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Solution of Thermo�Fluid Problems in Bounded

Domains via the Numerical Panel Method
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The classical panel method has been extensively used in external aero�
dynamics to calculate ideal �ow �elds around moving vehicles or stationary
structures in unbounded domains� However� the panel method� as a somewhat
simpler implementation of the boundary element method� has rarely been
employed to solve problems in closed complex domains� This paper aims at
�lling this gap and discusses the numerical solution of the Laplace equation in
bounded domains via the numerical panel method� It is shown that the panel
method is an e�cient and accurate computational algorithm for the solution
of this class of problems� Several test cases in heat conduction and internal
ideal �ow are presented to show that the numerical panel method can be used in
closed domains regardless of the complexities in the geometry and�or boundary
conditions�

NOMENCLATURE

�V� Free stream velocity

n Normal vector on the body

x� z Coordinates of an arbitrary point

qB�j Flux in�uence coe�cient in NPM
equations

TI�j Temperature in�uence coe�cient in
NPM equations

c A constant parameter in Robin
boundary condition

q Heat �ux

T Temperature

hC Convection heat transfer coe�cient
�hC � ��W�m��K�

kC Conduction heat transfer coe�cient
�kC � ���W�m�K�

eT Percentage of temperature error

emaxT Maximum percentage of temperature
error

K�K ��K �� Constant parameters
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	T Temperature calculated by NPM

O�� � � � The order of magnitude

h Length of the panel

� 	T��n Temperature gradient calculated by
NPM

�VA Velocity vector at a nearby point A

r Distance between panel and an
arbitrary point
 Figure �c

eq Percentage of heat �ux error

Ii�j Location of an arbitrary point in the
domain
 Figure �d

N Total number of panels

xC � zC Coordinates of the center of a panel

B Location of an arbitrary point on the
boundary of domain
 Figure �d

aP The in�uence of the singularity panel
P on its corresponding collocation
point

anb The in�uence of the singularity panel
nb on the collocation point P

Cp Pressure coe�cient

Greek Symbols

� The solution domain

� Source �sink� strength
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� Doublet strength

�b The boundary of the solution domain

� Distance between a panel and it�s
collocation point

�xi Distance between a panel and it�s
collocation point �x	component


�yi Distance between panel and it�s
collocation point �y	component


� The angle between the x axis and the
panel direction� Shown in Figure �c

��b The boundary �b approximated by the
panels

INTRODUCTION

In the classical �eld numerical solution techniques� such
as Finite Di�erence Method �FDM
� Finite Element
Method �FEM
 and Finite Volume Method �FVM
�
the boundary �b and the solution �eld 
 are both dis	
cretized to numerically impose the boundary conditions
and to approximately satisfy the governing equations
at the internal grid points as well ������ It has been
known for a long time that the solution �eld in a class
of problems governed by elliptic di�erential operators
can be constructed by computational procedures which
only carry out the integration of a simpli�ed form of the
governing equations along the boundary of the domain�
In general� the Boundary Integral Methods �BIM
 use
the properties of the Green function to accomplish such
a task�

Two sub	classes of the BIM� known as the Bound	
ary Element Method �BEM
 and the Numerical Panel
Method �NPM
� have been used extensively to solve
elliptic problems governed by the Poisson and Laplace
equations� Even though the roots of all boundary
integral methods are the same and it is hard to
distinguish between the BEM and the NPM from a
mathematical point of view� the implementation details
of these two classes of boundary integral methods
are di�erent� Also� the NPM had been employed
by engineers� mostly based on physical arguments�
before any attempt was made to formalize the classical
boundary element method�

The boundary element method is the subject of
many well	written text books ��	�� and there are now a
number of international journals devoted to the BEM
algorithms and applications� The method has a rig	
orous and sound mathematical background and starts
by providing a boundary integral formulation of the
original di�erential equation� This integral equation
is subsequently solved on a set of boundary elements�
While applicable in both internal and external elliptic
�eld problems� the BEM has been traditionally applied
mostly in the solution of problems in closed domains�
In particular� the BEM solution of conduction heat

transfer problems in solids has been discussed in many
text books ��	�� and journal papers ������� Examples of
the applications of the BEM in the solution of external
�ow problems can be found in ��������

The numerical panel method� on the other hand�
has received a warm welcome from the external aero	
dynamic experts and has facilitated the development
of a number of widely	used computational tools and
computer codes for the solution of preliminary analysis
and design problems in external aerodynamics� The
NPM starts with the de�nition of the panels� which
geometrically approximate the boundary shape� and
then a number of singularity elements and collocation
points are de�ned� The objective is to generate a
harmonic �eld with prescribed boundary conditions by
properly determining the strengths of the singularity
elements� The mathematical simplicity and the ease of
use� compared to the BEM� might explain the wider
popularity of the NPM in the aviation industry� The
rather lengthy papers by Hess and Smith ��� and Hess
���� and the textbook on low speed aerodynamics by
Katz and Plotkin ���� are the classical references for
students and engineers on the NPM� Other recent
applications of the NPM include ship design �������
and the �ow around propellers �������� Here again�
while the NPM is clearly applicable in both internal
and external �eld problems� its application has been
mostly limited to external ideal �ow problems�

Therefore� in contrast to the continuing e�orts
on the numerical �eld approaches for the solution
of elliptic problems �������� there are apparently no
or very limited publications regarding the application
of the NPM in bounded domains ����� This paper�
therefore� aims at �lling the aforementioned gap and
focuses on the application of the classical NPM in
solving a class of elliptic problems in closed solution
domains� More speci�cally� the paper provides the
details of the implementation of the NPM in the
context of the solution of the Laplace equation in
bounded domains�

The paper includes the following sections� A
brief description of the NPM in the context of external
aerodynamics is provided in the next section followed
by a discussion on the peculiarities associated with the
application of the NPM in solving heat conduction
problems in closed domains� Afterwards� a number
of carefully selected test cases are presented� The
examples cover a range of �D problems in both singly	
and doubly	connected domains which span over simple
Cartesian to rather complex non	Cartesian geometries�
The three commonly used standard boundary condi	
tions� i�e� Dirichlet� Neumann and Robin boundary
conditions� are also used in di�erent combinations in
the test cases� The NPM results in all cases are
compared either to the available analytical solutions�
where applicable� or the grid independent numerical
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solutions obtained by the �nite element method� The
focus is then turned to the solution of �ow problems in
short ducts� e�g� the �ow in the engine intake section
of a propulsion system� The �ow �eld in such cases
can often be divided into a boundary layer and an
inviscid ideal core �ow� Examples of the application
of the NPM in the solution of the core region of a
number of internal �ow problems wrap up this section
of the paper� It should be noted that the inviscid core
solution in an internal ideal �ow has to be matched with
the viscous �boundary layer	 solution to approximate
a real �ow situation�

The NPM is clearly applicable in both two� and
three�dimensional problems� However� to avoid the
unnecessary time consuming logistics required in 
D
solutions� the discussion here is limited to steady
�D problems� The grid re�nement as well as the
convergence acceleration has also been studied and
carried out by the authors� but not reported here for
the sake of briefness�

SOLUTION OF EXTERNAL

AERODYNAMIC PROBLEMS

VIA THE NPM

Figure �a shows a non�lifting airfoil in a �D free stream
characterized by the far �eld uniform velocity �V�� The
airfoil disturbs the uniform �ow in such a way that the

velocity vector at a nearby point A� i�e� �VA shown in
Figure �a� is no longer equal to �V�� The objective
is to calculate the distribution of the scalar potential
�� which completely describes the ideal velocity �eld
around the airfoil ��V � �r�	� The constraints on the
scalar potential are formally de�ned as follows


r
�� � � in � ��a	

�r� ��n � � on �b ��b	

�r� � �V� for �x� z	� ����	 ��c	

The numerical panel method takes advantage of
the linearity of the Laplace operator and employs the
superposition of some singular solutions to model the
e�ect of the geometry on the �ow �eld and to approxi�
mately satisfy the boundary conditions on �b� The �ow
patterns corresponding to a source and a doublet are
shown in Figure �b� A source �or sink	 is described by
its strength � and results in a discontinuity� or jump�
in the gradient of the scalar potential


� �
��E

�n
�

��I

�n
� VE � VI ��	

Similarly� a doublet with the strength � results in a
potential jump as follows


� � �E � �I �
	

�a	

�b	

�c	

�d	

Figure �� �a� Ideal �ow around a non�lifting airfoil� the geometry and global coordinate system� �b� Source and doublet
�ow patterns� �c� A panel and its local coordinate system� �d� Finite number of sources and sinks along a chord line of the
non�lifting airfoil�
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An important feature of these elementary singularities
is that they identically satisfy Eqs� ��a� and ��c�� A
typical collocation point CP on the ith boundary panel�
i�e� the point of the implementation of Eq� ��b� on the
panel� is shown in Figure �c� Using a body�attached
coordinate system and panels covered by source and
doublet singularities� the Laplace equation and Green�s
third identity can be employed to develop the following
integral constraint at an arbitrary collocation point
	�
��

� 
 �� �
�

��

Z
�b

� ln rdl �
�

��

Z
�b

�
��ln r�

�n
dl �
�

In Eq� �
�� r is the distance between the panel and an
arbitrary point P shown in Figure �c�

If only source singularities are employed �� 
 ���

Eq� �
� can now be written as follows 	�
��

��

�n



�

��

Z
�b

�
��ln r�

�n
dl �

���
�n

���

Considering the fact that the normal velocity on the

body is zero and �����n can be replaced by
�
�V�

�
�

and assuming uniform source panels� the constraint on
the jth source strength is obtained as follows�

�
�

�V�

�
� �nj 


�

��

NX
i��

�Z
�bi

�i
�n � �r

r�
dl

�
���

The singularities are commonly distributed along the
same panels which are used to discretize the boundary�
However� it is also possible to employ separate singular�
ity surfaces �panels�� The singularity surfaces may be
inside or outside of the solution domain� For example�
it is intuitively clear that a �nite number of sources

�a� �b�

�c�

�d�

Figure �� �a� The geometry of rectangular plate� �b� The isotherms and the heat �ow lines in rectangular plate� analytical
solution� �c� Panels and collocation points distributed around the plate� �d� Simple uniform source panels used in NPM
solution�
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and sinks along the chord line of the non�lifting airfoil
shown in Figure �d can be employed to push and pull
the �eld lines in such a way that the body of the airfoil
becomes a streamline� Here� it is seen that the panel
surfaces containing the collocation points are not the
same as the panel surfaces containing the singularities
�i�e� singularity elements��

In practice� a variety of linear and nonlinear panel
geometries can be used to model� in the discrete sense�
the boundary� �b� Other singularities� in addition to
the sources and doublets� may also be employed ��	
�
Here� we restrict our discussion to the linear panel sur�
faces and uniformly distributed sources �sinks� and�or
doublets�

The implementation of the NPM for the solution
of the �ow �eld around the airfoil shown in Figure �a
involves the following three steps


�� Discretize the boundary �b by a number of panels
and de�ne the collocation points along them�

�� De�ne the singularity elements�

�� Satisfy Eq� ��b� at all collocation points by properly
determining the singularity strengths�

This requires the solution of a set of linear algebraic
equations� In contrast to the numerical �eld methods�
in which the sparse solvers are usually needed� the
coe�cient matrix corresponding to the algebraic set in
the NPM is dense�

Once the set of algebraic equations is solved for
the unknown singularity strengths ��i�� the velocity at
an arbitrary point in the �ow �eld can be calculated
using the following formula


�V �x� � �V� �
�

��

NX
i��

�Z
�bi

�i
�n � �r

r�
dl

�
���

It is important to mention here that the Neumann
boundary value problem described by Eq� ��� has
an in�nite number of solutions� because the level of
the scalar potential �eld is not constrained� The
multiplicity of the solution is particularly problematic
in the calculation of the �ow �elds around lifting
airfoils� The NPM includes the computational tasks
necessary to single out the physically acceptable solu�
tion through the satisfaction of the Kutta condition�
More information on the implementation of the Kutta
condition can be found in aerodynamics text books ��	
�

SOLUTION OF STEADY HEAT

CONDUCTION PROBLEMS VIA THE NPM

There is an analogy between the steady heat conduc�
tion problem and the external ideal �ow problem� In
addition to the similarity of the governing equations�
the analogy also includes some physical parameters�

For example� the normal heat �ux component in heat
conduction plays a role similar to the normal velocity
component in potential �ow� Also� the temperature
corresponds to the scalar potential in such an analogy�
However� in contrast to the aerodynamic problems�
which are often solved around immersed boundaries
and only need the implementation of the Dirichlet
or Neumann boundary conditions� heat conduction
problems are often solved in closed complex domains
and the implementation of di�erent types of boundary
conditions on di�erent parts of the boundary is often
required�

To use the NPM in the context of heat conduction
problems� three di�erent kinds of singularity surfaces
are employed here� These include uniform strength
source panels� uniform strength doublet panels and uni�
form strength source�doublet panels and the methods
which employ them are here referred to S�method� D�
method and SD�method respectively� The details of
the implementation of di�erent boundary conditions
on each of these cases are discussed in this section�
Examples of the applications will be presented next�

The S�Method

The boundary�integral equation at a collocation point
in this case� which is a simpli�ed version of Eq� �	�� is
as follows


T �
�

��

Z
�b

��ln r�dl ���

By taking the normal derivative� the following equation
is also obtained


�T

�n
�

�

��

Z
�b

�
��ln r�

�n
dl ���

Now let�s develop boundary integral equations for
the three standard boundary conditions� To implement
the Dirichlet boundary condition� T � K� Eq� ��� is
used


K �
�

��

Z
�b

��ln r�dl ����

To implement the Neumann boundary condition�
�T��n � K �� Eq� ��� is used as follows


K � �
�

��

Z
�b

�
��ln r�

�n
dl ����

Finally� to implement the Robin boundary condi�
tion� T � c��T��n� � K �� � both Eq� ��� and Eq� ���
are used as follows


K �� �
�

��
�

Z
�b

��ln r�dl � c

Z
�b

�
��ln r�

�n
dl� ����
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To construct a numerical solution� the boundary is
divided into N panels and the above equations are
written as follows�

�K�i �

NX
j��

�jBi�j ��	�

�K ��i �

NX
i��

�iCi�j ��
�

�K ���i �

NX
i��

�j�Ci�j � cBi�j� ����

In these equations� Bi�j and Ci�j are de�ned as Bi�j �
�
��

R
panel

�ln r��dS� Ci�j �
�
��

R
panel

��ln r�
�n

dS and c is a
constant parameter in the Robin boundary equation
which is de�ned as a ratio between heat conduction
coe
cient� kC � and heat convection coe
cient� hC � c �
kC�hC �

Now� consider the rectangular plate shown in Fig�
ure �a� All the space dimensions are normalized using a
reference length� Whenever necessary� the metric units
are used to assign dimensional numerical values� The
heat conduction in this rectangular geometry can be
mathematically described as follows�

r
�T � � in � ���a�

�rT��n � � on AD � �West ���b�

�rT��n � � on CD � �North ���c�

T � ���
x

�
�� � �� sin�

��x

�
� � �� on AB � �South

���d�

T � c
�T

�x
� T� on BC � �East �T� � ����C�

���e�

This boundary value problem can be analytically solved
by the separation of variables method� The isotherms
and the heat �ow lines� obtained from the analytical
solution� are shown in Figure �b� Note that the
temperature �eld T is a harmonic function and it
is possible to generate the isotherms by a number
of properly distributed harmonic �eld generators� i�e�
singularities� Figure �c shows the linear panels used
to model the rectangular geometry� Each boundary
panel is a �D� uniform source line as shown in the
close ups in Figure �d� Assuming �i is the strength
of the source line i per unit length� the objective is
to determine the unknown singularities� i�e� �i� i �
�� ���� N � so that Eq� ���b� to Eq� ���e� are satis�ed

at the corresponding collocation points� Note that the
�eld lines generated by each panel a�ect the thermal
condition at the collocation points of all other panels�
Therefore� satisfaction of the boundary condition at an
arbitrary collocation point� P � whether it is Dirichlet
�on� �South�� Neumann �on� �West and� �North� or
Robin �on �East�� can be formulated in the following
general form�

aP�P �

NX
nb�����P

anb�nb � �RHS�P ����

In Eq� ����� aP represents the in�uence of the singu�
larity panel P on its corresponding collocation point�
anb is the in�uence of the singularity panel nb on the
collocation point P and the �RHS�P is any remaining
constant term at the right hand side of the boundary
condition equation at point P � Satisfaction of the
boundary conditions at all collocation points is math�
ematically described by the following set of algebraic
equations�

�
����

a�� a�� � � � a�N
a�� a�� � � � a�N
���

���
� � �

���
aN� aN� � � � aNN

�
����

�����
���	

��
��
���
�N


����
����

�

�����
���	

�RHS��
�RHS��

���
�RHS�N


����
����
����

Once the unknown source strengths ��K � K � �� ���� N�
are known� it is possible to calculate the temperature
T or the heat �ux q at an arbitrary chosen internal or
boundary point� e�g� Ii�j or B in Figure �d� using the
following formulas�

TI �

NX
j��

TI�j�j ����

qB �

NX
j��

qB�j�j ����

In Eq� ����� TI�j represents the temperature in�uence
of the singularity panel j on an arbitrary point� I � and
qB�j � in Eq� ����� is the �ux in�uence of the singularity
panel j on an arbitrary point B� Similar expressions
can be obtained when the doublets or a combination of
sources and doublets are used to generate the harmonic
�eld�

The implementation of the NPM in the solution
of a heat conduction problem is rather straight forward
and involves the same computations as required in
the solution of external aerodynamic problems� Since
the temperature level is commonly constrained by
the boundary conditions� the solution is unique and
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�a� �b�

�c� �d�
Figure �� The S� Test case� �a� The geometry� �b� The isotherms and the heat �ow lines� calculated via the NPM� �c� The
NPM error on lines a�a� A�D� C�B� D�C� b�b and A�B� �d� e

T

max versus number of panels�

there is no need for extra conditions similar to the
Kutta condition� In a computer code for the im�
plementation of the NPM� the information regarding
the size and orientation of panels is needed� The
required information is generated in a pre�processor
which replaces the grid generation software in the
classical numerical �eld solvers� Subroutines are also
written to take care of the transformations between
the local and global panel coordinates each time they
are needed� The coordinates of the collocation points�
the end points of the panels and the singularity lines
are all the information that is required to carry out the
computations in an NPM code�

The D�Method

Following the discussions in the previous section� the
standard boundary conditions for the uniform strength
doublet panels are implemented as follows�

The Dirichlet boundary condition�

�K�i 	

NX

j��

�jCi�j �
��

The Neumann boundary condition�

�K ��i 	

NX

i��

�jDi�j �

�

The Robin boundary condition�

�K ���j 	

NX

i��

�i�Di�j � cCi�j� �
��

In these equations� Ci�j is the same as the
one de�ned in the previous section and� Di�j 	R
panel

��
�
ln r

�n�
�idli�
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�a�
�b�

�c� �d�
Figure �� The S� Test case� �a� the geometry� �b� The isotherms and the heat �ow lines� calculated via the NPM� �c� The
NPM error on lines A�B and C�D� �d� e

T

max versus number of panels�

The SD�Method

The discrete boundary�integral equation which can be
obtained for the nodal temperature value in this case
is as follows�

T 	

NX

j��

Bi�j�j 

NX

j��

Ci�j�j ����

Without losing the generality of the case� suppose that
the temperature �eld is zero outside of the solution
domain� In that case� Eq� ���� can be written in the
following form for any external point�

NX

j��

Bi�j�j 


NX

j��

Ci�j�j 	 � ��
�

Typically� the collocation or control points are located
at the middle of the panels� By slightly shifting the
control points towards the exterior of the domain� Eq�

��
� is applicable� Note that there are two unknown
nodal values in Eq� ��
�� Therefore� either the source
or the doublet strength needs to be user speci�ed� To
implement the Dirichlet boundary condition� T 	 K�
recall that � 	 TE � TI � Since� TE 	 �� the doublet
strength is constrained as follows�

� 	 �K ����

Therefore� Eq� ��
� is written as follows�

NX

j��

Bj��
�Tj
�n

� 	 �

NX

j��

Cj��K� ����

To implement the Neumann boundary condition�
�T��n 	 K �� recall that � 	 �TE��n� �TI��n� Since
TE 	 � everywhere� we conclude that� �TE��n 	 ��
Hence� the source strength is constrained as follows in
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�a�
�b�

�c� �d�
Figure �� The S� Test case� �a� the geometry� �b� The isotherms and the heat �ow lines� calculated via the NPM� �c� The
NPM error on lines A�D� D�C� E�H� �d� eTmax versus number of panels�

this case�

� � �
�TI
�n

����

Therefore	 Eq
 ���� changes to the following constraint
in this case�

NX

j��

Cj��Tj� � �
NX

j��

Bj��K
�� ����

A similar analysis shows that the implementation of
the Robin boundary condition	 T � c��T��n� � K ��	
results in the following boundary constraint�

NX

j��

�cCj �Bj��
�Tj
�n

� � �

NX

j��

Cj��K
��� �
��

Test Cases

Four problems are now investigated to show the ap�
plicability of the NPM in solving steady �D heat

conduction problems
 All of these problems are solved
by using uniform source elements
 Problems � and � are
also solved by uniform doublet elements and uniform
source�doublet elements respectively
 To evaluate the
quality of the numerical solution	 the NPM results are
compared to either the analytical solution	 wherever
applicable	 or the grid independent FEM solution
which is referred to as the exact solution
 Two
error measures for the variable �	 which can be the
temperature T or the heat �ux q	 are de�ned as follows�

e� � �

�����
�exacti � �paneli

�exacti

������� ��� i � �� ��������� N �
��

emax� � max�

�����
�exacti � �paneli

�exacti

������ ���� i � �� ��������� N

�
��
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�a� �b�

�c� �d�
Figure �� The S� Test case� �a� The geometry� �b� The isotherms and the heat �ow lines� calculated via the NPM� �c� The
NPM error on the outer boundary of annular plate and on a circle� r � �� in the annular plate� �d� e

T

max versus number of
panels	

The S� Test Case

Figure �a shows a simply connected rectangular do�
main with the following boundary conditions	

���
��

�rT�
n � � on AD
CD

T � ��� x
L
�� � �� sin� ��x

L
� � �� on AB �L � �m�

T � c
�T
�x

� T� on BC T� � ����C

The isotherms and the heat �ow lines� calculated
via the NPM� are shown in Figure �b� A �� � ��
uniform Cartesian grid is used to generate the internal
points for the calculation of the nodal values of the
scalar temperature and the heat �ux vector� This
corresponds to �� panels at each side of the rectangular
plate� The solution error at the boundaries and at the
internal nodes located on lines a�a� and b�b in Figure
�a are shown in Figure �c� For the internal nodes� the
calculated temperatures are compared to the analytical
solution to report the temperature error �eT �� How�

ever� at the boundary AB� the calculated heat �ux is
compared to the analytical value to determine the heat
�ux error �eq�� Note that the maximum error occurs
on the boundary AB near the corner point A and all of
the calculated errors are less than ����� Dependency
of �emaxT � upon the number of panels is shown in Figure
�d�

The S� Test Case

Figure �a shows a simply connected triangular domain
with the following boundary conditions	

���
��

�rT�
n � � on BD
EB

T � c
�T
�x

� T� on CE
AD �T� � ���C�

T � ����C on AC

The isotherms and the heat �ow lines� calculated via
the NPM� are shown in Figure �b� These results
correspond to a uniform computational grid with ����
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internal nodes� The solution error at the boundaries
and at the internal nodes� located along the line CD
in Figure �a� are shown in Figure �c� The solution
corresponds to ��� panels at each side of the trian�
gular plate� For the internal nodes� the calculated
temperatures are compared to the grid independent
FEM solution to report the temperature error �eT ��
Note that the maximum error occurs near the corner
points or near the points where a boundary condition
switches to another one� Dependency of �emax

T
� upon

the total number of panels is shown in Figure �d�

The S� Test Case

Figure 	a shows a multiply connected rectangular
domain with the following boundary conditions
�����
����

�rT��n � � on CD�EH�FG

T � c�T
�x

� T� on AD�BC �T� � ���C�

T � ���C on AB

T � 	��C on EF�GH

The isotherms and the heat 
ow lines� calculated via
the NPM� are shown in Figure 	b� The solution
error at the external boundaries and at the internal
boundary nodes along the line EH in Figure 	a are
shown in Figure 	c� This solution corresponds to
	� panels at each side of the outer boundary and 	�
panels at each side of the inner boundary� For the
internal boundary nodes� the calculated temperatures
are compared to the grid independent FEM solution
to report the temperature error �eT �� Note that the
maximum error occurs on the internal boundary near
the corner points H and E� Note that these are also
the switch over points of the boundary conditions�
Dependency of �emaxT � upon the number of panels is
shown in Figure 	d�

The S� Test Case

Figure 
a shows a multiply connected circular domain
with the following boundary conditions������
����

�rT��n � � on CA�AD

T � ����C on Internal Circle
hC
kC
� �T � T�� �

�
�T
�x

�
� �

on CB�BD �T� � ���C�

The isotherms and the heat 
ow lines� calculated via
the NPM� are shown in Figure 
b� The solution error
at the boundaries and at the internal nodes located
along the internal circle �r � �� in Figure 
a are shown
in Figure 
c� The presented numerical solution corre�
sponds to ��� panels on the outer boundary and ���
panels on the inner boundary� For the internal nodes�
the calculated temperatures are compared to the grid
independent FEM solution to report the temperature
error �eT �� It is seen that the NPM solution is more
accurate at internal nodes� Dependency of the error
upon the number of panels is shown in Figure 
d�

The D� Test Case

The test case S� is now solved via the uniform doublet
lines� The solution error on the boundary and at the
internal nodes located along the line a�a and b�b in
Figure �a are shown in Figure �a� Dependency of
�emaxT � upon the total number of panels in this case
is shown in Figure �b� It can be seen that the error
�eT � in this case is less than the error of the solution
obtained via the source panels� However� the heat 
ux
error �eq� in this case is more than the error obtained
via the source panels�

Another observation is that the order of accuracy�
i�e� the rate of decrease in �emaxT � with the total number
of panels� is less when doublet panels are employed�

The SD� Test Case

Finally� the test case S� is solved via uniform source�
doublet lines� The solution errors on the boundaries
and at the internal nodes along the line CD in Figure �a
are shown in Figure �c� Dependency of �emaxT � upon the
total number of panels is shown in Figure �d� Again�
it is observed that the order of accuracy is increased as
compared to the source panel case�

PANEL METHOD IN INTERNAL IDEAL

FLOWS

To implement the panel method in an internal 
ow� one
should take into the consideration the following points�

�� In contrast to the external 
ow problems� in which
either the Dirichlet or the Neumann boundary
condition is imposed on the body� di�erent types
of boundary conditions may be imposed simultane�
ously in an internal 
ow problem�

�� There is no far��eld boundary in internal 
ow
problems and the whole domain is surrounded by
singularities�

�� To obtain accurate results� the corner points need
special treatments�

Implementation of the Panel Method in

Internal Flows

Consider the simple di�user shown in Figure �� As
mentioned before all space dimensions are normalized
using a reference length� Whenever necessary� the
metric units are used to assign dimensional numerical
values�

Neumann boundary conditions are imposed at the
inlet and side boundaries and the Dirichlet boundary
condition is imposed at the outlet� To construct a
numerical solution� the boundary is divided into N

panels� By satisfying the boundary conditions at points
a and b in Figure �� one obtains�

NX
j��

Ca�j�j � Uin ����
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�a� �b�

�c� �d�
Figure �� The D� and the D� Test case� �a� The NPM error on lines a�a� A�D� C�B� D�C� b�b and A�B �Figure �a�� �b�
e
T

max versus number of panels in a rectangular plate� �c� The NPM error on lines A�B and C�D �Figure 	a�� �d� eTmax versus
number of panels in a rectangular plate


Figure �� CA simple� two�dimensional di�user


NX

j��

Bb�j�j � � �	
�

For the non�penetrative walls of the di�user� the

Neumann boundary condition is imposed


NX

j��

Cc�j�j � � �	��

In these equations� Bi�j and Ci�j are de�ned as

Bi�j � �
��

R
panel

�ln r��dS� Ci�j � �
��

R
panel

��ln r�
�n

dS in
which i indicates the collocation point�

The Dirichlet and Neumann boundary conditions
can be recast in the following general form


aP�P �
X

anb�nb � �RHS�P �	��

In Eq� �	��� aP represents the in�uence of the singu�
larity panel P on its corresponding collocation point�
anb is the in�uence of the neighboring singularity
panels on the collocation point P and the �RHS�P
is any remaining constant term at the right hand
side� Satisfaction of the boundary conditions at all
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�a�
�b�

�c� �d�
Figure �� The SI� Test case� �a� The geometry� �b� The streamline� calculated via the NPM� �c� The velocities at the
boundaries �AD� BC�� �d� The velocities at the outlet section �CD��

collocation points is mathematically described by the
following set of algebraic equations�

�
����

a�� a�� � � � a�N
a�� a�� � � � a�N
���

���
� � �

���
aN� aN� � � � aNN

�
����

�����
���	

��
��
���
�N


����
����

�

�����
���	

�RHS��
�RHS��

���
�RHS�N


����
����
��	�

Once the unknown source strengths ��K 
 K � �� ���� N�
are obtained
 it is possible to calculate the velocity VI
at an arbitrary point
 I 
 by the following formula�

VI �

NX
j��

uI�j�j ����

uI�j 
 in Eq� ����
 is the velocity in�uence of the
singularity panel j on an arbitrary point
 I �

Test cases

Three test cases are now discussed to show the appli�
cability of the NPM in the solution of internal �ow
problems� All of these problems are solved by using
uniform source lines� To evaluate the quality of the
numerical solution
 the NPM results are compared to
the grid independent FEM solution which is referred to
as the exact solution�

The SI� Test Case

Figure �a shows a nozzle with the following boundary
conditions�

���
�	

�V �
n � � on BC�AD
�V �
n � Uin on AB �Uin � �m�s�

� � � on CD ��V � ��
�n

�

The streamlines
 calculated via the NPM
 are shown
in Figure �b� These results correspond to a uniform
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�a�
�b�

�c�
�d�

Figure ��� The SI� Test case� �a� The geometry� �b� The streamline� calculated via the NPM� �c� The velocities on the
cylinders ����� ��d� The velocities at the boundary �BC��

computational grid with ���� internal nodes� This
solution corresponds to 	�� panels at the boundary of
the nozzle� Velocities at the boundaries� �BC and AD��
are compared to the grid independent FEM solution
and are shown in Figure 
c� Velocities at the outlet
section of the nozzle are also compared to the grid
independent FEM solution and are reported in Figure

d� Good agreements are observed in both cases�

The SI� Test Case

Figure ��a shows two cylinders in a short duct with the
following boundary conditions�

���
��

�V ��n 
 � on BC�AD� on the cylinders
�V ��n 
 Uin on AB �Uin 
 �m�s�

� 
 � on CD

The streamlines� calculated via the NPM� are shown
in Figure ��b� These results correspond to a uniform
computational grid with ���� internal nodes� 	�� pan�
els at the boundaries and ��� panels on the cylinders�
Velocities at the boundary� �AD�� are compared to
the grid independent FEM solution and are shown

in Figure ��c� Velocities on the cylinders are also
compared to the grid independent FEM solution and
are reported in Figure ��d� Good agreements are
observed in both cases�

The SI� Test Case

Figure ��a shows an airfoil �NACA����� in a short duct
with the following boundary conditions�

���
��

�V ��n 
 � on BC�AD � on the airfoil
�V ��n 
 Uin on AB �Uin 
 �m�s�

� 
 � on CD

The streamlines� calculated via the NPM� are shown
in Figure ��b� These results correspond to a uniform
computational grid with ���� internal nodes� 	��
panels at the outer boundaries and ��� panels on the
airfoil� Pressure coe�cients� Cp 
 � � U��U�

�
� on

the airfoil are compared to the grid independent FEM
solution and to the solution for a free stream situation�
Results have been reported for two di�erent widths
�D 
 ��� and D 
 �� and are shown in Figure ��c
and Figure ��d� As shown in the �gures� the results
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�a� �b�

�c� �d�
Figure ��� The SI� Test case� �a� The geometry� �b� The streamline� calculated via the NPM� �c� Pressure coe�cients on
the airfoil �D��	
� ��d� Pressure coe�cients on the airfoil �D���	

are closer to the free stream solution for the short duct
with the larger width as expected�

CONCLUSION

The classical numerical panel method was employed
to solve a number of steady two�dimensional heat
conduction and internal ideal �ow problems� Three
panel methods� i�e� the S�Method� the D�Method and
the SD�Method� were introduced and employed to
solve various problems with fairly complex geometries
and boundary conditions� Both analytical solutions
and accurate �nite element results were used for the
validation� Only the S�Method was used to solve all of
the test problems and the results of the other methods
were compared to the S�Method for just a number of
cases� The results show that the panel methods can
be reliably used to solve complex heat conduction as
well as internal ideal �ow problems� Both the accuracy
and the speed of the computations can be improved
by using re�ned grids and convergence acceleration
techniques not discussed here�
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