and rolling moment variations had been well designed
with more than 95% confidence level.

RSM: RS MODELS
Using LSR, RSMs develop RS models by fitting the
sample data. The actual response can be written as
[15]:

y=1f(x)+e (1)

where f(z) is an unknown response function and ¢ is
the random error. The actual response, Eq. 1, can be
written in terms of a series of n — th observations as
follows:

k
vi=Bo+ Y Bimj+e i=1....n (2)
=1

where z;; denotes the 7 — th observation of variable ;.
The s in Eq. 2 can be estimated using the method of
LSR as:

2

L=Z€?=Z<yi—ﬁo—25jmij> (3)

i=1 i=1 i=

3

The function L will be minimized when (0L/903)
is set to zero. Eq. 2 may be written in matrix notation
as:

y=XpB+e (4)
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where y is an (n x 1) vector of observations, X is an
(n x p) matrix of the levels of independent variables
(design matrix), §is a (p x 1) vector of the regression
coefficients, and ¢ is an (n x 1) vector of random errors.
The vector of least square estimators B is determined
in a way that it minimizes:

L= =@w-XB) (y—XB) (5)
i=1

This condition is simplified as:

XTXp=Xx"y (6)

Thus:

B=(XTx)"" xTy (7)

The fitted regression model, therefore, is corresponded
to:

§=Xpj (8)

The reader is referred to [15] for more details on the
development of RSMs. The process of modeling repeats
similarly when f(z) in Eq. 1 is considered as the
quadratic RS model:

k k k
ﬁo-i-z ﬁjmj—}-z ﬁ]‘j‘r?-{—z ﬁija:ia:j—i—ei 1=1,...,n

=1 =1 i<j
(9)

in which there are (k+1)(k+2)/2 unknown coefficients
to be estimated and £ is the number of factors. When
constructing a quadratic model, the design variables
need to be evaluated at least at three locations (3-
level) of the design space to estimate the coefficients in
the model. This leads to a (3*) factorial design of the
experiments that requires (3*) data samples. However,
the CCD [15] has become a popular alternative for
the second-order RS models. CCDs are (2*) factorial
designs augmented by the 2k star (axial) points as
well as the central points to allow for the estimation
of the second-order coefficients. For two-factor cases,
the CCD considers at least 9 observations at different
design points with only a center point. Additional
details on LSR and RSMs can be found in many
documents, including [1, 16-18].

D-OPTIMAL MODELS
In general, there are conditions where some type of
computer-generated design may be appropriate: 1) an
irregular design experimental region, 2) a non-standard
model (i.e. quarteric), 3) unusual sample size (e.g.
categorical factors), and 4) the need to reduce the
number of runs required by a standard RSM. The usual

approach is to specify a model, determine the region of
interest, select the number of observations, specify the
optimality criterion, and then choose the design points
from a set of candidate points. Thus, with the choice
of the second-order RS model, Eq. 9, associated with
the (D-optimality) criterion the D-optimal model can
be obtained as:

k k k
y =00+ 2 Biwy+ X Byl + 3 B + &
iz i= i<y

Maximize ‘XTX|
(10)

where ‘XTX| is determinant of the information matrix
XTX in Eq. 7. Thus, finding a design matrix X from a
set of candidate points that maximize the determinant
of information matrix means finding a design region
where the factor effects are maximally independent of
each other (determinant of the correlation matrix is
non-zero). Using Eq. 10, the expected prediction error
for the factors will also be minimized. The optimal
region can be obtained using the Steepest Ascent (De-
scent) Method (SAM) in two phases. The first phase is
composed of a sequence of line searches in the direction
of maximum improvement. Each search in the sequence
is continued until there is evidence that the direction
chosen dose not result in further improvements. The
sequence of line searches is performed as long as there is
no evidence of lack of fit for a simple first-order model of
the form given in Eq. 2. The second step is performed
when there is lack of linear fit in the first step, and,
instead, a quadratic function, Eq. 9, is, therefore, fitted.
The SAM, finally, resulted in the minimized variance
coefficients given in Eq. 6. Figure 1 shows a flow
diagram of the two phases of the optimization process.

MODELING ERROR ESTIMATION
Each approximated model was constructed based on
the results obtained at n sample points. The accuracy
of D-optimal models was estimated using the R-squared
and adjusted R-squared as follows:

R — squared = SSR/SST =1— (SSE/SST) (11)

Direction

- Second candidate
?0%? . -
P I (Gives new direction)
Initial candidate
points point Phase-2

Figure 1. The sequence of line searches for a 2-factor
optimization problem.
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adjusted R — squared = (SSR(n —1)) / (SST(n — m))

=1 (SSE(n-1))/(SST(n-m))
(12)

where n and m are the number of sample points and
the number of model coefficients, respectively. The sum
of square about the mean of the actual data (SST) is
defined as:

SST = SSE + SSR (13)

where the sum of square error SSFE is defined as the
difference between the actual data y; and the predicted
value from the D-optimal model 3, and sum of square
of regression SSR is defined as the difference between
the predicted values from the D-optimal model, y; and
the mean of the actual data .

SSE=> (yi—3:)°.SSR=>_(3: —7)° (14)
=1 =1

TEST PROBLEM: TILT-ROTORS

AERODYNAMIC INTERACTIONS
The design problem in question involves the examina-
tion of the aerodynamic coefficients (thrust and rolling
moment variations) of two tilt-rotors in tandem flight
model [19]. The relative positions of the tilt- rotors
were specified with a total of three factors. Figure 2
illustrates the relative position of two tilt-rotors. As
seen in Figure 2, the flow pattern passing over the
downwind tilt-rotor strongly changes with the position
of the upwind tilt-rotor.

The relative position was parameterized with a
total of three factors (A, B and C), chosen to represent
the longitudinal, lateral and vertical positions of the
downwind tilt-rotor at three different stations, respec-
tively. Since there were no sufficient data available, the
first factor X /D was categorized into three levels (i.e.,
low, medium and high) whereas the other two factors
were considered as numeric a factors. Table 1 shows
the relevant test plan of the tilt-rotors. As seen in
Table 1, the categorical factor was segmented into 2.5,
5 and 10 that were considered for the actual test plan.
More details of the measurement setup and scaling are
reported in [19].

The aerodynamic coefficients (Cr /o and Cyx /o)
were considered as responses y; and y2. In conventional
set up case, the total data were at least 380 [19].

D-OPTIMAL MODEL BUILDING
Initially, 51 candidate points including 4 vertices, 4
center of edges, 4 axial check points, 4 interior points
and one overall centroid were considered for the 3-D
design of the experiment space. Figure 3 illustrates
the total number of candidate points.
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Table 1. Tilt- rotor test plan.

Experiment plan
Number of points
(Observati}:)ns) 7380
X/D Low=2.5 Medium=5 | High=10
“ 0.1 0.1 0.1
Tilt-rotor (1)
RPM | 6356 | 6356 6356
Reference Conditions
Cr/o 0.121 0.121 0.121
Cux/o 0.0085 0.0085 0.0085
Tilt-rotor (2)
RPM | 310 | e310  | 6319
Trim Condition
Cr/o | 0.121 ‘ 0.121 | 0.121

)
0 0w

Tilt-rotor (1) |

i

Downwind

Region

X/D

Figure 2. The relative positions of the two tilt-rotors in
tandem flight.

Overall, 22 sample points were calculated from a
set of 51 candidate points using the steepest decent
method. Consequently, the experimental space was
converted into what is shown in Table 2. The range of
each factor, [a, b], was reduced to a common scale, [-1,
+1], regardless of its relative magnitude. The coded

Z/8: vertical distance

Y/5: lateral distance X/D: longitwdinal distance

Figure 3. Distribution of the candidate points in the
design space.
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factor is defined as:

(Iactual - j)

(b—a)/2

The mentioned 22 sample points were sufficient
for determination of the D-optimal quadratic models
as:

Xcoded = T = ((l+ b)/2 (15)

Cr/o = 0.014 + 0.0034 — 0.002B — 0.0001C [1]
—0.002C[2]+0.003AB —0.004 AC[1}+0.0003 AC[2]

+0.002BC [1]—0.002BC [2]40.008 A* —0.005B*
(16)

and the rolling moment coefficient:
Cux /o =0.006+ 0.0294 — 0.002B — 0.011C'[1]
—0.003C[2]40.006 AB—0.009AC[1]+0.006 AC2]

~0.002BC[1]+0.002BC[2]-0.0007 A*-0.005B*
(17)

where, A, B and C are the coded factors. C[1] and C[2]
are the differences of levels 1 and 2 of C factor from
the overall average response, respectively.

RESULTS

The accuracy of D-optimal models, Eqs. 16 and 17,
was estimated using R-squared relations in Eqs. 11-
14. In the case of n = 22 and m = 12, the R-
squared values of the thrust and rolling moment were
0.9605 and 0.9543, respectively. Consequently, each
model predicts the actual response with good accuracy.
Further examination is shown in Figures 4 and 5. As
shown, the predicted values are close to the actual
values of thrust and rolling moment so the D-optimal
models can well approximate the actual data.

The residual values (random errors) of each model
are shown in Figures 6 and 7. The reference lines at (-3)
and (43) emphasize that the residuals are bounded for
a better understanding. As seen in the figures, there are
no systematic trends apparent for the residuals. Since
the residuals have no systematic trend, the models have
well fitted to the data. Moreover, the residual plots
illustrate the constant standard deviation in the data

Table 2. D-optimal test plan (matrix).

Coded Factor Response
Sample A B C C’T‘/O‘ C’Mx/o
1 -1 0 Medium -0.005 -0.04
2 -1 +1 Low -0.0123 -0.021
3 -1 -1 High -0.011 -0.032
4 -1 -1 High -0.0134 -0.046
21 +1 Q Medium 0.001 0.043
22 +1 -1 Low -0.026 0.021
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0.030 0022 0013 0005 0.003
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Figure 4. Actual response vs. predicted thrust.

0.04 —

0.02 -

0.00—

-0.02

Predicted roll moment

-0.04

Actual observed roll moment

Figure 5. Actual response vs. predicted rolling moment.

so the assumption of constant standard deviation for
random errors is sufficiently satisfied.

The plots of factor Y/ S versus residuals are shown
in Figures 8 and 9. A residual distribution, as shown
in Figures 8 and 9, shows a trend to lower residuals
as the value of the response increases. It indicates that
we should not transform the responses because the data
are fitted well.

Table 3 summarizes the results of the analysis of
variance for two D-optimal models. As seen, F- value
of the rolling moment is 24.4. The F-value is defined
as the ratio of model mean square (MSR) to residual
mean square (MSE). It implies that the rolling moment
model is significant. There is only a 0.01% chance
for an error that affects the rolling response. The p-
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Figure 7. Residual vs. predicted rolling moment response.

value (see [1]) less than 0.05 shows that factor (A) has
significant influence on the rolling moment response.
Furthermore, lack of fit F-value of 1.78 shows that lack
of fit is not significant relative to the error. It means
that there is a 27.11% chance for an error that affects
lack of fit. As seen in Table 3, the F-value of the thrust
is 16.2. It implies that the thrust model is, therefore,
significant. In this case, there is only a 0.01% chance
for an error to affect the thrust. The p-value less than
0.05 shows that the model terms are significant. In
addition, lack of fit F-value of 6.12 shows that lack of
fit is not significant relative to the error. Thus, there
is a 3.43% chance for an error to affect the lack of fit.

The main effects (A, B and C) and factor inter-
actions (AB, AC, BC...) are shown in Figures. 10,
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Figure 9. Residual vs. predicted lateral distance variable.

11 and 12. As seen in Figure 11a, the rolling moment
has got higher effects in the range of factors relative
to the thrust. Both Figure 10 and 11 show that the A
(=Y/9) is a significant factor relative to (B) and (C).
The main reason is the occurrence of the interactions
between the factors, which are presented in Figure 12.

Table 3. Analysis of variance test (ANOVA).

Model Sum of squares Mean squares F-value p-value
Cr/o 8.6E-04 7.77TE-05 16.2 < 0.0001
Residual 4.8E-04 4.80E-05
Lack of fit 4.1E-04 8.25E-05 6.12 0.0343
Cux/o 1.4E-02 1.26E-03 24.4 < 0.0001
Residual 5.1E-04 5.14E-05
Lack of fit 3.3E-04 6.59E-05 1.78 0.2711
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In Figure 12, the interaction term (AB) at the
high and low values of (B+) and (B-) is shown. Here,
(B+) and (B-) are the highest and the lowest levels
of factor (B), respectively. The non-parallel curves in
this figure imply that there is a significant interaction
between (A) and (B). As seen, the effect of factor (A)
depends on the level of factor (B) so the significant
interaction is apparent for each of the predicted models.
The I- beam range symbols in the graphs are the results
of the least significant difference (LSD) calculations.
In the case that the points are all outside the range,
the differences are caused by the error alone and can
be attributed to the factor effects. The I-beam is
somewhere overlapped, which means that there is no
significant difference between the two points (i.e. 95%
confidence limit).

B:vertical distance Z/S
0.009 —

-0.002 —

-0.012 —

E W

=

Thrust coef

-0.023 T

-0.034 | uE

A lateral distance Y/S
B: vertical distance Z/3

0.043 —

0.027 —

0.004 —

Rolling moment coef
@

-0.0184p

-0.040 —

A lateral distance Y/S

Figure 12. Influence of factor interaction on the predicted
response.
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Figures 13 and 14 show a comparison of the D-
optimal results with the experimental data, [19]. Each
figure has the same value of longitudinal distance (i.e.,
X/D = 2.5) when the advance ratio is 0.1. The top
plot has been generated by the current research and
the bottom has been taken from [19]. In Figure 13,
the contours of the thrust model and actual thrust
are fairly similar. As evidenced by the high R-squared
we expect the thrust model to approximate the thrust
quite well. As seen in Figure 14, the contours of the
rolling moment and the actual data are also similar.
As expected from the high R-squared, this model also
approximates the value of the rolling moment changes
quite well.

CONCLUSIONS
In this paper, the application of DOE in experimental
planning was examined through a tilt-rotor example.
Among the several methods for DOE, the D-optimal
model was our candidate due to its optimal perfor-
mance and capability for modeling non-linear design
spaces. The research findings showed that D-optimal
models are that are fitted to optimum sample points.
The optimized sample points were generated by RSMs.
This was the main difference between the D-optimal
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Figure 13. Comparison of the D-optimal thrust prediction
with the actual data.
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Figure 14. Comparison of the D-optimal rolling moment
prediction with the actual data.

models and the classic RSMs. Moreover, the number
of optimized sample points (22-point) in comparison
to the 380 data points in [19] proved that the D-
optimal model can reduce the computational cost with
a minimum number of runs. The analysis of variance
shows that each model has a high level of accuracy.
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