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Design of Nonlinear Robust Controller and

Observer for Control of a Flexible Spacecraft
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Two robust nonlinear controllers along with a nonlinear observer have been
developed in this study to control a 1D nonlinear flexible spacecraft. The first
controller is based on dynamic inversion, while the second one is composed
of dynamic inversion and O-synthesis controllers. The extension of dynamic
inversion approach to flexible spacecraft is impeded by the non-minimum phase
characteristics when the panel tip position is taken as the output of the system.
To overcome this problem, the controllers are designed by utilizing the modified
output re-definition approach. It is assumed that only one torque on the hub is
used. In particular, the assumption that all sate variables are measurable is not
realistic; hence, sliding mode observers are used to estimate states. Actuator
saturation is considered in the design of controllers. The performances of the
proposed controllers are compared in terms of nominal performance, robustness
to uncertainties, vibration suppression of panel, sensitivity to measurement
noise, environment disturbance and monlinearity in large maneuvers. To
evaluate the performance of the proposed controllers, an extensive number of
simulations on a nonlinear model of the spacecraft are performed. Simulation
results show the ability of the proposed controller in tracking the attitude
trajectory and damping panel vibration. It is also verified that the perturbations,
environment disturbance and measurement errors have only slight effects on the

tracking and damping responses.

INTRODUCTION

Flexible-body attitude control is one of the most widely
studied application areas within nonlinear control the-
ory, largely because of its importance in robotics and
spacecraft applications. The equations that govern
attitude maneuvers and attitude tracking are nonlinear
and coupled; thus, the attitude control system must
consider these nonlinear dynamics.

A common method to control space vehicles is
to use a linear controller calculated for the linear
approximation of the nonlinear system around an
operating point. This method is largely used due to
the fact that for linear systems, there are plenty of well
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established control techniques and the design can be
done in a more systematic way than in the nonlinear
case. Nevertheless, this kind of control technique
works, in general, only in a small neighborhood of the
operating point where the linear approximation is valid.
Thus, when the system is far from this point, the linear
controller will not behave as desired.

In the context of nonlinear systems, the feedback
linearization seems to be a viable choice since the
nonlinear system is exactly transformed into a linear
system (valid for the entire operating region) and only
then the linear controller is applied. Therefore, the
dynamic range of the closed-loop system is increased.
However, the classical feedback linearization, suffer
from the lack of robustness in the presence of uncer-
tainties, disturbances and noise.

In [1], the problem of attitude recovery of flex-
ible spacecraft with the plate type appendages using
feedback linearization approach is investigated. The
controller ability is shown in the recovery maneu-
ver and panel vibration suppression. However, the
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performance is only tested for impulse disturbance
(thruster effect)linearization is robust against impulse
disturbance but is very weak against constant distur-
bances. Although, this method achieves good vibration
suppression, it does not address the issue of robustness
to combined uncertain conditions (several uncertain
conditions, i.e. environment disturbance, sensor noise
and uncertain parameters, exist together or one uncer-
tain condition exists with large variations). Moreover,
the selected controller bound is large as if actuator
saturation has not been considered.

Recently, considerable efforts have been made to
design robust control systems for simultaneous attitude
control and vibration suppression of flexible spacecraft.
However, most of them are based on linear control
approach which results in a poor performance for large
maneuvers. For instance, in [2], an experimental
flexible arm serves as test bed to investigate the
efficiency of the Od-synthesis design technique in con-
trolling flexible manipulators. In [3], the active optimal
attitude control of a three-axis stabilized spacecraft by
flywheels is studied. The corresponding time-varying
linear quadratic regulators (LQR) are designed for an
approximate system.

Various nonlinear robust control algorithms have
been proposed on rigid spacecraft such as a mixed
H,/H,, controller incorporating a cerebellar model
articulation controller learning method [4], adaptive
fuzzy mixed Hs/H [5], adaptive mixed Hs/Ho [6]
and LMI [7], where the neural networks, fuzzy or
adaptive methods are employed to approximate the un-
known nonlinear characteristics at the system dynam-
ics. However, they didn[t consider other uncertainties
such as sensor noise and environment disturbances.

Although nonlinear robust control methods, such
as nonlinear H., control can be applied to address these
issues, solving the associated Hamilton-Jacobi equation
is often extremely complicated and the resulting con-
troller is not easy to implement. Consequently, a robust
feedback linearization strategy seems promising.

In [8], an adaptive feedback linearizing control
law is derived for the trajectory control of the pitch
angle. Unmodeled parameters appearing in the inverse
feedback linearization control law are estimated using
a high gain observer. However, other uncertainties
such as sensor noise and environment disturbances have
not been considered. In [9], a hybrid control scheme
with variable structure and intelligent adaptive control
method are used to control flexible space structures.

The most common approach to compensate for
the nonlinear dynamics of a rigid spacecraft is the
so-called inverse dynamics strategy. However, the
extension of this approach to flexible spacecraft is
impeded by the non-minimum phase characteristics
when the panel tip position is taken as the output of the
system. To overcome this problem, in [10], a re-defined

M. Malekzadeh, A. Naghash, H. A. Talebi

output on the flexible-link manipulators between the
joint and the tip was suggested. The new output is
defined so that the zero dynamics related to this output
are stable. However, this method has never been
used on spacecraft. In [11], the performance of neural
network-based controllers is presented for tip position
tracking of flexible-link manipulators. The controller is
designed by utilizing the modified output re-definition
approach. The scheme is developed by using a modified
version of the )feedback-error-learning] approach to
learn inverse dynamics of the flexible manipulator.

The combination of dynamic inversion and p-
synthesis controller is used in high-angle-of-attack con-
trol of a super maneuverable vehicle [12], aircraft flight
control over large ranges of angle of attack [13], a
modern fighter aircraft incorporating thrust vectoring
[14], and the lateral acceleration control of a tactical
missile model [15].

The combination of dynamic inversion controller
and a robust controller have been applied to the
non-minimum phase system. H,, input/output lin-
earization formulation is applied to a nonlinear ship
course-keeping control problem [16] and in the lateral
acceleration control of a tactical missile model [17].
However, this composite control method has never been
used on spacecraft.

The objective of this paper is to propose this
composite approach for robust attitude control and
vibration suppression of flexible spacecraft. p-synthesis
control law is formulated so that an outer-loop linear
controller can be constructed to provide robust stabil-
ity/performance against the inexact dynamic cancel-
lation arising in the inner-loop feedback linearization
design. It is notable that the proposed composite
controller has not been applied to spacecraft yet.

In this paper, attitude control of a 1D flexible
spacecraft is considered using two approaches: dynamic
inversion and composition of dynamic inversion and
p-synthesis. The goal is attitude control and panel
vibration suppression in the absence of damping and
actuators on panels.

The controllers are designed by utilizing the
modified output re-definition approach. It is well
known that the zero dynamics of a flexible spacecraft
associated with the panel deflection is unstable. Hence,
the sum of the attitude angles and a scaling of the tip
elastic deformation are chosen as the output. This scale
is obtained by stabilizing zero dynamics of the system.

In the design of dynamic inversion controller, this
summation is considered as the output. To enforce the
position and rate saturation limit, a feedback controller
structure is used in the inner loop. Moreover, it is
often the case that the linearized model is different
from the linear model. Hence, choosing weighting
functions is very challenging. Another important issue
in designing the pu-synthesis controller is bounding
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the linear controller term which is different from the
bound for the actual control signal w. Hence, it is
crucial to find an appropriate weighting function for the
linear controller. To evaluate the performance of the
proposed controllers, a set of simulations are performed
on a 1D flexible spacecraft. It was our intention that
the sensors noises, disturbances and uncertainty be as
close as possible to practical situations.

Up to now, we have assumed that all the states
are available. However, in general, not all of the states
are measurable and the feedback control scheme should
be implemented via the estimated states.

FLEXIBLE SPACECRAFT EQUATION
The system under investigation consists of a rigid hub
and 2 appendages attached to it. According to Figure
1, each appendage has linear density (mass per unit
length) p, length [ each, and is attached at a distance
r from the hub.

The kinetic energy of the system is composed of
kinetic energies of the hub, and the appendages. This
kinetic energy can be written in the form of:

T=1/2J,6+ /p[(r+x)292 +2(r42)0y+ 5% +y26°)dx

(1)

The potential energy does not include a gravity term
and is just the usual potential energy of beam bending
deformation of the form:

V= / EIy"*dx (2)

To derive the dynamic model of the described sys-
tem, the assumed modes formulation of the flexible
appendage dynamics is used. Flexible deflection of the
appendages along the body axis is of the form:

N
Y= Z%‘qz‘ (3)
i=1

where ¢; are modal coordinates, N is the number of the
assumed modes considered, and ¢; are shape functions
of the appendage deformation. The following shape
function is an acceptable candidate for clamped beam:

@i = 1 —cos(imz/l) +1/2(=1)FV (ixz/1)? (4)

The vibration equations of motion are obtained by
using the conventional form of Lagrange[s equation.
Substituting the kinetic and potential energy equations
in the Lagrangel[s equation, the final form of the
vibration equation is obtained:

Jhé + z/p(r + :(:)deé + /ptpiqi Z %%:é

+2/p(7‘+93)2w'1}+2/pwiqf2qu'9':7 (5)

Q/p(r+x)2<pidxé+2/pr«mdi
w2 (B Y dli=r @

The above equation may be rewritten in a simple form:

e L S, [
My, Mqq q 0 Kgq— 62 My, q

o[ =17

(7)

The modal cross-inertia vector My,, modal inertia
matrix M,, and modal stiffness matrix /{;, are defined
through the shape functions.

Regarding small ¢, by neglecting high order term
of ¢, this equation can be linearized as:

L a6+ 10 &HZHS]@

To include structural damping, a viscous damping term
is added to equation (7-2) which results in a diagonal
damping matrix D, with entries «; and 7, for the
damping parameters.

D =M+ 12K 9)

Mg + Mygii + D+ (Koq — 6°Myq ) g =0 (10)

OUTPUT REDEFINITION APPROACH
It is well known that the zero dynamics of a flexible
spacecraft associated with the panel deflection are
unstable. In other words, the system is non-minimum
phase and is very difficult to control using panel
deflection output for feedback.

In [10], the sum of the joint angle and a scaling
of the tip elastic deformation is chosen as the output
for control of a flexible link manipulator, namely y,; =
0; + a;q;, where —1 < ; < 1. For the choice of a; =1,
the output becomes the tip angular position and for
a; = 0 the output becomes the joint angle.

Also, it was shown that a critical value o, 0 <
a; < 1 exists such that the zero dynamics related to
the new output ya are unstable for all a; > a] and
are stable for —1 < «a; < af. Our objective in this
section is to show that by using the new output y, the
dynamics of the flexible spacecraft may be expressed
in such a way that the feedback linearization method
is applicable for controlling the system.

The flexible spacecraft with one panel and con-
sidering one elastic mode has the order of 4. Let us
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define the output as y = 6 + ag. Now, two times
differentiation of y, an explicit relationship between
the output y and controller input 7 would be obtained.
Hence, it is apparent that the system relative degree is
r=2<n=4.

Therefore, parts of the system dynamics have
been rendered Junobservable] in this input-output lin-
earization, the so called internal dynamics of the
system, since it cannot be seen from the external input-
output relationship.

Consider the dynamics of the spacecraft as given
by the (7) expressed in standard state space form:

&= f(2)+ g()u (1)

The new set of states can be defined by X = [0 6 ¢ ¢].
Choosing the state vector as X, the corresponding
vector fields f and g can be written as:

6
fay=1 %
J
S = Agg(Mog MM (Kqq — 6 Myg)q — 20¢" Myqq)
J = =M (MogAgg(Mag) Mt +1)(Kgq — 6> Myg)q

+Dq — 29QTMqQQ)) (12)
g(x) = [ 0 qu 0 7Mq_qlM9quq ] (13)

_ —1
Agq = (J+q" Myqq — Moy M, My,) (14)
The new output can be expressed as:
y=0+aq

To find the external dynamics related to this new
output, take uy = 6 + aq and ps, = 6 + ag. From
Eq. (11), we can write:
H2 = fun
o =(1— M YMog) Agqg (T+(Kgq— 0 Myq)q

—20q" Myqq) — aM,')(Kqq — 6°Myq)q (15)

The third function (z) is required to complete the
transformation, i.e. to bring the dynamics to its normal
form. It should satisfy the following equation:

Iy,
Lyt = (09, =0
(o + (G-M, Mag o) =0 (16)
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One solution of this equation is:
1 =q
Yy = M, Mgof + g (17)

By differentiating these functions and by using system
dynamics, the internal dynamics is obtained as:

=g
¢2 = Mq;] (qu - l‘quq)wl) - M;;]Dq. (18)

It is shown that local asymptotic stability of zero-
dynamics is enough to guarantee the local asymptotic
stability of the internal dynamics [18]. The zero
dynamics is defined to be the internal dynamics of the
system when the system output is kept at zero by the
input.

0 (0,9) = w (0, %) (19)

y=0—0=—ag (20)

Using Eqs. (17-18) and Eq. (20), it follows that:

(1= Mt Mo ) + M by + M (K g — a7 )1 =0
(21)

By ignoring the term M;qll/}fwl, according to small ¢
and ¢, Eq. (21) can be written as:

(1 — aM ' Mog)ths + My &by + M, Kogthy =0 (22)

Since 1 — an’qlng > 0, we can conclude that zero
dynamics is asymptotically stable; hence, one can find
the value of a.

FEEDBACK LINEARIZATION DESIGN
It is assumed that no actuator is available on the
flexible beam-type appendages. It is well known that
in such cases flexible beam is not linearizable and we
must turn to the input-output feedback linearization
(or the so-called dynamic inversion) control technique,
(see Figure 2).

It is assumed that full state measurement of the
system is available through attitude (e.g. sun sensors
and gyros) and structural (e.g. strain gauges) sensors.

The successive differentiation process is done on
the output (attitude angle) until the control signal
appears:

y=0+aqg—ij=0+aj=v (23)

Figure 1. Flexible spacecraft model.
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Figure 2. Feedback linearization method.

Using dynamic equations of spacecraft (7), it follows
that:

y = (1—aM ' Mgg)Agy(T + (Kqq — 6> Myg)q
- 2éqTquQ) - aMt;;l)(A’qq - 92qu)q (24)

The coefficient of 7, Ag,, in special case (¢ = 0)
is equal to J; in other cases, it can be shown that
this term is also invertible. Hence, the signal v
should be constructed to control the linearized system.
The system can be controlled by introducing linear
controller of the form:

v = wi Ye — 26y woYe (25)

In most modern spacecraft, momentum exchange de-
vices are used as actuators. Due to saturation effect
in these actuators, taking note of saturation is very
important. It has been shown by several authors
that enforcing actuator constraints for input-output
linearization can result in poor closed-loop performance
(when compared to unconstrained closed loop perfor-
mance) [19]. Different methods have been successfully
used to assist in preventing the destabilizing effects of
control saturations in feedback linearization method.
In most cases, saturation is considered by designing
a special outer loop (linear) controller; hence, these
methods cannot be used in this paper. To enforce the
position and rate saturation limits, feedback controller
structures are used in [20-22]. Most of these structures
filter the peak of the response. Simulation studies
show considering the saturation in inner and outer loop
together is more effective. In this paper, the structure
shown in Figure 3 is used [21].

The gain can be chosen depending on the bounds
of output response. In appropriate scaling, tanh can
be used to represent saturation behavior:

Usqr = tanh (”/umw> Umax (26)
Let us define the following parameters:

Ay =(1- an;])ng)qu (27)

u. + Rate Integrate Position Ya
Limiting Limiting

Figure 3. Enforcing Control saturation limits.

As = (1 — aM," ) Mg Agq(Mpy M, (Kqq — 6 Myy)q
—20¢" Myqq) — aM, ;' (Kqq — 6> My)q (28)

Equation (24) can be written as:

= AT+ Ay (29)

Let 6 be the difference between the computed control
and the applied control:

6= — Ugq (30)
From Eq. (29) and Eq. (30), we have:
§=A(T+0)+ Ay (31)
Then, the linearized model takes the following form:
ij=v+ A0 (32)

As shown in Eq. (32), the hedge signal A;6 acts as a
disturbance.

COMPOSITE CONTROLLER DESIGN
(FEEDBACK LINEARIZATION +
p-SYNTHESIS)

The performance of feedback linearization is rather
poor in the presence of uncertainty, disturbance and
noise. Due to the uncertainty, inexact dynamic can-
celation arises in the inner-loop feedback linearization
design. Hence, a 0-synthesis control law is added
as an outer-loop linear controller. Dynamic inversion
and structured singular value synthesis are combined
to achieve robust control of flexible spacecraft. The
controller structure is shown in Figure 2. In this
method, nonlinear dynamics is linearized by input-
output feedback linearization method. By definition
output as y = € + agq, new linear system is in the form
of §j = v, so new control signal v should be designed.

The advantage of p-synthesis method is that
it allows the direct inclusion of modeling errors or
uncertainties, measurement and control inaccuracies
and performance requirements into a common control
problem formulation.

Defining the two parameters A; and A,, as
expressed in relations (27-29), we have:

j=AiT+ Ay =0 (33)

real

By considering uncertainty on parameters such as J,
Eq. (33) can be written as:

jj = (Al + AAl)T—i— (AQ + AA2) = A1T+A2 + AAlT
+AAy =0, +Av  (34)

real

AU:AA17+AA2 = AAlAfl(U —A2)+AA2

(35)

real



86

Controller

Figure 4. p-Synthesis arrangement block diagram.
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Figure 5. Bounded of uncertainties and chosen weight.

By substituting real parameters, Eq. (34) can be
written as:

j=v._,+AA AT v, — AAAT Ay + A4y (36)

al
As Eq. (36) shows, parameter uncertainty results
in a multiplicative uncertainty in controller input
(AA; A7) and a disturbance (—AA; A7 Ay + AAy).
The controller structure is shown in Figure 4.

To include the uncertainty in the model, differ-
ent system parameters such as J were perturbed by
20function (si) of the system was selected as a double
integrator, i.e. %. Then, the bode diagram of the
actual system and the nominal transfer function plus
the multiplicative weighting function were obtained.
The weighting function were then tuned to get the best
possible match which is obtained for:

_70(s+1)

— 37
AT T5¥ 100 (37)

The effect of uncertain parameters on this transfer
function and uncertain plant P(I + WaAg) is shown
in Figure 5.

W, puts weighting on the error between comple-
mentary sensitivity function of the closed loop system
and an ideal model of system response. The perfor-
mance objective can be written as |W,S] < 1. So W,
should be selected as W, < ﬁ According to the
first and third frequency of vibration modes of flexible
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panel, this function is chosen as:

0.1(s% + s + 0.25)
(s +4s+0.01)

Whpe = (38)
Therefore, the hub performance weight has a relatively
large magnitude at low frequencies.

According to the weakness of dynamic inversion
method against constant disturbance, a disturbance
weight is chosen as:

Wdist _ Wdistact
vl |7]

(39)

Waistacr Of constant magnitude equal to 0.001 is applied
to the system. The parametric uncertainty disturbance
in Eq. (36) is very small so it hasn[t been considered
in comparison.

To enforce the controller saturation limits in the
inner loop, the feedback controller structure shown in
Figure 3 is used. Also, this saturation can be consid-
ered in designing p-synthesis controller; however, using
the dynamic inversion formulation, the actuator dy-
namics is not directly accessible. In [19], an algorithm
is derived to catch bound on v in feedback linearization
outer loop according to actuator saturation limit.
In this paper, this limit is approximately obtained
according to the following equation by assuming small

q:

T =(J + q" Mogq — Mo M, Myg)(1 — a My, Mo,)
(MogMyg') (v — Ko — 62 Mqg)q) — MagM,')
(K — 6> Myy)q + 20" M,yq (40)

According to actuator saturation limitation |7| < 0.8
N.m, it is chosen as:

Wt = 4000 (41)

The weighting noise function W, is used to model
sensor noise since all of the feedback signals are cor-
rupted to some extent by noise. It is assumed that
the angular velocity and the pitch angle are measured
by rate gyro and earth sensor that are corrupted with
random measurement noise of magnitude 0.1 deg per
second and 0.2 deg. W, is a high-pass filter according
to high frequency noise nature.

027 0.125+1
= 42
w < 180 ) 0.001s + 1 (42)

A concern is that as the number of states in the problem
formulation increases, the accuracy of the numerical
solution decreases. So, in this paper the controller is
designed using attitude and rate of attitude feedback.

With regard to many signal input of controller
and performance requirement (robustness against
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noise, disturbance, uncertainty and actuator saturation
in this complex system), the resulting controller is
of high order. This is obviously not practical for
application; it can be reduced tremendously without
degrading much of the performance. Using balanced
truncation, the order is reduced to 7 without much loss
of closed-loop performance or robustness.

SLIDING MODE OBSERVER
The objective of the observer is to accurately estimate
g and ¢ in the presence of disturbances and model
uncertainties. It is designed based on the simplified
version of the model, which is defined in Eq. (8).
The nominal state

X(t) = AX(t) + BU(t) + BC(t, X (1), U(t)) (43)
Y(t) = CX(1)

The upper bound of ¢ (¢, X (¢),U(#)) can be written as:
€@, X (@), U@ < ro U@ + B¢, X(2)) (44)

where 71 is a known scalar and (3 is a known function.
Assume that the following conditions are satisfied: A1)
the pair (A, B) is controllable

A2) the Markov parameter C'B is full rank

A3) the invariant zeros of (A, B, C) (if any) are stable
From assumptions A2 and A3, there exists a linear
change of coordinates T,, in which the system triple
(A, B, and C) has the following structure:

1| An A
ToAT, ' = [ Ay A (45)
0 —
TOB:[B2]., CTy' =0 Ip ] (46)
Equation (43) can thus be re-written as:
Xi(t) = A Xy (t) + ApY (1) + B,U(1) (47)
Y(t) = A X1 (t) + A3 Y (1) + B,U(t) + Bo(

where X € R(”_”), Y1 € R? and the matrix A1 have
stable eigen values. A state observer proposed in [16]
is employed to estimate the states of (43):

{f((t) = AX(t) + BU(t) — Gre,(t) + G 48)

Y(t) = CX(t)
where the linear gain is:

Al }

49
s, (49)

G = T071 [
and the nonlinear gain is:

G =1,"| 1 | (50)

A$, in (49) is a stable design matrix. If P, € RP*?P
is a symmetric positive Lyapunov matrix for A3,, the
discontinuous output error injection v can be defined
as:

|€y| > &

v =
|ey|-<€

~C(1 X (1), U(1) B2
{ ) (51)

where ey = Y — Y is the output estimation error.
The function ¢ represents an upper bound on the
magnitude of ((¢,X(¢),U(t)). Moreover, only pitch
angle and pitch rate are considered to be known from
measurements in the design of the observer.

SIMULATION RESULTS
In this section, simulation results for the closed loop
system (7) with the control laws derived in the previous
sections are presented using MATLAB and SIMULINK
software. In the simulation, the same system parame-
ters are chosen as those in [1].
EI = 1500N/m?,

p=02kg/m, 1= 30m,

h = m’ r=1m
Jy, = 4000kgm?, 1 (52)

The control input and its rate are bounded as:

|u| < 0.8 Nm, || < 0.8 Nm/s (53)
The environmental disturbances (i.e. gravity gradient,
solar pressure, aerodynamic and magnetic torques)
on the spacecraft are obtained from the following
equation:

(54)

Ty = [0.005 — 0.05sin <@> +6(200,0.2) + v,
400

where 6(T, AT) denotes an impulsive disturbance with

magnitude 1, period 7', and width AT. The terms vy

denotes white Gaussian noises with mean values of 0

and variances of 0.0052.

It is assumed that the angular velocity and the
pitch angle are measured by rate gyro and earth
sensor respectively, that are corrupted with random
measurement noise. Earth sensor noise has Gaussian
distribution, zero mean and standard deviation of
0.2 degree. The Gyro noise sources correspond to a
random drift rate and a random bias rate. This model
is represented by the following Laplace transformed
equation:

wy = Hyyrow +wp +wy (55)

wy and w are the measured and actual spacecraft
angular velocity, respectively. Gyro random bias rate
wN and Gyro random drift noise wD have Gaussian
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distribution, with zero mean, and standard deviation
of 107% rad/s. Gyro transfer function is:

Hgyro=(44695+89.22) /(s°+89.225% + 44695 +89.22)

The velocity and acceleration of a point on the panel of
flexible spacecraft are measured by a tachometer and
accelerometers with Gaussian distribution noise, zero
mean and standard deviation of 0.0001 m /s and 0.0001
m/s?, respectively. The robustness specification is to
account for variation on the values of J, M,,, My, and
Kgq in (7) which would represent the model parameter
uncertainties in the system up to 20

In this paper, the coefficient Mq’qlng7 by consid-
ering one elastic mode, is equal to 5.982, and a should
be chosen less than its inverse. In simulations, this
constant is chosen as @ = 0.14. By considering more

12.441
2.8555
—0.0669
hence, for higher elastic mode, we can choose larger a.

The observer gains are selected to be P, = [-2 —
2]and¢ = 0.00001. Tt is being used herein to provide
on-line estimates for tip and rate of tip position, which
are needed for the computation of the control signals.

Also, the gain parameters in feedback lineariza-
tion method are chosen as w, = —0.025and¢, = 0.2.
In this subsection, a comparison of robustness ob-
tained for the nonlinear system with the two proposed
controllers (1- feedback linearization 2-combination of
feedback linearization and p-synthesis) are presented.

A number of time and frequency domain analysis
procedures are carried out on the resulting designs and
their performance is tested. In all simulations, no
damping is considered.

The results for the classical feedback linearization
and combined controller are given in Figures (6-7),
respectively.

A. Feedback linearization controller

In normal conditions or in conditions that only
one finite uncertain variation (disturbance, noise and
uncertainty) exists, this method responds very well. Tt
means the feedback lineariztion design leads to smaller
maximum overshoot and complete suppression of panel
deflection. The dynamic inversion controller achieves
this decoupling at the cost of larger and faster control
effort.

But in a large maneuver or in combined uncertain
conditions (several uncertain conditions exist together
or one uncertain condition with larger variations),
much larger control efforts are necessary (out of max-
imum acceptable control input) and the attitude rate
and position cannot converge. The high peak in control
torque response is due to the impulse present in the
disturbance.

Simulation results show that the system is more
robust against sensors noise and uncertainty than

elastic modes, 7.e. three, this coefficient is

bl
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against environment disturbance. And also, the system
is more sensitive against sine term of disturbance
than disturbance constant term, and it has the most
robustness against impulse disturbance term. For
brevity, the relevant figures are omitted.

B. Composite controller

Figure 7 shows the simulation results of the
composite controller. With the designed composite al-
gorithm, the response of pitch angle is shown in Figure
7a. We can see that the attitude angle approaches
reference trajectory at time of 600 sec. Hence, fast
and precise attitude control is achieved for the current
design system. As compared to Figure 6a, in dynamic
inversion method, the response has a steady state error
and cannot converge.

Figure 7d shows low frequency oscillation of the
appendage in composite method. The maximum
tip deflection of the appendage is larger in dynamic
inversion method and can be seen to be around 0.16 m
in Figure 6d. Overall, comparing the plots 7e and 6e,
we can see that the composite controller has larger tip
deflection rate causing faster panel deflection damping.

The requirement for momentum of RW is il-
lustrated in Figure 7c. As compared to Figure 6c,
the composite method requires larger controller effort.
Simulations show the composite control algorithm per-
forms well in large maneuvers; however, it has larger
controller order.

As shown in Figures 6-7: b, d, e, the simulation
results demonstrate the capability of the nonlinear
observer in accurately estimating the state variables
in the presence of uncertainties.

The simulation results by the composite controller
when @ = 0 (means the system output is only hub
angles) show that the Euler angles cannot converge. Tt
shows the ability of output re-definition method used.

CONCLUSION

Vibration attenuation is a difficult control problem
due to the stringent requirements on performance and
inherent characteristic of such structures. In this
paper, flexible spacecraft attitude is controlled by two
controller designs. The first controller is a dynamic
inversion; the second is a combination of dynamic in-
version and p-synthesis controller. The controllers are
designed by utilizing the modified output re-definition
approach. In practice, the assumption that all sate
variables are measurable is not realistic; hence, a robust
nonlinear observer has been designed based on the
sliding mode methodology.

Tt is assumed that only one torque on the hub is
used. Actuator saturation is considered in the design of
controllers. At first, the performance of the two designs
were compared in areas such as speed of response,
damping of panel vibration modes and size of control
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Figure 6. Dynamic inversion, (a) Euler angle (b) angular velocity (c) reaction wheel torque (d) tip deflection (e) tip rate.

deflection used. In the next step, the robustness of
the two designs to uncertainty was examined. Finally,
the sensitivity of the controllers to measurements noise,
environment disturbance and in large maneuvers was
compared.

Simulation results prove combined controller abil-
ity in controlling attitude and also suppression vibra-
tion of panels with exhibit excellent performance and
robustness for a broad range of operating conditions
with minimal control effort. The simulations have
demonstrated the capability of the observer in yielding
accurate estimates of the state variables in the presence
of uncertainties.

It isimportant to note that these controllers damp

vibration of panels without considering damping term
and without using any filter. In this paper, it is
assumed that sensor noise, disturbance and uncertainty
are close to real values. It is notable that this combined
control method has never been used on spacecraft and,
rarely, terms such as disturbance, noise, uncertainty,
nonlinearity and saturation are considered in simula-
tions of flexible spacecraft simultaneously.
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