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In this following paper� the e�ects of a choked jet exhausted from the base
of a non�lifting body on its total and base drags at sub�sonic and transonic
regimes have been numerically investigated� Having surveyed the results of
some turbulence models and after comparing with experimental results� an
appropriate turbulence model� i�e� SST K��� has been chosen and this model
has been used in the subsequent analysis� The analysis has been conducted in the
free stream Mach number range of ����Ma����� free stream static temperature
of 	��K� free stream turbulence intensity 
Tu� of � percent and jet stream
turbulence intensity 
Tu� of 
� percent� The results showed that� despite of
the general supposition among the aerodynamicists� the presence of jet would
impose a critical magnitude for the base drag and the total drag as a function
of Aj�Ab ratios and free stream Mach numbers� in other words� we have shown
that any increase in the jet area or in free stream Mach number� under most
conditions decreases the base drag and the total drag of the body and increases
them under some conditions�

NOMENCLATURE

Ab Base Area of the Non�Lifting Body
��ABase�

Aj Jet Area Exhausted from the Base of
the Non�Lifting Body ��AJet�

cp Thermal capacity at constant pressure

E Total energy h� �p��� � �U����

FDb Base Drag Force of the Projectile

FDs Surface Drag Force of the Projectile

FDtotal Total Drag Force of the Projectile

h Sensible enthalpy

K Reynolds average of Turbulent kinetic
energy

k Thermal conductivity

p Local static pressure
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Prt Turbulent prandtl number

R Gas Constant� Ru�M

r Radial coordinate in cylindrical system
of coordinates

S Absolute value of strain rate
��Sij Sij�

���

Sij Strain rate tensor
	�
��ui��xj � �uj��xi�

T Local static temperature

Tu Turbulence intensity� �		��K�������U

U Local velocity

ui Velocity component in xi direction

u�

i Fluctuating velocity component in xi
direction

xi Cartesian coordinate component in ith

direction

y Distance to nearest wall

y� Distance in wall coordinates� �y����

� Molecular viscosity
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�t Eddy viscosity

�� Friction velocity

� Density

� Wall shear stress

�ij Deviatoric Tensor

� Turbulence dissipation rate

� Turbulence frequency

INTRODUCTION

One of the important issues in the design of an
axisymmetric projectile is to keep its aerodynamic drag
as small as possible� The total drag of an axisymmetric
projectile consists of three drag components� the
pressure drag or the wave drag �excluding the base��
the viscous drag� and the base drag� The base drag
component is often a large part of the total drag and
can be as much as �	
 or more than the total drag of
a jet�free projectile within a compressible regime� Of
all these three components of drag� the most di�cult
one to predict is the base drag� The base drag depends
on the pressure acting on the base� Therefore it is
necessary to predict the base pressure as accurately
as possible� Figure 
 is a schematic diagram showing
the important features of high�subsonic base �ow with
choked base bleed� The approaching subsonic turbulent
boundary layer separates at the base corner� and the
free shear layer region is formed in the wake� After
separating the �ow at the base corner� it is followed by
the recirculation zone downstream of the base� which
realigns the �ow� The �ow then redevelops in the trail�
ing wake� In the absence of base bleed� a low�pressure
region is formed immediately downstream of the base�
which is characterized by a low�speed recirculating �ow
region� Interaction between this recirculating region
and the inviscid external �ow occurs through the free
shear mixing region� This mixing region is the point
where turbulence plays an important role� Injection of
choked �ow into the base region displaces the entire
recirculation region downstream into the wake� The
bleed �ow results in a change of the base pressure as
well as a change in the base drag�

The drag behavior due to base bleed at high�
subsonic� transonic and supersonic speeds is of practi�
cal importance� The e�ect of base bleed or mass injec�
tion has been studied experimentally and numerically
over the past four decades� These studies involved cold
and hot gas injection into cylindrical and boat�tailed
after�bodies and clearly showed the e�ectiveness of base
bleed on the base pressure� Most of these experimental
and numerical investigations were rather limited in
nature and lacked measurements of the detailed base
pressure distribution and near�wake �ow��eld such as
mean �ow and turbulence quantities� Such detailed
data have been made available recently for supersonic

�ow over a cylindrical after�body with base bleed� This
set of experimental data not only provides insight into
the details of the �uid dynamic interactions in the near
wake but also serves as a benchmark for validation
of computational results� This paper describes the
numerical investigation of the choked bleed jet e�ects
for NASA�s experimental model which was conducted
in the 
��	�s without any base bleed� In the following
sections� we investigate the critical magnitude of Aj�Ab

ratios to have the maximum base and maximum total
drag for the mentioned body in di�erent magnitude
of free stream Mach number at high�subsonic and
transonic free stream regimes�

REVIEW OF PREVIOUS WORKS

Over the past three�decades� the ability to compute
the base �ow region and it�s interaction with other
far��eld characteristics has advanced� Sahu� Nietubicz
and Steger �Ref� 
� examined projectile base �ow
with and without base �ow injection using Navier�
Stokes computations� Sahu �Ref� ���� performed
further calculations of supersonic �ow over a missile
aft�body containing an exhaust jet and examined the
transonic critical aerodynamic behavior� Bartelson and
Linde �Ref� �� proposed a functional relation between
the Mach number� the ambient atmospheric pressure
and the drag coe�cient of a base bleed projectile�
Ding� Liu and Chen �Ref� �� have presented the
experimental research results of the drag reduction rate
of the base bleed of solid fuel�rich propellent column
at subsonic speeds� Fu and Liang �Ref� �� have
numerically investigated a drag reduction method�
passive control of shock�boundary layer interaction�
which has been applied to the boattail portion of
a secant�ogive�cylinder�boattail projectile in turbulent
transonic �ows� Sahu and Heavey �Ref� �� compared
the results of their computational study to experimen�
tal data and found the standard k�� turbulence model
performed better in the near wake region than did the
algebraic model� Viswanath �Ref� �� investigated the
problem of turbulent base �ows and the drag associated
with it� He conducted a review of the developments
that have taken place on the use of passive techniques
or devices for axi�symmetric base and net after�body
drag reduction in the absence of jet �ow at the base�
Kaurinkoski �Ref� �� has implemented an eddy breakup
model for chemical reactions to an existing multi�block
Navier�Stokes solver� which has then been used to
solve the �ow past a supersonic long�range base�bleed
projectile� Lee and Kim �Ref� 
	� have examined the
minimization of base drag using mass bleed control in
considering of various base to ori�ce exit area ratios for
a body of revolution in the Mach ���� free�stream�

Tanner �Ref� 

� developed a theory to describe
the loss of momentum due to the shear stresses in the
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Figure �� A chematic representation of a high�subsonic base �ow with choked mass bleed�

Figure �� A schematic representation of the non�lifting body and it�s dimensions�

near�wake in an incompressible two�dimensional steady
base �ow�

OBJECTIVE OF THE CURRENT PAPER

The overall objective of the current e�ort is the numeri�
cal investigation of the critical drag of an axisymmetric
projectile with choked bleed jet� at which the maximum
base drag and the corresponding maximum total drag
have been occurred as a function of Ajet � Abase ratios
and also as a function of free stream Mach numbers at
high�subsonic and transonic regimes�

PROBLEM DESCRIPTION AND

SOLUTION STRATEGY

The dimensions of the investigated model are shown
in Figure 	� The standard model is of particular
interest in the study of base drag analysis among the
aerodynamic research centers and this model has been
considered as a benchmark for verifying the results
and calibrations of the equipment of any subsonic and
transonic wind tunnel and also as a benchmark model
for verifying the results and calibrations of the closure�
constants of any under�development turbulence model�

In this following paper� a home�made two�
dimensional CFD code has been used
 of particular
interest is the careful characterization of the limited
turbulence models employed in this CFD code�

According to Mayle criterion �Ref� �	
� for suf�
�cient high speed �ows� since natural transition from
laminar to turbulent regime would be delayed to down�

stream of the region of accelerating �ow �downstream
of nose�body interface�� the full turbulent assumption
around the nose and initial part of the cylindrical body
can be neglected and the �ow around this region can
be treated as a laminar �ow� The �ow around the
rest of the projectile is considered as a fully turbulent
one� To ensure that we have used a reliable CFD
method and also a reliable turbulence model� the CFD
results of this projectile for jet�free conditions have
been compared with NASA�s experimental wind tunnel
test of the same model at various free stream Mach
numbers� These experiments have been conducted
in the Langley research center in ���� �Ref� ��
�The
inconsiderable errors of the following numerical results
in comparison with NASA�s available experimental
data for the same model and the same �ow condition
indicate the authenticity of the zonal laminar �ow
assumption around the nose and also the exactness of
the numerical methods which have been used�

After selecting an appropriate and accurate tur�
bulence model for jet�free conditions� the analysis
for jet e�ects has been conducted using the same
turbulence model� Since both base��ow and jet��ow
can be categorized as shear layer �ows� we anticipate
similar accuracy in jet��ow condition�

GRID STUDY AND BOUNDARY

CONDITIONS

In this present section� we will �rst verify the code and
generated grid by performing grid convergence study
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Figure �� Structured grid generated around the non�lifting
body �above� and multi�layer grid re�nement used around
the model to capture sharp gradients of �ow structure into
the boundary layer �Bottom��

and comparing it with experimental data for total drag
coe�cient� Considering the available experimental
results of the model �Ref� ���� the numerical analysis
of the model had to be done in zero angle	of	attack�
Hence� we had to make a two	dimensional axisym	
metric computational domain around the model� A
schematic representation of the domain and generated
structured grid is shown in Figure ��

At the 
uid	solid boundary� non	slip boundary
condition has been used� Most computational results
of the present study are obtained using grid resolution
of about ������� grid points to save the computing
time and without signi
cant loss of accuracy� It will be
shown that the total number of ������� elements has
required accuracy to have a grid independent solution�

Non	re
ection Far	
eld boundary conditions
�B�C�� have been imposed at the inlet and outlet of the
computational domain� The boundary condition of the
exhausted jet has been chosen as Pressure Inlet� The
Mach number and total temperature of the exhausted
jet has been set to � and ���K respectively� The
Mach number of � represents the choked condition�
It should be noted that the turbulence intensity �Tu�
and turbulence length scale for Far	
eld condition have
been set to �� and � mm respectively� Reynolds
number for all the following results has been 
xed at
��� million which is the same magnitude as NASA�s

ow condition for available data�

Since transition from laminar to turbulent 
ow
can account for signi
cant changes in such important
parameters as skin friction� heat transfer� and wake
structure� it is important that the transition location
�transition from laminar regime to turbulent one� be

accurately determined� In this numerical analysis�
due to relatively low free stream turbulence level and
according to mayle criterion for natural transition in	
ception �Ref� ���� the zone around the nose of the model
has been treated as a laminar zone� At relatively high
speed accelerating 
ows� a comprehensive investigation
of a large number of transition data �Ref� ��� ��� ��� has
shown that the choice of the virtual origin of transition
at the point of nose	body interface could give the most
consistent results�

GOVERNING EQUATIONS

The continuity equation and Reynolds	averaged
Navier	Stokes equations for an axisymmetric domain
in a cylindrical system of coordinates are as follows�
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in which uz represents the swirl velocity� The energy
transport equation �in Cartesian system of coordinates�
and state equation which relates the local static pres	
sure to local density and local static temperature are
as follows�

� ��E�

�t
�

� �ui ��E � p��

�xi

�
�

�xj

��
k �

cp�t

Prt

�
�T

�xj
� ui ��ij�eff

�
���

where

p � �RT ���

In equation ���� k is the thermal conductivity coe�	
cient� E is the total energy and ��ij�eff is the deviatoric
tensor and is de
ned as follows�

��ij�eff � �eff

�
�uj

�xi
�

�ui

�xj

�
�

�

�
�eff

�ui

�xi
�ij ���

A complete time	dependent solution of the exact
Navier	Stokes equations for high	Reynolds	number tur	
bulent 
ows in complex geometries is unlikely to be
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attainable for some time to come� Hence� Reynolds
averaging method can be employed to transform the
Navier�Stokes equations in such a way that the small�
scale turbulent �uctuations do not have to be directly
simulated� This method introduces additional terms
in the governing equations that need to be modeled
in order to achieve �closure�� 	Closure implies that
there are a su
cient number of equations for all the
unknowns��

The Reynolds�averaged Navier�Stokes 	RANS�
equations represent transport equations for the mean
�ow quantities only� with all the scales of the turbu�
lence being modeled� The approach of permitting a
solution for the mean �ow variables greatly reduces the
computational e�ort� If the mean �ow is steady� the
governing equations will not contain time derivatives
and a steady�state solution can be obtained economi�
cally�

REYNOLDS �ENSEMBLE� AVERAGING
In Reynolds averaging� the solution variables in the
instantaneous 	exact� Navier�Stokes equations are de�
composed into the mean 	ensemble averaged or time�
averaged� and �uctuating components� For velocity
components


ui � �u� u�

i 	��

where �u and u� are the mean and �uctuating velocity
components respectively� Likewise� for pressure and
other scalar quantities


� � ��� �� 	��

where � denotes a scalar such as pressure� energy�
or species concentration� Substituting expressions of
this form for the �ow variables into the instantaneous
Continuity� momentum 	and energy� equations and
taking a time 	or ensemble� average 	and dropping the
overbar on the mean velocity� �u� yields the ensemble�
averaged momentum 	and energy� equations� They can
be written 	in Cartesian tensor form for instance� as
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As we see� these equations have the same general
form as the instantaneous Navier�Stokes equations�
with the velocities and other solution variables now
representing ensemble�averaged 	or time�averaged� val�
ues� Additional terms which appeared in the R�H�S� of
equation 	�� represent the e�ects of turbulence�

SOLUTION PROCEDURE
The governing equations have been solved using segre�
gated method and the pressure�velocity coupling has
been treated as SIMPLEC method� To treat the
Reynolds stress terms� ��u�

j � which appeared in the
R�H�S� of the equation 	��� we have used eddy�viscosity
turbulence models� According to authentic references
and due to its noticeable capabilities in viscous �ows�
the SST K�� turbulence model has been chosen to cap�
ture the turbulent quantities with acceptable accuracy
particularly in transonic regimes��Ref� ��� ��� ����

Boussinesq Approximation
Every turbulence modeling requires that the Reynolds
stress terms� ��u�

j � be modeled in an appropriate
method� One of the most general methods of modeling
this stress term is using Boussinesq approximation in
which the magnitude of ��u�

j is related to velocity gra�
dients within the computational domain� In Cartesian
system of coordinates� we have the following relation
between Reynolds stress and available gradients of
velocities
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in which K represents the turbulent kinetic energy�
K � u�

iu
�

i� To compute the turbulent viscosity� �t�
or equivalently �t � �t	�� we need to use appropriate
turbulence models�

SST K�� model Formulation
In the following paragraphs� we consider the details of
SST K�� model which is a powerful one to capture the
�ow physics in both high Reynolds number region away
from the wall and low Reynolds number close to the
wall� This model also has some vantages over other
classic turbulence models� such as standard K�
 and
standard K���

The SST turbulence model 	Menter� Ref� ��� has
been used to compute the turbulent viscosity 	�t� that
is present in the momentum and energy equations in
order to model the e�ects of turbulence on the �ow
correctly� The SST model combines the advantages of
the K�� in high Reynolds number �ow 	away from solid
surfaces� and the K�� model 	close to solid surfaces�
to achieve an optimal model formulation for a wide
range of applications 	Menter� ������ For this reason�
a blending function F� is introduced which is equal
to one near the solid surface and equal to zero for the
�ow domain away from the wall� It activates the K��
model in the near wall region and the K � 
 model for
the rest of the �ow� By this approach the attractive
near�wall performance of the K � � model can be
used without the potential errors resulting from the
free stream sensitivity of that model� In addition� the
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SST model also features a modi�cation of the de�nition
of the eddy viscosity� which can be interpreted as a
variable c�� where c� in the K � � model is constant�
This modi�cation is required to accurately capture
the onset of separation under pressure gradients� The
modeled equations for the turbulent kinetic energy� K�
and the turbulence frequency � in Cartesian system of
coordinate are as follows�
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in which� �K and �� represent e�ective di�usivity of
K and � respectively� The production and destruction
terms for the turbulence kinetic energy equation are
de�ned as�
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and the blending function F� is calculated from�
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The turbulent viscosity is then calculated by�
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with the constant a� � ���
 and the blending function
F� obtained from�
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It should be noted that� for laminar zone around the
nose� we have set 
t � 
� The coe�cients� 
 of the
model� are functions of F�� 
 � F�
���
�F�

� where


�� 
� stand for the coe�cients of the K � � and the
K � � model respectively�

	K� � 
�
��� 	�� � ���� � � ���
�

�� � ������� �� � ������ �� � ����� c� � 
�

	K� � 
��� 	�� � 
�
��� � � ���
�

�� � ������� �� � ������� �� � ����

Now� we have to investigate the authenticity of
the used numerical methods and turbulence models
and multi�zone domain decomposition technique� i�e�
implementing laminar zone around the nose and full
turbulent zones for the rest of the domain on the
accuracy of the results in a jet�free condition �
��
percent base drag
� To this end� the results have been
compared with NASA�s experimental study which was
conducted at Mach number ranges from ��� to ��� and
Reynolds number of ��� million �Ref� 
���

Check for convergence

There are no universal metrics for judging convergence�
Residual de�nitions useful for one class of problems
are sometimes misleading for other classes of problems�
Therefore� it is a good idea to judge convergence not
only by examining residual levels� but also by monitor�
ing relevant integrated quantities �such as drag forces

Figure �� Grid independency check for di�erent element

numbers at di�erent free stream Mach numbers�

Figure �� y
� distribution over the nose and cylindrical

part of the non�lifting body�
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exerted over some parts of the body� and checking for
mass and energy balances�

The three methods to check for convergence are�

� Monitoring the residuals�
Convergence will occur when the convergence

criterion for each variable has been reached� The
default criterion is that each residual will be reduced
to a value of less than ����	 except the energy
residual	 for which the default criterion is �����

� Solution no longer changes with further iterations�
Sometimes the residuals may not fall below

the convergence criterion� However	 monitoring the
representative 
ow variables through iterations may
show that the residuals have stagnated and do not
change with further iterations� This could also be
considered as convergence�

� Overall mass	 momentum	 energy and scalar bal�
ances are obtained�

One of the criteria of convergence is that the
net imbalance should be less than ���� of the net

ux through the domain�

We have used all of the above methods of convergence
check beside appropriate grid adaptation techniques

based on the converged results of previous coarse
grid level� to achieve the best and the most accurate
numerical solutions�

Grid convergence study and comparison

between experimental and numerical results

At the �rst step	 we had to prove the grid independency
of the solutions acquired using grid generated with
���	��� elements� It�s shown in Figure � that the
grid independency check of the solutions for di�erent
element numbers which was converged at di�erent free
stream Mach numbers� Also Figure � shows the density
and distribution of the cells which are enough to have
maximum wall y� of � for all the free stream Mach
number ranges� They are also in an acceptable range
for every turbulence model such as K�� SST which
doesn�t use wall functions� The comparison between
total drag from both wind tunnel and converged CFD
results is plotted in Figure �� it should be mentioned
that the experimental results had an error of� �����
in Mach number of ��� and ������ in Mach number of
����

Having considered a linear variation of errors for
other Mach numbers	 the hatched zone in Figure � is a
valid zone for total drag for every other Mach numbers
in subsonic and transonic regimes� As illustrated
in Figure �	 the numerical results have reasonable
accuracy in capturing and computing the overall drag
of the body in all of the Mach numbers�

To evaluate the accuracy of the numerical results
of the base drag and surface drag	 where the latter

Figure �� Comparison between numerical and experimen�
tal values of total drag coe�cient at various Mach numbers�

Figure �� Shock generated at the position of nose�
cylindrical body interface at Mach�����

includes nose and cylindrical body drag	 the related
coe�cients have been compared with experimental
results in tables ��� and ����

It should be noted that the relative errors in tables
��� and ��� have been computed without considering the
errors of measurements and calibrations� It�s obvious

Figure �� Contours of Pathlines for AJet�ABase ���	�
 at
Mach�����
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Table �� Comparison between numerical and experimental
results of the base drag Coef�� CDb�

Relative

Erorr ���
CDb �CFD� CDb �Experiment� Mach Number

���� 	��
� 	���� 	��

�	�� 	���� 	���� 	�


���� 	��
� 	��
� 	��

Table �� Comparison between numerical and experimental
results of the surface drag Coef�� CDs�

Relative

Erorr ���
CDs�CFD� CDs�Experiment� Mach Number


 	�	�� 	�	� 	��

� 	�	�� 	�	� 	�


��
 	��
� 	��� 	��

that after considering the errors of measurements and
calibrations� the values of errors in above tables would
be decreased substantially�

After these comparisons� we can use SST K��
model as a veri�ed turbulence model with acceptable
accuracy in capturing the shear layer �ows around the
projectile in both high�subsonic and transonic regimes�

According to the acquired results with acceptable
accuracy� we can now activate the jet exhausted from
the base of the body� and investigate the e�ect of
jet area over the base drag and total drag of the

Figure �� Drag force variation at di�erent ratios of
AJet�ABase � free stream Mach number�����

Figure ��� Drag force variation at di�erent ratios of
AJet�ABase � free stream Mach number���	�

mentioned body� Since both base��ow and jet��ow can
be categorized as shear layer �ows� we expect to have
similar accuracy in jet��ow CFD analysis�

The jet has a Mach number of 	� which is an
appropriate condition for choked �ow� and has a total
temperature of �
�K� The free stream turbulence and
the turbulence length scale have been set to � percent
and 	mm respectively�

Some contours of the converged results are shown
in Figures 
��� As can be seen in Figure 
� due
to �ow acceleration� shock has been generated at
the position of nose�cylindrical body interface at free
stream Mach number of ���� which is an indication of
transonic regime� Downstream of the shock� because
of the interaction between shock and boundary layer�
a local boundary layer separation had occurred which
disappeared at a short distance due to turbulent �ow
reattachment e�ect�

The results of the base drag and surface drag
for di�erent free stream Mach numbers and di�erent
values of AJet�ABase are plotted in Figures ��	� and
		� It can be seen that any increase in the jet area
not only necessarily decreases the base drag� but also
increases the base drag under some conditions� Also
what can be seen in Figure 	� is that the peak value of
the drag shifts toward lower values of AJet�ABase with
increasing free stream Mach number� Considering the

Figure ��� Drag force variation at di�erent ratios of
AJet�ABase � free stream Mach number���
�

Figure ��� Base drag force variation with AJet�ABase at
various free stream Mach numbers�
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peak values of drag and related values of AJet�ABase

is essential in aerodynamic design and optimization of
missiles� rockets and also in power�on projectiles� By
avoiding these peak values� one can increase the total
range of a missile� a rocket or a power�on projectile� In
other words� if anyone wants to increase the total range
of a power�on missile or rocket in the high�subsonic
and transonic regimes� the magnitude of the jet area
should be larger or smaller than these critical values of
AJet�ABase� These critical values are also a function
of Mach number� Considering these critical values
is vital in aerodynamical designs or and particularly
in optimum drag reduction of missiles� rockets and
power�on projectiles to avoid any increase in total mass
and also to avoid any increase in fuel �solid or liquid	
consumption�

CONCLUSION

Normally� we expect that after any increase in the jet
area exhausted from the base region of a high�speed
projectile� the base drag should be decreased� But
we always have to consider the shear e
ects of the
exhausted jet on a large portion of �ow pattern around
the body� This jet would impose a shear velocity pro�le
on the �ow layers around the base region and this leads
to formation of a local suction �reduction in local static
pressure	 around the base region� The magnitude of
this suction is completely a function of the free stream
Mach number and mass �ow rate of the exhausted jet�
This suction could be so powerful that the base drag
of the body� instead of decreasing� would increase�

It
s shown in this paper that any increase in the
jet area� not only necessarily decreases the base drag�
but also increases it in some �uid �ow and geometrical
conditions� In this regard� we have shown that for
every free stream Mach number� we have a critical
magnitude for AJet�ABase in which the surface drag
and corresponding total drag are at maximum levels�
Also� it is shown that for high�subsonic and transonic
regimes� the peak value of the drag shifts toward lower
values of AJet�ABase with increasing free stream Mach
numbers�
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