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A Simple Explicit Guidance Scheme

Based on Velocities-to-be-Gained
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In this paper, a closed-loop strategy in the vertical plane is derived in order to
determine the thrust direction of a launch vehicle in terms of velocities-to-be-
gained. The two velocities-to-be-gained are utilized, here, for a given altitude
and zero vertical speed in a specified final time. The formulation is obtained
for constant gravity assumption, but it works when the velocities-to-be-gained
are obtained for a spherical-FEarth model via explicit or implicit relations.

INTRODUCTION

Guidance laws based on velocity-to-be-gained may
be classified into two categories, namely explicit and
implicit schemes. In explicit guidance, the required
velocity is computed onboard explicitly whereas the
velocity-to-be-gained is computed via a first-order dif-
ferential equation in the well-known Q guidance, as
an implicit one [1-4]. Implicit and explicit guidance
algorithms have their advantages and disadvantages
which are beyond the scope of this paper.

Another type of guidance law which determines
a near optimal or an effective direction of the thrust
vector for orbit injection [5-9] is mainly based on the
linear-tangent law, or even linear law for thrust vector
angle. In this class of guidance schemes, an explicit or
iterative [10-12] algorithm is utilized for calculation of
the thrust direction. A comparison of optimal solution
with the results of two linear attitude programs for
thrust angle (measured from the local horizon, and a
fixed reference in an inertial reference) is given in Ref.
[13].

The velocity-to-be-gained guidance technique pre-
sented in Ref. [2] is workable if it is possible to define,
at each instant of thrusting, a required velocity to meet
mission objectives which is only a function of current
position, as stated by Battin. This requirement cannot
be met for the problem having both final position and
velocity constraints. In 1987, Bhat and Shrivastava
developed a modified Q-guidance scheme to place a
payload into a specified circular orbit [14]. By defining
two velocities-to-be-gained and their corresponding
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first-order differential equations, the well-known Q-
guidance scheme can be modified for elliptical orbits
[15]. The implicit method of Ref. [15] needs a steering
algorithm for launch vehicles when there is no control
on the thrust magnitude. In other words, it needs an
algorithm for determining the thrust vector direction
in terms of the two velocities-to-be-gained, which is the
subject of this research. For this purpose, the Cherry’s
E guidance method [16] is formulated in terms of
velocities-to-be-gained, because it has more flexibility
than other methods for further modifications .

The main objective of this research is to obtain a
class of closed-loop guidance laws in terms of velocities-
to-be-gained in order that the differential equations
of wvelocities-to-be-gained can be applicable to the
launch vehicle guidance algorithm. However, these
velocities-to-be-gained may be preferred to be obtained
from an explicit or iterative algorithm depending on
applications.

BASIC FORMULATION
The governing equation of motion of a vehicle as a
particle P in the vacuum is given by:

r=g+ar (1)

where r, g, ar are the vehicle position, gravitational ac-
celeration, and acceleration due to thrust with respect
to the flat-Earth model, respectively.

Consider the following change of variables:

ZEV, = —v, — gty (2a)

1.
ZEM.,=H — 2z —v.ty, — 5gztjo (2b)
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where z, v,, and ¢, are the components of the vehicle
position r, velocity v, and gravitational acceleration in
the vertical direction (i.e., z axis) at the current time
t (see Figure 1); H is the desired final altitude at the
final time ¢y; and t4, is the time-to-go until the final
time (tgo =t —t).

Differentiation of Eqs. (2) with constant gravity
assumption yields:

dZEV,/dt = —ar, (3a)
dZEM,/dt = —t4ear., (3b)
where ar, = arsinf is the vertical component of

the thrust acceleration, 3 is the thrust vector angle
with respect to the horizon (z axis), and ap is the
acceleration magnitude due to thrust.

Equations (3) are integrated from the current time
to the final time into:

ZEV.(t;) — ZEV.(t) = — /t D ar(€)sin fE)de (4a)

ZEM.(t;)— ZEM.(t) = — / (b — ©)ar(€) sin B(€)de
(4b)

The final conditions z(ty) = H and v.(ty) = 0 are
converted in terms of the new state variables into
ZEM,(t;) = 0 and ZEV,(ty) = 0; therefore, applying
the final conditions to Eqs. (4) rises to:

ZEV,(t) = [faT(g)sinﬁ(é)dg (5a)

ZEM.(1) = / (t7 — Oar()sin B(E)de (5b)

If the acceleration due to thrust is assumed constant,
we will have:

/t " sin B(€)de = ZEV. Jar (62)
[t = ysin €1 = 2EM.far (6b)
Z ) . &

—v(ly)

O T

Figure 1. Problem geometry in a flat-Earth model.
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When the thrust direction is given as a function of the
time-to-go, it is better to rewrite Eqs. (6) in terms of
the time-to-go instead of the current time, that is,

/ " i B(r)dr = ZEV. Jar (7a)
0

tgo

/ Tsin 3(t)dr = ZEM. Jar (7h)
0

where 7 =t; — €.

CLOSED-LOOP STRATEGY
The thrust angle history is taken as a function of the
time-to-go in the form of:

sin 8= Co f(tgo) + Cih(tgo) (8)

provided that |Cyf(ty0) + Cih(tg)] < k < 1 where
f(-) and h(-) are linearly independent, pre-specified
functions of the time-to-go, and k is determined by
the guidance designer. Also, Cy and C are constants,
obtained from Eqs. (7) to satisfy the final conditions,
that is:

Co { /0 " f(T)dT} e { /0 v h(T)dT} = 7BV g0

ar

Co {/Otao Tf(T)dT] Lo Uot_qn Th(T)dT:| _ ZEM.

Solving for Cy and C; yields

Lin(tyo) ZEV. — Iy (ty0) ZEM.

Cyp = P (10)
 —TLy(tyo) ZEV. + I;(tys) ZEM.

G = arD(t,) (11)

where

(i) = | " frydr (12a)

Bt = [ b (12b)
0

ITf(tgo)z/O " f(rydr (12¢)

() = / " rh(r)dr (12d)
0

D(th) = If(th)I'rh(tgfI) - IT/(tQO)Ih(th) (126)

Note that the functions f(-) and h(:) must be chosen
in such a way that D(¢,,) # 0 for 0 <t < ty.
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Hence, substitution of Egs. (10) and (11) into Eq.
(8) results in a closed-loop relation for thrust angle as
follows:

sin § = Irh(th)f(tQO) - ITf(tgo)h(tgo)ZEVZ
aTD(th)
+ If(tgo)h(tgo) - Ih(th)f(tgo) ZEM, (13)
aTD(tgo)
Also, the time history of the thrust angle is given by:
Sinﬁ — ITh(tf)f(tgo) B ITf (tf)h(tgo) ZEVZO
arD(ty)
arD(ty)

Since Cy and Cy are constants, we have:
Ly (tgo)ZEV, — I (ty0) ZEM,
arD(tg0)
L (ty)ZEV,, — Ii(ty) ZEM,,
- arD(tr)

Cy =

_ —I.,f(tgo)ZEVz + If(tgo)ZEMz
aTD(th)
—Ly(tf)ZEV,, + I (ty) ZEM,,

- arD(ty) (16)

Rearrangement of the two preceding relations in the
matrix form yields:

[ Li(tge)  —In(tg) ZEM.,

_ITf(th) If(tgtJ) ZEV,

D(tyo) | Lm(ty)ZEV., — In(ty) ZEM;,
D(tf) —I.,-f(tf)ZEVZn +If(tf)ZEMZO

Hence, the solutions for ZEM, and ZEV. result in:

(17)

ZEVZ _ If(th)ITh(tf) — Ih(th)I‘rf(tf) ZEVZO

D(ty)
In(tgo)Is(ts) — Iy (tgo)In(ty)
ZEM, 18
+ D) o (18)
ZEM. Ly (tgo) I (ty) — ITh(fgo)Irf(ff)ZEVZO
D(ty)
IT o 1 - I‘r o 1
h(tg ) f(tf) f(tg ) h(tf)ZEMZO (19)
D(ty)
From Eqs. (2) we have:
vV, = 7ZEVZ - gztgo (20)
1
¢=H— ZEM. + ZEV.ty, + 5 g:1;, (21)

Substitution of Egs. (18) and (19) for ZEV, and ZEM,
into the preceding relations, respectively, gives the time
history of vertical position and speed.

SPECIAL CASES
Case a) sin§ = Cy + Cit gt
As a special case, a linear sinus law is chosen. The
closed-loop guidance law (13) is, therefore, simplifies
to:

6ZEM. — 2ZEV.t,,
aTtgo

sin 3 = (22)

The time history of the thrust angle is found to be:

6+ 12(ty0/t))

sin 3 = ort? ZEM,,
f
4 —6(tyo/t
+ MZEVZO (23)
arty

Case b) sin 3 = Gy + C1t},:

Here, a linear sinus law is modified in the form of
sin = Co + City, where n. > 0 is an additional
constant for trajectory optimization. The guidance law
is, then, given by:

2
aTtgo

sin 3 = 2 (24)

The time history of the thrust angle can be obtained
as follows:

(n+2)[-1+2(n+1)(te0/tr)"]
naTtﬁ

L (0 DR = (04 2)(tg0/t)"]
nath

2
sin 8 = ZEM.,

ZEV., (25)

Case c) sinff = Cotgy + City,:

Consider the thrust angle to be in the form of sin 5 =
Cgtgé + C’ltgo where two additional constants m > 0
and n > 0 are used here (m # n). Therefore, Cases a
and b are considered as special cases of Case c¢. From
Eqgs. (12) we obtain:

Ip(tgo) = t0F /(m + 1) (26a)
In(tgo) = toF" /(n 4 1) (26b)
Lp(tgo) = 7572 /(m 4 2) (26c)
Lin(tgo) = t212/(n + 2) (26d)
Ditgo) = (n = m)tg, ™™ (26¢)

(m+1)(n+1)(m+2)(n+2)

Hence, Eqs. (13) and (14) are simplified to the following
relations, respectively:

inf = ZEM,
sin 3 aTt?,o -
(m+1)(n+1)ZEVZ (27)
arty,
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sinf3 =
(m4+D)[(m+2)(tgo/t;)™ — (n+2)(tg0/t7)"]
(—martsf(n+ 1)
A2 D)t f)” — (04 D) ()"
(n—m)art}/(n+2)

ZEV.,

ZEM.,
(28)

GUIDANCE LAW IN TERMS OF

VELOCITIES-TO-BE-GAINED
The required velocity v? is defined as an instantaneous
velocity, required to satisfy the final position constraint
H without any control effort in the vacuum. In a
similar manner, the required velocity v! is defined
to satisfy the final velocity constraint without any
control effort. For the flat-Earth model, these required
velocities are obtained by setting Eqs. (2) equal to zero,
that is,

— v, — gatgo =0 (29a)
H Pt L2 —o 29b
—c ’U,,.z go — 592 go (“ )

Rearrangement yields:

vy, = —g:tgo (30a)
H—-2z 1

P o= — —getge 30b

vrz tgo 2q g ( )

Each velocity-to-be-gained is defined as a difference
between the corresponding required velocity and the
vehicle current velocity, that is,

v, = 0, (31a)
vy, =l — v, (31h)

By inspection, one can simply find that:
ZEV, = v, (32a)
ZEM, = v} t4, (32b)

Substitution of the preceding relations into Eq. (13)
results in:

sinﬂ _ Ifh(th)f(tgn) — Iff(th)h(th) v

arD(ty,)
I5(tgo)(tgo) — In(tgo) f (oo
4 Liteo) (faT)D(t;()f Y )vﬁztgo (33)

For instance, we have the following relation for Case c:

(m+2)(n+2)

aTtgo

(m+1)(n+1)

aTtgo

P _
9=

sin 3 =

vl (34)

gz
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Figure 2. Trajectory of the launch vehicle for m=0 and
n=2.
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Figure 3. Thrust angle profiles for m=0,1 and n=2.

SIMULATION RESULTS

Consider a launch vehicle having an initial position
r = 0 and velocity components v, = 0, v. = 1 m/s
lifts off the Earth surface. The acceleration due to
the thrust is taken to be 40 m/s2. The simulation
results for the three guidance methods, i.e. Cases a,
b, and c, are presented for the flat-Earth model with
constant gravity assumption. These guidance laws
are equivalent to Eq. (34), which is in terms of the
velocities-to-be-gained. If the right-hand side of Eq.
(34) exceeds the values of +1, it saturates at these
values. In the simulation, the presented guidance
scheme is applied from the lift off to show the effect
of the saturation. However, a pitch programming
algorithm is utilized, in practice, in the first stage of
flight.

We are to reach a final altitude of 250 km without
any vertical speed. The simulation results are listed
in Table 1 for the specified final time of 180 s. For
m = 0 and n = 1, there is a considerable final error in
the vertical speed, i.e. 4.3 m/s. However, the error in
altitude, ey, is negligible. By selecting proper values
for m and n, the final constraints can be achieved
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provided that the final time is sufficient. For example,
using m = 0 and n = 2 the final constraints are met
satisfactorily. The launch vehicle trajectory is depicted
in Figure 2. The behavior of the thrust angle is also
shown in Figure 3. To zero out the thrust vector angle,
the parameter m is taken a positive value. However,
because of the saturation or singularity of the guidance
gains at the final instants, the thrust vector angle may
have not a zero value. To remove the singularity,
a constant thrust angle may be applied in the final
instants. However, as stated by Cherry [16], since a
very precise control of altitude is normally not required,
it may be desirable to abandon altitude control when
the time-to-go becomes smaller than some preset value
resulting in a more accurate control of the vertical
speed.

In order to reach a desired horizontal speed for
orbit injection, the thrusting may continue in a way
that the vertical thrust acceleration cancels out the
gravitational acceleration. However, the final time ¢;
is usually chosen to control the horizontal speed.

The parameters m and n can be utilized for
trajectory optimization as well as the final time. The
effect of the final time on the horizontal speed can be
viewed in Table 2 (ey = 0.00 m & v, = 0.00 m/s).
Increasing the final time increases the final horizontal
speed. It is known that an increase of At to the final
time can, at most, increase the horizontal speed by
AV = apAt (however, this is true if the previous [
profile does not vary with the addition of the extra
At). As seen in Table 2, an increase of 20 s to ¢ = 180
s increases the horizontal speed by 1757 m/s whereas
AV = 800 m/s. It means that the thrust direction
programming is more efficient for t; = 200 s (or 250 s)
than that for ¢t; = 180 s. However, increasing 10 s to
ty = 290 s increases the horizontal speed by 435 m/s
whereas AV = 400 m/s.

The values of the minimum time 7%, obtained
from the minimum-time open-loop solution [17], are
presented for the corresponding values of the horizontal
speed v,, listed in the second column of Table 2. For
example, the minimum time to attain a horizontal
speed of 3430.3 m/s at an altitude of 250 km is 171.55
s. The minimum time solution is obtained for vy = 0;

100,
50
=) ~ OPS
g o '
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-50/ .
0% 50 100 150 200
time (s)

Figure 4. Thrust angle profiles for £ = 0.97 and open-loop
time-optimal solution (OPS).
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Figure 5. The thrust angle history for three guidance

equations; solid line: Eq. (27), dashed line: Eq. (37),

dotted line: modified Eq. (27).

however, the initial vertical speed for the non-optimum
solutions is set to be 1 m/s. As it can be seen in Table 2,
there is little difference between the optimal minimum
time and the final time of the non-optimum solution.
The performance may be enhanced if the maximum
value of (3 is restricted to a predetermined value of
Bmaz- Table 3 presents the horizontal speed for various
values of & = sin fmax at m = 0.2, n =1, and ¢ty = 180
s. Also, the corresponding minimum time values are
given in this table. For k = 0.93, the difference between

Table 1. Simulation results for guidance equation (27) with ¢ty = 180 s.

A |y (/) | v (mfs) | en(m) | lty) (deg)
m=0,n=1 4032.2 4.31 —5.31 -90
m=0,n=2 3879.6 0.01 0.00 —33
m=1n=2 3157.6 0.00 0.00 2.6
m=0,n=115 ] 4043.0 0.02 0.00 -90
m=02n=1 4013.0 0.00 0.00 -7.1
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the minimum-time optimum and non-optimum values
is 0.64 s, which shows enhancement in the horizontal
speed. The thrust angle profiles for both methods are
depicted in Figure 4 for £ = 0.97.

In the next step, the thrust acceleration profile is
assumed to vary from an initial value of 30 m/s? to
60 m/s®> during the time 0 to 180 s. Equation (27)
may be modified by replacing ap(t) with the average
acceleration ar(t) = [ar(t) + ar(ty)]/2 (tgoar(t) =

ttfaT(t’)dt’). The horizontal speed is listed in Table
4 for three guidance equations, i.e. Eqs. (27), (37), and
the modified Eq. (27) with & = 1. The results are case
dependent. The performance of Eq. (27) is degraded
with respect to the modified Eq. (27) or Eq. (37). The
thrust angle profiles for the three-mentioned equations
are depicted in Figure 5.

Subsequently, a non-rotating spherical-Earth
model is considered in the flight simulation code. The
initial and final values are the same as the values
for the flat-Earth model, but are described here in
local coordinates. Equations (30) are also computed
in local coordinates. The values of the local horizontal
speed, v, , , are listed in Table 5 for the three-mentioned
guidance equations. Similarly, the results are case
dependent; however, the performance can be enhanced
using suitable values of k, m, and n. The trajectory
of the launch vehicle for the modified Eq. (27) with
m = 0.1 and n = 0.9 is illustrated in Figure 6 in
which z7 is the local altitude and S is the range
angle multiplied by the Earth radius. Also, the thrust
angle profiles are compared in Figure 7 for the three-
mentioned guidance equations with m = 0.1, n = 0.9,

Table 2. Simulation results for m = 0.2 and n = 1 with
different final times.

[ t;(5) | v (m/s) | B(t) (deg) | T (5) |

175 3430.3 —8.12 171.55
180 4013.0 —7.12 175.57
200 5770.0 —4.3 193.90
250 8948.9 —-1.7 249.11
290 10798 —-0.71 289.75
300 11233 —0.52 299.82

Table 3. The horizontal speed for various values of
k = sin Bmax (m=10.2, n =1, t; = 180)

IR
0.99 4266.7 177.63
0.97 4392.3 178.72
0.95 4446.8 179.21
0.93 4464.5 179.37
0.91 4448.1 179.22
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Figure 6. Trajectory of the launch vehicle in spherical
FEarth model using Modified Eq. (27) with m=0.1, n=0.9.
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Figure 7. The thrust angle history for three guidance
equations using spherical Earth model; solid line: Eq. (27)
dashed line: Eq. (37), dotted line: the modified Eq. (27).

and t; = 180 s. Here, the thrust angle 31 has been
taken with respect to the local horizon; however, it may
considered with respect to a fixed reference in inertial
space.

As a future study, the functions f(-) and h(:)

Table 4. Comparison of three guidance equations for
t; =180 s.

‘ Guidance Eq. ‘ Guidance Parameters ‘ v, (m/3) ‘

Eq. (27) m=0n=1 4734
m=0,n=0.9 4752

m=0.1,n=09 4720

Mod Eq. (27) m=0n=1 4900
m=0,n=0.9 4914

m=0.1,n=0.9 4888

Eq. (37) m=0n=1 4817
m=0.1,n=0.9 4824

m=0.3,n=0.5 4857
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or the parameters m and n may be determined from
the optimal numerical solutions. In addition, the
parameters k, m, and n are proposed to be chosen as
variables with time and velocities-to-be-gained.

CONCLUSIONS

This work introduces a closed-loop guidance strategy
for a launch vehicle in terms of velocities-to-be-gained.
This approach is a basis for guidance designers to
develope a class of guidance laws in terms of velocities-
to-be-gained for nonthrottleable rockets. Moreover, the
analytical solution of position and velocity components
in the vertical direction are obtained. The solution
can be extended for time-varying thrust magnitude. In
addition, an implicit guidance with the two differential
equations of velocities-to-be-gained with final position
and velocity constraints may be implemented using the
present closed-loop strategy of the thrust direction.

APPENDIX: TIME-VARYING THRUST
Explicit solutions can be simply obtained for time-
varying thrust magnitude for constant gravity model.
For example, consider a linear profile for the accelera-
tion due to thrust, that is:

aT(t) = ag — botgo (35)

where ag = ap(ty) and by are constant. For simplicity,
the solution for Case c is, here, presented, i.e. sin § =
Cot}y, + Chty,. Substitution into Egs. (5a) gives:

o

tgo
/ ((],0 — bgT)(Con' + 017'“)(17' = ZEVZ (363,)
J0

to
/ (ag — bo7)(Cor™  + C1 7" )dr = ZEM.  (36b)
0

The closed-loop solution is found to be:

N,ZEM. + N, ZEV.t,,

sin 3 = th;o

(37)

Table 5. Comparison of three guidance equations using
spherical Earth model (tf=1805s).

‘ Guidance Eq. ‘ Guidance Parameters ‘ v, (m/s) ‘

Eq. (27) m=0,n=1 4562
m=20.1,n=0.9 4547

m=0.1,n=0.6 4578

Mod Eq. (27) m=0,n=1 4683
m=0,n=0.9 4677

m=0.1,n=0.9 4671

Eq. (37) m=0n=1 4617
m=0.1,n=0.9 4620

m=0.2,n=0.7 4622

where

N, =(n+2)(m+2)ag — (n+ 1)(m + 1)boty, (38)

N, =—=(m+1)(n+ 1)ag
(n+ 1)(m + 1)(n + 2)(m +2)
+ (n+3)(m +3) botgo (39)
_ o 2(n+2)(m+2) (n+Dm+1) 5,
D= g 4 8) Pt ) (1 3) 0
(40)

provided that D, # 0 for tx <t < ty. For m =0 and
n = 1, the preceding relation is simplified to:

(—2&0 + b(]tgo)thZEVZ + (6@0 — 2b0tgo)ZEMZ

12, (a% — agbotge — gh2t2,)

sin 3 =

(41)

The term byt 4, may be replaced with ar(t;) —ar(t) in
the closed-loop representation.
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