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Influence of System Parameters
on Main Rotor Responses

F. Shahmiri'

The main purpose of this paper is the semsitivity analysis of main
rotor direct and cross- coupled responses, pertaining to wvariation of some
relevant system parameters. The system parameters are considered as flap
frequency ratio, stiffness number, Lock number, and flapping hinge offset,
necessary for the preliminary design of articulated and hingeless helicopter rotor
configurations. The methodology is laid out on the basis of Galerkin solution
presentation of the main rotor partial differential equation (PDE), required for
the modeling of flexible blades. In this particular discipline, the main rotor
PDE for a blade elastic motion is obtained in a non-linear closed form. The
Galerkin solution, linearization, modal analysis and harmonic balance method
result in some expressions, which are significant for the prediction of main rotor
responses. The main advantage of the methodology is to find explicitly main
rotor control and damping derivatives, including cross and direct damping, for
each harmonic of blade deformations. Accordingly, the main rotor pitching
and rolling moment functions are also calculated on the basis of derivatives,
presented in terms of system parameters. Finally, the results are depicted in
graphical forms in the range of system parameters and operating conditions.
Comparisons of the control and damping derivatives in hover show a small effect
of hinge offset on the main rotor direct response, whereas the cross derivatives
have a strong dependence on the combination of stiffness number and hinge
offset. Furthermore, comparison with the full aeroelastic analysis shows that
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the obtained results approzimate the true elastic responses.

NOMENCLATURE
Linearized lift curve slope
Length of the blade chord
Hinge offset of main rotor blade
Flapping moment of inertia
Spring stiffness
Air density
Local radius on the blade
Blade radius
Coning, longitudinal and lateral
flapping angles
Collective, lateral and longitudinal
cyclic pitch
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i Main rotor induced velocity (= v,/ RQ)
I Advanced ratio (= V4 /RQ)

I Normal component of advanced ratio
Y Blade azimuth angle

INTRODUCTION
Generally, modern helicopters with advanced main
rotor configuration and flight control systems need
to have high maneuverability, agility, and mission
effectiveness. Since the design process is essentially a
critical problem, it requires the careful examination of
several decisions. For example, model-following type
of flight control systems can provide good handling
qualities, but may require high gains with reduction
of the aeromechanical stability margin of rotor modes,
Ivler et.al. [1]. Conversely, low damping of rotor
modes can result in high vibrations during maneuvers,
Christensen [2]. These problems can not be easily
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solved through the feedback controls. A flight con-
trol system optimization study, with aeroelastic and
handling quality constraints, is an example of this
complexity described in Sahasrabudhe and Celi [3,4].

Although it seems that a multidisciplinary ap-
proach is required to analysis the interaction among
a variety of design parameters, these analyses can be
quite intricate. As the number of design parameters
increases, it needs further time to perform parametric
studies. Similarly, when the interaction between the
theories in new designs increases, the number of design-
ers to share the understandings will be increased. To
avoid these, the current methodology, described in this
research, can be effectively applied for the improvement
of design process, because it explicitly generates design
parameters in a simple manner.

Several prior researches about these topics are
available. A significant part of these investigations
has been shown a set of relations needed for the
development of mathematical models for a hingeless
rotor. In one of the earliest studies, Sissingh [5] de-
veloped the response characteristics of hingeless rotor
at high forward speeds with a centrally hinged, spring-
restrained and rigid blade assumption. In this report,
the effects of reversed flow on the periodic coefficients of
the flapping motion were obtained at highly advanced
ratios. Bramwell [6] developed a simplified method for
determining the stability derivatives of a typical rotor
helicopter. A rigid blade model with a hinge offset and
several charts were printed for the calculation of rotor
force and moment derivatives. The hinge offset value
was selected using the fundamental flap bending mode
shape. Shupe [7] and Curtiss [8] conducted additional
research on the mathematical modeling structure. Al-
though the model showed an improvement on the
prediction of control power and damping responses, the
effects of hinge offset and aerodynamic approximations
resulted in some inaccuracies. Effects of the second
flap-bending mode were also found to be particularly
significant using the elastic blade formulation at mod-
erately advanced ratios. Hohenemser and Yin [9]
showed that the inclusion of the second flap-bending
mode, presented in Shupe [7], leads to large amounts
of coupling between modes.

In this study, the sensitivity analysis of hub
moments (i.e. pitching and rolling) in relation to
main rotor flapping derivatives is investigated. The
flapping derivatives consist of direct and cross-coupled
control and damping expressions as functions of system
parameters. Consequently, the sensitivity analysis of
hub moments in relation to frequency ratio, stiffness
number, flapping hinge offset and Lock number will
be possible. The mathematical formulation of the
main rotor flapping motion (i.e. PDE) is developed
using elastic blade assumptions. The non-linear PDE
converts to two ordinary differential equations (ODE),
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utilizing the well-known Galerkin solution in modal
space.  Ultimately, the harmonic balance method
provides the steady state solution of ODEs and yields
the longitudinal and lateral tilt of tip path plan (TPP)
in the absence of a multi-blade coordinate transfor-
mation. The solution involves both the articulated
and hingeless rotor characteristics in hover and forward
flight conditions.

MAIN ROTOR MODEL DESCRIPTIONS
In this section, a brief description of a mathematical
modeling process of both hingeless and articulated
rotors with offset flapping hinge is presented. Although
the modeling process is performed in the absence of
coupled flap, lag and torsional motions, the fundamen-
tal frequency ratio, stiffness number and blade Lock
number are provided with sufficient system parameters
for the evaluation of rotor dynamic characteristics. As
it can be seen in Figure 1, the linearized equation of
motion of flap bending w(r,t) for a rotating elastic
blade with blade aerodynamic loads, F(r,t), can be
written as:

o2 o%*w 5 0%w
—(F]— 02—
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ow  Pw (B
VCmr— — —— =F
+ mre o /T mrdr (r,t)

(1)

where EI, m and  are the blade radial stiffness,
mass distribution and rotor speed, respectively. The
Galerkin technique and then the modal coordinate
transformation convert the governing flapping PDE
to the following ODEs, presented in blade rotating
coordinate system:
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where S,,(r), P.(t) and A, are a series of mode shapes,
generalized coordinates and blade natural frequencies
in the blade rotating coordinate system.

As Figure 2 indicates, the hub bending moment
in the blade rotating coordinated system, Shahmiri and
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Figure 1. Schematics of out of plane bending of a flexible
blade
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Figure 2. Schematics of a hinge offset model for the blade
flapping motion.

Saghafi [10], can be obtained as:

M(r=0,t) = /ER F(r,t)rdr

fo mrS,dr
; 0 mSzdr/n F(r,t)S, dr
00 R
Y (2 1P, / mS,dr (4)
n=1 0

Equation (4) with the first flapping mode shape
assumption,n = 1, can be written as:

eR " omrS,d
M(T:O7t):/ F(’I‘,t) T—ifoRmT ! TSl
0 J, mSidr

R
+ Qz()\f — ].)Pl /0 mSydr (5)

The main idea for considering the first flap mode is
to prevent cancellation of the first two terms in Eq.
(5) and also to avoid meaningless expressions for hub
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moments. Equation (5) with the other representation

can be changed into:
R
l)ﬂ—i-eR/ F(r,t)dr
eR

+eR /0 - F(r,t)dr (6)

where ((Pp), is the value of flapping angle relative
to hinge )\Ig()\]) is the flap frequency ratio and

I = fR (r — eR)%dr is the blade moment of inertia.
Equation (6) is obtained on the basis of a significant
likeness between the first elastic flap mode shape of
hingeless and articulated rotors through the following
definitions: Sy(r) = 0 when 0 < r < eR and Si(r) =
};(Eii) for eR < r < R. This equation enables us
to calculate the hub moments for both types of rotor
configurations straightly. The relation for the blade
natural frequency ratio is readily obtained as:

) K eRM R
=142 oM :/
v +%92+ I S

M(r=0,t) = Q*I;(\3 —

m(r — eR)dr

(7)

Equation (7) is, in fact, a fundamental relation-

ship for the natural frequency, providing thorough

understanding of dynamic behavior of the main rotor

blade. Because of the prominent status of rolling and

pitching moments on the main rotor dynamic behavior,
we can show that:

L=—Msiny
M = —M cos (8)

Equation (8) is another representation of the
hub moments in the stationary blade shaft coordinate
system. It should be noted that a principal step for
the extraction of response derivations in an explicit
style is strongly correlated to the hub moments in the
blade shaft coordinate system. Since the moments are a
function of aerodynamic loads, they must be elaborated
with high fidelity. As mentioned in the introduction
of this paper, to avoid a multidisciplinary approach,
resulting in the most complexity of understandings, our
trade off study has led to addition of a quasi-steady
aerodynamic model. The choice of the quasi-steady
aerodynamic model leads to the following formulations:
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where

R
Mg :/ mdr
eR

4
_ pagcR (1)

Is
where p and ¢ are the fuselage angular velocities in
the body-fixed coordinate system, ;o and (15 are
longitudinal and lateral tip path plane (TPP) tilt an-
gles, 61¢ and 6,5 are the lateral and longitudinal cyclic
pitch, and ~ is the blade Lock number, non-dimensional
parameter, which gives the ratio of aerodynamic forces
to inertia forces acting on the blade.

MAIN ROTOR FLAPPING MOTION
DESCRIPTIONS

In this section, the purpose is to present the blade
flapping equation of motion. The flapping equation
can tell us a great deal about the behavior of a rotor
response to aerodynamic loads. The aerodynamic loads
are obtained through some modifications, applied to
unsteady aerodynamic formulations of Saghafi et.al
[11]. The major modification is to drop the time vary-
ing terms due to blade pitching and plunging motion.
Moreover, it consists of employing the uniformed inflow
concepts instead of finite state wake formulations,
describing the unsteady shed wake and trailing vortices.
These assumptions cause the generation of the flapping
expression through the simplified structure as:

11 eRM / : /
B"+ A58 = (1+ =7 =5)(0' = 20)sint + (¢’ +2p) cos

1
+ 4n5/ (u26 + urup)(r — e)dr (12)

where (" (= d?B/dy?) is the flapping acceleration,
P, ¢'(= 9q/0v¢) and ng(= ~/8). Transformation of
the velocity vector from body-fixed coordinate system
into the blade rotating coordinate system leads to the
normalized velocity components in the blade rotating
coordinate system as:

up =r(1+ pp) + psing
up =z — Ao — pfcosy +7(G— M) —(r—e)f (13)

where ' (= df/dy) is the flapping velocity, p and ¢
are the angular velocities of fuselage in blade rotating
coordinate system, p is the main rotor advanced ratio,
and Ao, A1 are the components of the main rotor inflow
velocity, Shahmiri [12].

A =X+ A(Y)r (14)
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The blade pitch equation is assumed to be in the
following form:

0 =06y+60,ccosy+05siny (15)

Furthermore, the quasi-steady solution of equation
(12) is also assumed to be 8 = [y + Piccosy +
(15 sin® in which the fy is called blade coning angle.
These assumptions associated with harmonic balance
approach implementation certainly lead to the blade
flapping angles.

Bo b
Bic | =[A7'B] | bic | + A7 C] [uz — o]
Bis O1s
1 q
A [D) [ p} (16)

where the elements of matrices are corresponded to:
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0 20u(1/3 — ¢/2)
1—4/36 2(1+€RM5/I/5)’I75
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(20)

The examination of the sensitivity of the flapping
angles to pilot inputs and to main rotor shaft motions
(in hover case) leads to the cross-coupled (indirect) and
direct control derivatives as:

2 _
o8 _ oms _ (M 1)17 L4, (21)
e s ds " 3
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Opc _ Obs _ mg (. 8 4
s~ o~ ds 3¢ 1 3¢ (22)

Moreover, the cross-coupled and direct damping deriva-
tives can subsequently be written as:

e _oms (M- 1)n (1 _ ée>
s 3

Jdq dp dg
2 8 RM
+ﬂ(1——e> <1+e ") (23)
dg 3 Is

where

dg = nj <S§, + <1 - ge)2> (25)

In Eq. (25), Sg = (A‘:L;]) is the stiffness number,
non-dimensional parameter, describing the ratio of hub
stiffness to the aerodynamic moments. Finally, the hub
moment derivatives in the shaft coordinate system are

calculated as:
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and the rolling moment is corresponded to:
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Since the hub moment derivatives play a significant
role in predicting of rotor dynamic responses, the next
section is focused on the examination of sensitivity of
responses through some drawings.
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Figure 3. Variation of direct and cross coupled control
derivatives in hover.
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Figure 4. Variation of direct damping derivatives in hover.

RESULTS
This section deals with the variations of control and
damping derivatives in relation to the Lock number,
stiffness number, hinge offset and advance ratios.
Figures 3 through 5 show the flapping derivatives,
(equations 21 to 24 versus the stiffness number). In
these figures, the value of the stiffness number is shown
up to one. It should be noted that a maximum
realistic value for hingeless rotors with heavy blades
(i.e. v = 4) is about 0.3. The control derivatives in

| —=-cp=0.08 o= |

dfble ip = -0bls dg

0 0.2 0.4 0.6 0.5 1
L1

Figure 5. Variation of cross coupled damping derivatives
in hover.
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Figure 3 for all three kinds of flapping hinge positions
show that the direct control response, 931¢/d61s, is
approximately constant up to the maximum realistic
value of hub stiffness. This means that both articulated
and hingeless rotors flap up with the same amount
of a maximum realistic stiffness number. As can be
seen, the location of hinge has a small effect on the
direct control derivative. Furthermore, this plot shows
that the cross-coupled control, d31¢ /98¢, is strongly
dependent on the stiffness number. When the rotor has
no hinge offset, the cross-coupled control is about 30%
of the direct control derivative at the stiffness number
0.3. The hinge offset essentially leads to much more
differences between cross-coupled and direct control
derivatives. In the case of 12% hinge offset, the
difference reaches to 44%. When this level of changing
transfers to the fuselage, the rolling and pitching
motions are significantly coupled. This is the main
problem, which appeared during the design of flight
control system for hingeless and articulated rotors. For
a teetering main rotor, the coupling problem dose not
make sense. The flap damping derivatives, equations
23 and 24, are graphically drawn in Figures 4 and 5.

Figure 4 shows that the direct damping derivative,
9B1c/dq, is approximately independent of the stiffness
number up to 0.3, while the cross-coupled damping
term, 931 /0p, changes linearly with stiffness. It also
changes its sign at the high value of the Lock number.
According to Figure 5, for heavy blades, v = 0.4, the
direct damping derivative at zero stiffness number is
approximately four times larger than the cross-coupled
term, whereas for lighter blades, v = 0.8, the value of
direct damping is predicted to be two times larger than
the cross-coupled term. Consequently, lighter blades
lead to less cross-coupling response for articulated and
hingeless helicopter rotors. Additionally, the difference
will be slightly larger when the hinge offset applies.
The rather complex behavior is due to terms in the
right hand side of the flapping equation, equation
12, composed of gyroscopic and aerodynamic effects
combination.

The most fundamental rotor behavior relies on
pitching and rolling moment derivatives due to cyclic
pitch input. The characteristics of these derivatives
versus the hinge offset and spring rate, eRMg/Ig,
for a typical frequency ratio )\% = 1.2 are shown for
hover and forward flight at 4 = 0.2. It is noted
that the variation of blade mass moment of inertia
and the hinge offset leads to variation of the Lock
number as Ig = (Ig)e=o(1 — 2eR(Mg/I5)e—0) and v =
Ye=0/(1 — 2eR(Mgp/1s)e=p). Hence, in all the coming
figures, when the blade model transfers from center
spring, eRMgz/Is = 0, to 12% hinge offset model, the
Lock number will be increased as much as 40 %.

The comparison of direct damping dM/dq and
direct control derivatives dM /96,5 in hover, Figures

F. Shahmiri

6 and 7, shows a small influence of hinge offset on
the main rotor direct response. Consequently, it
is found out that the main rotor direct response is
independent of the hinge offset and spring rate values.

As Figure 7 shows, the cross-coupled derivatives,
especially, 9M /98¢, rely strongly on the combination
of hub stiffness and the hinge offset. As the Lock
number increases, M /06 ¢ predicts opposite sign,
because in the present model, the stiffness number
changes with hinge offset variation. If the stiffness
number is assumed to be constant, it essentially makes
a large value of OM/96,c that changes the sign of
response. As it can be seen in Figure 7, the direct
control derivative, IM /90,5, reaches a 40% difference
when the value of hinge offset varies from 0 to 12%.
Similar results in the derivatives are predicated in
Figures 8 and 9 at forward flight when the advance
ratio is 0.2. Furthermore, the results in Figures 10 and
11 show that the cross-coupled derivatives, dL/dq and
OL/00: 5, are significantly dependent on hinge offset at
high Lock number values. The fundamental behavior

| e=00%

dfile. dp = -ibls. dq

L] 0.2 0.4 0.6 0.5 1
s

Figure 6. Pitch damping derivatives variation in hover.
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Figure 8. Cross-coupled and direct pitch damping deriva-
tive variation in forward flight.
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Figure 9. Cross-coupled and direct pitch control derivative
variation in forward flight.

of hingeless rotor can be predicted with the simple
expressions for the dimensionless control derivatives in
hover, obtained by substituting e = 0 in equations 23
and 24:

JL 1 Sg
= _ 28
d001¢ 16 <1+Sé) ( )

and

oM _ 1< S2 ) (29)

0, 16 1452

Since the control derivatives are symmetric in hover,
only the response derivatives for lateral cyclic pitch
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Figure 10. Cross-coupled and direct roll control derivative
variation in forward flight.
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Figure 11. Cross-coupled and direct roll damping deriva-
tive variation in forward flight.

are considered. As the above equations indicate, the
control derivatives are only determined by the stiffness
number, which is a function of flap frequency and the
Lock number.

The parametric variation of the pitch and roll
derivatives as a function of stiffness number takes
the form of a semi-circle tangent to the origin with
a diameter of 0.06. As Figure 12 shows, the phase
between the pitch and roll derivatives ranges from 0
to 90°as stiffness number varies from 8 to zero. As
can be seen from the figure, the phase angle of the
classical articulated rotor without hinge offset, i.e.,
A3 =1 and S5 = 0, is 90° , whereas for a typical
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Figure 12. Hub moment derivatives in hover and forward
flight for v = 8.

hingeless rotor with )\% = 1.15 and Sz = 0.3 the
phase angle is about 73.6°. Any phase angle not
equal to 0 or 90 introduces pitch-roll cross-coupling of
the response derivatives, and the amount of coupling
depends on the particular configuration parameters.
As can be found out from Figure 12, the magnitude
of the hub moment response to cyclic pitch in hover
is given by S5/(16/(1 + S3)). An increase in rotor
flap frequency produces opposite effects in these two
components of the hub moment expression. As flap
frequency increases, the spring restraint is increased,
but the blade deflection is reduced. For low values
of flap frequency, typical of most hingeless rotors, the
effect of elastic restraint term is most important and
the cyclic blade deflection is slightly reduced. For
the limiting case of the classical articulated rotor, the
flapping amplitude is maximum, but the hub moment is
zero. As flaping frequency increases above one, the hub
moment increases nearly in proportion to stiffness num-
ber until the flapping amplitude disappears. For high
values of flap frequency, the opposing contributions
cancel one another and the hub moment magnitude
approaches a constant value of 0.06 as flap frequency
and stiffness approach infinity. This is the limiting
case of a completely rigid rotor blade, where the blade
tangential velocity is independent of the advance ratio.

Figure 12 shows the variation of magnitude and
phase angle for different values of the advance ratio.
Finally, a comparison with the full modal program,
Shahmiri [13], shows that the model best approximates
the true elastic behavior. The program outputs blade
deflections, hub loads and moment distributions on
the coupled flap, lag and torsion modes where the
blade is segmented into five finite elements within the
eleventh degrees of freedom. Table 1 summarizes the

Table 1. Comparison of differences between full modal and
present model.

Control Derivatives Full Modal Presented Research
Approach
OL/d61¢c -0.12 -0.113
OL/061s -0.025 -0.023

F. Shahmiri

hub moments A% = 1.2 where the Lock number is about,
9.

The differences are small, less than 10 percent,
for both direct and cross-coupled derivatives, indicating
that the center spring model gives a better approxima-
tion.

CONCLUSIONS

A practical implementation of the sensitivity analysis
has been presented through the solution of main rotor
flapping PDE. The explicit formulation provides effec-
tive evidences in control and damping predictions of
hingeless and articulated rotor helicopters. This work
is essentially considered as an intermediate method
between the traditional center spring and the more ad-
vanced comprehensive implicit formulation, Shahmiri
[13]. The main superiority of the presented formulation
among the other comprehensive codes is due to the
explicit structure for the prediction of response inter-
actions. On the other hand, the major privilege of the
modeling is that the main rotor response interactions
are interpreted in accordance with physical system
parameters such as stiffness number, frequency ratio,
hinge offset and the blade Lock number. This cannot
be easily clarified in case of establishing intricate
methods, including multivariate implicite parameters.
The simplest dynamic behavior is evident in the control
derivatives in hover, depending only on the stiffness
number for the case of rigid blades without hinge
offset. In this case, the magnitude and phase of the
response to cyclic pitch vary from 0 to 0.06 and 90°
to 0°, respectively, as the stiffness number changes
from zero to infinity. The results show that hingeless
rotors flap up the same amount as articulated rotors,
and the cross-coupled derivative is about 30% of direct
derivative at the stiffness number 0.3. Consequently,
fuselage pitch-roll coupling phenomenon is a serious
problem in design of a flight control system for hingeless
rotor helicopters. Since direct flap damping is essen-
tially independent of hub stiffness or main rotor hub
configuration, the articulated and hingeless rotors both
have the same dynamic behavior. For heavy blades,
the ratio of cross- coupled to direct damping response
is about 47%, whereas for the case of light blades
this value changes into 36% at the stiffness number
0.3. This means that with the lower weight of main
rotor blades, the pitch-roll coupling as a long-standing
problem effectively decreases.
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