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Numerical Simulation of Fluid Flow Past a Square
Cylinder Using a Lattice Boltzmann Method

S. Rowghani!, M. Mirzaei?, R. Kamali?

The method of Lattice Boltzmann Fquation (LBE) is a kinetic-based
approach for fluid flow computations. In the last decade, minimal kinetic
models, primarily the LBE, have met with significant success in the simulation
of complex hydrodynamic phenomena, ranging from slow flows in grossly
irreqular geometries to fully developed turbulence, to flow with dynamic phase
transitions. In the present work, a computer code based on the Lattice
Boltzmann Method (LBM) has been developed to show the capability of the
method for simulating fluid flows. The confined flow around a cylinder with
square cross-section mounted inside a plane channel (blockage ratio B=1/8)
was investigated in detail with the LBM. The largest Reynolds number chosen
was Re=300 based on the mazimum inflow velocity and the chord length of
the square cylinder. The LBE was built up on the basis the D2Q9 model and
the single relaxation time method called the lattice-BGK method. Both velocity
profiles and integral parameters such as drag coefficient and Strouhal number

were investigated.

NOMENCLATURE
f single particle mass distribution
function
£ particle velocity vector
U fluid velocity
P pressure
x spatial position vector
£ equilibrium distribution function
fo post-collision distribution function
A relaxation time
R gas constant
T gas temperature
v kinematic viscosity
€o discrete particle velocity in LBE model
We weighting factor
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fée‘” equilibrium distribution function in
discretized particle velocity space

flnea) none-equilibrium distribution function
in discretized particle velocity space

Cs speed of sound

ot time step

bx space step

T dimensionless relaxation time in LBGK

€ Knudsen number

INTRODUCTION

In the last 15 years or so, there has been rapid progress
in developing the method of the lattice Boltzmann
equation (LBE) for solving a variety of fluid dynamic
problems [1-6]. Historically, the LBE method was
developed from the method of Lattice Gas Automata
(LGA); see [7-11] for details on the LGA method.
Nevertheless, the LBE method can be better appre-
ciated by considering the Boltzmann equation directly.
Adopting the macroscopic method for computational
fluid dynamics (CFD), the macroscopic variables of
interest such as velocity, u, and pressure, p, are usually
obtained by solving the Navier—Stokes (NS) equations.
In the LBE approach, one solves the kinetic equation
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for the particle velocity distribution function f(x,¢&,t)
in which £ is the particle velocity vector, x is the spatial
position vector, and t is the time. A popular kinetic
model adopted in the literature is the single-relaxation-
time (SRT) approximation, the so-called Bhatnagar—
Gross Krook (BGK) model [12].

In contrast to the overwhelming number of pub-
lications on the flow past circular cylinders, the square
counterpart has not been investigated extensively, al-
though it plays a dominant role in many technical ap-
plications such as building aerodynamics. Depending
on the Reynolds number, different flow regimes can be
distinguished for a square cylinder[13]. At very small
Reynolds numbers (Re<1), viscous forces dominate the
flow. For this creeping flow, no separation takes place
at the surface of the cylinder. With increasing Re, the
flow separates first at the trailing edges of the cylinder
and a closed steady recirculation region consisting of
two symmetric vortices is observed behind the body.
The size of the recirculation region increases with an
increase in Re. When a critical Reynolds number
Recrit, is exceeded, the well-known von Karman vortex
street with periodic vortex shedding from the cylinder
can be detected in the wake. Different values of Re.,;,
exist in the literature. Based on experimental inves-
tigations, Okajima [14] found periodic vortex motion
at Re™70 leading to an upper limit of Re..;= 70. A
smaller value (Re.ri: = 54) was determined by Klekar
and Patankar [15] based on a stability analysis of the
flow. When the Reynolds number is further increased,
the flow separates at the leading edges of the cylinder.
The onset of this phenomenon is not clearly defined
in the literature; only a wide range of Re=100 to 150
is given ([13],[14]). In this Reynolds number range,
the flow past square cylinders can still be considered
as 2D. In contrast to the circular cylinder flow for
which Williamson [16] provides a Reynolds number
limit of Re~180 for the onset of 3D structures in the
wake, no such clear statement can be found for the
square counterpart. A rough hint is given by [13]
with Re=300. Therefore, this Reynolds number was
chosen as the upper limit of the present 2D laminar
simulations. Beyond this limit, 3D structures have to
be expected and subsequently transition to turbulence
takes place in the free shear layers. In comparison with
the free flow case, two new parameters have to be taken
into account: the inflow profile and the blockage ratio.
As shown by Davis et.al. [17], the vortex shedding
frequency depends strongly on the inflow profile. In the
experimental investigations by Shair et.al. [18] and [17],
non-negligible deviations between the velocity profiles
far upstream of the cylinder and the parabolic distri-
bution expected for fully developed laminar channel
flow were observed. Therefore, this aspect has to be
kept in mind for comparison between experimental
and numerical investigations which typically apply the
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theoretical velocity profile as inflow conditions. The
second parameter which plays a dominant role in the
confined cylinder flow is the blockage ratio of the
channel, defined as B = D/H where D is the diameter
of the cylinder and H is the channel height. It is
generally accepted that for a fixed Reynolds number,
an increasing blockage ratio leads to an increase in
the Strouhal number. This holds true for both cir-
cular and square cylinders, although the movement of
the separation points cannot be responsible for this
phenomenon for a sharp-edged body as assumed for
a round geometry. Davis et.al. [17] investigated the
confined flow past square cylinders for a wide range
of Re and two different blockage ratios (B = 1/6
and 1/4) experimentally and numerically. Depending
on the blockage ratio, a maximum Strouhal number
was observed at Re=Re;nq. =200 to 350. For higher
Re, the Strouhal number decreases again and reaches
an almost constant level. As mentioned above, non
-parabolic velocity profiles were measured upstream
of the cylinder. Because most numerical predictions
were based on these measured inflow profiles, a direct
comparison with the present study is possible only for
the additional cases in which a parabolic profile was
assumed. These computations were based on a finite-
volume code and non-equidistant coarse grids of 76 x
42 and 76x52 grid points. Two-dimensional numerical
simulations were also carried out by Mukhopadhyay
et.al. [19] for the Re range 90-1200, two blockage ratios
(B =1/8 and 1/4) and a parabolic inflow profile. With
respect to the Reynolds number of the corresponding
channel flow, the upper limit of Re in this investigation
seems to be highly questionable because a turbulent
flow in the channel has to be expected under these
conditions. For a blockage ratio B =1/5, Suzuki
et.al. [20] computed Strouhal numbers over a wide
Re range and found a maximum at Re=Re,,,, =150.
Liu et.al. [21] solved the three dimensional cylinder
in a channel using the LBM. A comparison of the
different data mentioned above shows a large array of
the results already for integral parameters such as the
Strouhal number. There is evidently a lack of reliable
experimental and numerical data for this flow case.
The objective of the present study was to yield
a contribution to close this gap. The results were
evaluated in detail based on velocity fields and integral
parameters and compared with previous numerical and
experimental studies. Therefore, besides the physics
of the flow past a square cylinder, the paper focuses
on the comparison of the accuracy of both methods.
Moreover, one of the main features of the present study
which makes it deferent from other similar works such
as the work done by Breuer et.al. [29], is implemen-
tation of boundary conditions specially at the outlet
of the channel. In fact, we tried various boundary
conditions and we found a proper condition on this
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boundary. Breuer et.al. [29] have used extrapolation
method to calculate the velocity components at the
outlet of the channel whereas in the present work
we concluded that a combination of the extrapolation
method and conservation of mass at this boundary
accelerate the convergence rate.

DESCRIPTION OF NUMERICAL METHOD
A popular kinetic model adopted in the literature is
the single-relaxation-time (SRT) approximation, the
so-called Bhatnagar Gross Krook (BGK) model [12]:

of _ L0

L vevp=-s- 1) (1)
where £(°) is the equilibrium distribution function (the
Maxwell-Boltzmann distribution function), and A is
the relaxation time. The corresponding viscosity is
v = ART in which R is the gas constant and T is the
gas temperature. To solve for f numerically, Eq. (1) is
first discretized in the velocity space using a finite set of
velocity vectors { £, } in the context of the conservation
laws [22,23]:

% — ,1 _ s(eq)
SV u = (fa FE) )

In the above equation, f,(z,t) = fo(2,&a,t) is the
distribution function associated with the ath discrete
velocity £, and féeq) is the corresponding equilibrium
distribution function in the discrete velocity space.
The nine-velocity square lattice model, which is often
referred to as the 2-D 9-velocity, D2Q9 model (Figure
1), has been widely and successfully used for simulating
two-dimensional (2-D) flows. In the D2Q9 model, e,
denotes the discrete velocity set, namely:

€y = 07

eq = c(cos((a — 1)w/4),sin(a — 1)7/4)),
fora=1,3,5,7,

ea = V2¢c(cos((a — 1)7/4),sin(a — 1)7/4)),
for a=2,4,6,8. (3)

where ¢ = é6x/6t, 6z and 6t are the lattice constant
and the time step size, respectively. The equilibrium
distribution for D2Q9 model is of the form

e 3 9 2 3
f,(y a) — pwe |1+ C—Qea.u + @(ea-u) - ﬁuu (4)

where w,, is the weighting factor given by:

4/9, a=0
we =<1/9, a=1,3,57 (5)
1/36, a=2,4,6,8
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In the discretized velocity space, the density and
momentum fluxes can be evaluated as:

8

8
p:Zfa:Zféeq) (6)
z=0

z=0

and

8 8
pU = Z eafa = Z eaféeq) (7)
rz=1

r=1

The speed of sound in this model is ¢, = c/x/ﬁ
[24] and the equation of state is that of an ideal gas,

p=p.c: (8)

Qian et.al. [24] also developed various models for 3-

D flows with f,(fQ) given in the same form as in Eq.
(4). Depending on the number of the lattice velocity
vectors used in these models, they are referred as
D3Q15, D3Q19, and D3Q27 models. Eq. (2) is called
the discrete velocity model (DVM). Numerically, it
can be solved using any standard, practical method
such as finite difference. In using finite difference
formulation, one needs to be careful about reducing the
numerical diffusion associated with the discretization of
the advection term and the stiffness of the differential
equation when A\<<1 is required for low viscosity flows.
In the LBE method, Eq. (2) is discretized in a very
special manner. The completely discretized equation,
with the time step 6t and space step dx = e,.0t, is:

falxi +endt,t+6t) — folxit)
= —% fal@ist) = fE (@i, t) (9)

where 7 = \/6t, and z; is a point in the discretized
physical space. Eq. (9), termed the LBE with BGK
approximation or LBGK model, is usually solved in
the following two steps:

4f4 1‘.‘! ‘lfz

Figure 1. A 2-D 9-velocity lattice (D2Q9) model.
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Collision step:

Folaist+80) = fule0) =~ [faloast) = J27(02,0)
(10a)

Streaming step :

fo(zi + eabt,t + 6t) = folas,t + 6t) (10D)

where f, represents the post-collision state. It needs
to be emphasized that with such a splitting in the
computational procedure, there is no need to store
both fo(zi,t+6t) and f,(z;,t) during the computation.
Information on one time level is sufficient for unsteady
flow simulations. In order to derive the NS equations
from LBE, the Chapman—Enskog expansion [25] is
used. In essence, it is a standard multi-scale expansion,
with time and space being rescaled as:

th =€t, ty =€, 3 =er,

o o ,o0 o0 0
0_.0 00 9 _ 98 1
o ‘on T o “om (11)

and the particle distribution function f,, expanded as:
fa= 0 +ef) + 5D+ 0(). (12)

In the incompressible flow limit, |u|/c? << 1 , the
conservation principles of mass and momentum yield:

Oy,
or. 0, (13)

Jug Oun B 1 dp

ot "oz~ powa

+0V2u,. (14)

The corresponding viscosity in the NS equation (14)
derived from Eq. (9) is [24]:

v=(1—1/2)c%t. (15)

The modification of viscosity (from v = X.c2 in Eq. (1))
corrects for the truncation error in the discretization
of Eq. (2) and formally makes the LBGK scheme a
second order method for solving incompressible flows
[26]. The positivity of the viscosity requires that 7 > &
in all LBE computations. It is noted that the pressure
p is obtained through an equation of state (Eq. (8)).
The collision step is completely local. The streaming
step involves no computation. Eq. (9) is explicit, easy
to implement, and straightforward to parallelize.
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DETAILS OF THE TEST CASE
Geometry of the computational domain and
grids
The 2D laminar flow around a square cylinder with
diameter D mounted centered inside a plane channel
(height H) was investigated (see Figure 2). The
blockage ratio was fixed at B = 1/8. In order to
reduce the influence of inflow and outflow boundary
conditions, the length of the channel was set to L/D =
50. The inflow length was fixed to I = L/4.

The LBA method allows the application of simple
orthogonal equidistant lattices/grids.  This lattice
type makes (semiautomatic) integration of arbitrary,
complex geometries very easy: single lattice nodes are
either occupied by an elementary obstacle or they are
free (marker and cell approach). The simulation was
carried out by three different grids, namely 500x80,
1000x 160 and 2000x320. The number of lattice nodes
on each side of the square cylinder varies between 10
and 40.

Boundary conditions

It is often argued that the so-called ‘bounce back’ wall
boundary conditions, which are also used in the present
implementation of the LBA scheme, are of first-order
accuracy, whereas the lattice-Boltzmann equation is of
second-order. However, recent investigations showed
that the error produced by the bounce back boundary
condition is sufficiently small if the relaxation parame-
ter w is close enough to 2 (Inamuro et.al. [27]), allowing
a precise knowledge of the wall position with zero flow
velocity.

Bounce back boundary condition is the most
efficient one for arbitrary, complex geometries, which
are most typical for the application of the LBM.

By the so-called bounce back scheme, we mean
that when a particle distribution streams to a wall

Figure 2.
domain.

Definition of the geometry and integration

in-state out-state in-state out-state

11!-5[&? ont-state

Figure 3. Bounce back scheme.
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node, the particle distribution scatters back to the node
it came from (Figure 3).

For a node near a boundary, some of its neigh-
boring nodes lie outside the flow domain. Therefore,
the distribution functions at these no-slip nodes are
not uniquely defined. The bounce back scheme is a
simple way to fix these unknown distributions on the
wall node.

In order to simulate a fully developed lami-
nar channel flow upstream of the square cylinder, a
parabolic velocity profile with a maximum velocity
Umax 18 prescribed at the channel inlet. This velocity
was chosen to be lower than 10% of the speed of
sound for the LBA simulations to avoid significant
compressibility effects which are known to increase
with the square of the Mach number. For the LBA,
the pressure at the inlet is extrapolated upstream,
and the equilibrium density distribution (Eq. (3)) was
computed from that pressure and the given velocity
and imposed at the first lattice column.

On the outlet, a fixed pressure is imposed in
terms of the equilibrium distribution function. For
this task, the velocity components are calculated based
on a combination of extrapolated downstream and
conservation of mass. This condition leads to higher
convergence rate in comparison to pure extrapolation
method.

RESULTS AND DISCUSSION
A Reynolds number range 0.5 < Re < 300 was inves-
tigated numerically, where Re is based on the cylinder
diameter D and the maximum flow velocity umax Of
the parabolic inflow profile. The following section
starts with a description of the different flow patterns
observed with increasing Re. The subsequent sections
present a detailed comparison of the computed results
based on velocity profiles at several positions in the flow
field. Furthermore, the computations are analyzed and
compared regarding integral flow parameters such as
Strouhal number and dimensionless force coefficients

(drag).

Flow pattern

Figure 4 shows computational results in the vicinity of
the cylinder by streamlines at four different Reynolds
numbers (Re=1, 30, 60, 200), each characterizing a
totally different flow regime.

At low Re=1, the creeping steady flow past the
square cylinder persists without separation (Figure
4(a)). The magnitude of viscous forces decreases with
increasing Re until a certain value, at which separation
of the laminar boundary layers occurs. In comparison
with the circular counterpart, for which a value of
Re=5 was found (Zdravkovich [28]), separation at the
trailing edges of the sharp-edged body can be observed
at lower Re. Above this limit, the wake comprises a
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fe) (d)

Figure 4. Streamlines around the square cylinder for
different Reynolds numbers (a) Re=1; (b) Re= 30; (c)
Re=60; (d) Re= 200.

1dy
Figure 5. Streaklines around the square cylinder for
different Reynolds numbers (a) Re=60; (b) Re=100; (c)
Re=200; (d) Re=300.

steady recirculation region of two symmetrically placed
vortices on each side of the wake, as shown in Figure
4(b) at Re=30, whose length grows as Re increases.
The same trend was observed for circular cylinders.
Owing to the sharp corners, the separation point is
fixed at the trailing edge and the flow is attached at the
side walls. The steady, elongated and closed near-wake
becomes unstable when Re > Re,.;; (Figure 4(c)). The
transverse oscillation starts at the end of the near-wake
and initiates a wave along the trail. This phenomenon
is visualized by streaklines in Figure 5(a) (Re=60).
Weightless particles released at different sources in
front of the cylinder were integrated during the time-
dependent flow computation. As stated earlier, Klekar
and Patankar determined a critical value of Re.,.;; = 54.
Although this limit depends on flow parameters such
as the blockage ratio, a similar value (Re..; &~ 60)
was observed in the present computations. When Re is
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Figure 6. computed drag coefficient vs. Reynols number.

further increased, the free shear layers begin to roll up
and form eddies as shown in Figure 5(b) at Re=100.
This phenomenon is well known as the von Karman
vortex street.

The wavelength of vortex shedding decreases with
rising Re, as seen in Figure 5. Another important
change in the flow structure is observed in the range
Re=100 to 150, where separation already starts at the
leading edge of the cylinder (Figure 4 (d), Re=200).
As will be seen below, this strongly influences the
frequency of vortex shedding. The upper limit of this
laminar 2D shedding has an enormous spread in the
literature. Preliminary 3D simulations have shown that
the flow computation shown in Figure 5(d) at Re=300
is slightly beyond the limit where 2D simulations can
be carried out. The deviations from fully periodic
structures in the far-wake are also a clear hint for this
statement.

Furthermore, it should be taken into account that
the Reynolds number based on the channel height H
and the mean velocity %meqn in the channel is already
Rechanner = 1600 for this case. Therefore, owing to the
triggering effect of the obstacle on the channel flow,
transition to turbulence has to be expected leading to
3D structures in the wake.

Steady flow: 0.5 < Re < 60

Drag coefficient

One of the most important characteristic quantities
of the flow around a cylinder is the drag coefficient
Cg4. In the region of small Reynolds numbers, the drag
coefficient varies strongly with Re. The contributions
of the viscous and pressure forces to the total drag are
of the same order of magnitude. A comparison of the
computed LBM results is shown in Figure 6 for the
steady-state results in the range 0.5 < Re < 60.

The difference between the LBA and FVM results
occurs for small Reynolds numbers, whereas the agree-
ment for the upper Re range considered is satisfactory.
As the discrepancies are larger in the lower Re range,
where the viscous forces play a dominant role for
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the drag, it can be concluded that an insufficient
resolution of the boundary layers by the LBA method
is responsible for this behavior.

Unsteady flow: 60<Re<300
Velocity profiles
The results of this part is limited to Re=100. As the
flow is unsteady at this Reynolds, it is necessary to
define the time of evaluation. This is given by the time
level at which the cross stream velocity V at an axial
position of 10D behind the cylinder changes its sign
from minus to plus.

Figure 7 shows the velocity distribution of both
velocity components along the centerline.

Figure 8 shows velocity profiles of U and V at
three different axial positions, =0, 4 and 8. For the
profile through the center of the cylinder (z=0), no de-
viations are visible between the two sets of results. For
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Figure 7. (a) streamwise (U) and (b) cross-stream (V)
velocities along the centerline (y = 0), Re=100.
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Figure 8. (a) streamwise (U) and (b) cross-stream (V)
velocities at three different positions in the flow field, center
of cylinder (z = 0), near-wake (z = 4) and far-wake (z = 8),

Re=100.

the assessment of the agreement between the results
of the different numerical methods, it should be taken
into account that the flow is very unsteady. Therefore,
the definition of the moment of evaluation has a strong
influence on the results. Owing to finite time steps (and
also finite spatial resolution), the accuracy in time in
the worst case is one time step size. Therefore, an exact
agreement between the computational results cannot
be expected.

Strouhal number

One important quantity taken into account in the
present analysis is the Strouhal number St, computed
from the cylinder diameter D, the measured frequency
of the vortex shedding f and the maximum velocity
Umax at the inflow plane St = fD/umax-
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The characteristic frequency f was determined by
a spectral analysis (fast Fourier transformation, FFT)
of time series of the lift coefficient CI. Figure 9 shows
the computational results.

It shows an increase in the Strouhal number with
increasing Re. At the upper limit of this range, an
important change in the flow structure takes place,
namely the movement of the separation point from the
trailing edge to the leading edge of the square cylinder.
As expected, the separation on the side walls is strongly
influenced by the resolution in the vicinity of the body.
Therefore, the results of the coarsest grid with only
10 points on each surface do not have to be discussed
seriously. At the finest resolution, each side of the
cylinder is represented by 40 nodes with a smallest
distance to the wall of 0.025D. The Strouhal number
has a maximum at about Re=150 to 160 and decreases
again for higher Re.

Drag coefficient
In the unsteady 2D flow regime (60 < Re < 300), the
nearwake becomes unstable and a sinusoidal oscillation
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Figure 9. Computed Strouhal numbers vs. Reynolds
number.
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Figure 10. Computed drag coefficient Cd vs. Reynolds
number for unsteady flow.
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of the shear layers commences, later forming the von
Karman vortex street. In Figure 10, the time-averaged
drag coefficients in this Re range are plotted. The Cd-
Re curve has a local minimum at Re = 150.

No experimental or other numerical data for
comparison were found in the literature for the same
inflow conditions and blockage ratio. However, at
least the computations of Franke (1991) and Franke
et.al. (1990) for a square cylinder under free stream
conditions confirm our finding of a local Cd minimum
approximately at the Reynolds number where separa-
tion is initiated at the leading edge.

CONCLUSIONS

A lack of accurate and detailed data was found in
the literature for the confined laminar flow past a
square cylinder, which initiated the present work. In
order to generate reliable numerical results, The LBM
was applied to investigate the 2D flow past a square
cylinder inside a channel (B = 1/8) for the Reynolds
number range 0.5 < Re < 300. For steady flow
(Re<60), small deviations were detected for the drag
coefficients in the lower Re range. The unsteady flow
computations impressively demonstrate the capability
of the LBA to deal with instantaneous flows. Velocity
profiles at different locations in the flow field (Re=100)
were evaluated. Strouhal numbers were determined
for the entire Reynolds number range. Both methods
provide a local maximum of St at Re=150. Compared
with the scattered data in the literature, the devia-
tions between the LBA and FVM results are almost
negligible. Finally, drag coefficients were computed
and compared. As is known from the literature for
square cylinders in free stream, the drag coefficient
of a con- fined cylinder also shows a local minimum
at Re=150. In conclusion, the present work provides
reliable and accurate results for the confined cylinder
flow which were not previously available. The extension
to 3D computations and higher Reynolds numbers is
the subject of further investigations within ongoing
research.

REFERENCES
1. Alves A.S., “Discrete Models of Fluid Dynamics”,
Figueira da Foz, Portugal, (1990).

2. Boghosian B.M., “Proceedings of the Seventh Inter-
national Conference on the Discrete Simulation of
Fluids”, Int. J. Mod. Phys. C, (1998).

3. Succi S., The Lattice Boltzmann FEquation for Fluid
Dynamics and Beyond, Oxford University Press,
(2001).

4. Qian Y.H.; Succi S., Orszag S.A., “Recent Advances
in Lattice Boltzmann Computing. In: Stauffer D7,
Annual Reviews of Computational Physics ITI, (1996).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

S. Rowghani, M. Mirzaei, R. Kamali

Chen S., Doolen G.D., “Lattice Boltzmann Method for
Fluid Flows”, Ann. Rev. Fluid Mech. , 30, (1998).

Luo L-S. , “The Lattice-Gas and Lattice Boltzmann
Methods: Past, Present, and Future”, Proceedings

of the International Conference on Applied Compula-
tional Fluid Dynamics, PP 52-83(2000).

Ohashi H., Chen Y., “Proceedings of the Eighth
International Symposium on the Discrete Simulation

of Fluid Dynamics”, 129(1-3), (1999).

Lebowitz J.L., “Special Issue Based on the Ninth An-
nual International Conference on Discrete Simulation
of Fluid Dynamics”, J. Stat Phys., (2000).

Coveney P.V., Succi S., “Discrete Modelling and Sim-
ulation of Fluid Dynamics”, The 10th International
Conference on Discrete Simulation of Fluid Dynamics,

PP 1-573(2001).

Monaco R, Preziosi L., “Fluid Dynamic Applica-
tions of the Discrete Boltzmann Equation”, Singapore:
World Scientific, (1991).

Chopard B., Droz M., Cellular Automata Modeling of
Physical Systems, Cambridge University Press, (1998).

Bhatnagar P.L., Gross E.P., Krook M.A., “Model
for Collision Processes in Gases, 1. Small Amplitude
Processes in Charged and Neutral One-Com Ponent
System”, Phys. Rev., 94, PP 511-25(1954).

Franke R., “Numerische Berechnung Der Instationaren
Wirbelablosung Hinter Zylindrischen Korpern”, Ph.D.
Thesis, University of Karlsruhe, (1991).

Okajima A., “Strouhal Numbers of Rectangular Cylin-
ders”, J. Fluid Mech., 123, PP 379-398(1982).

Klekar K.M., Patankar S.V., “Numerical Prediction
of Vortex Shedding Behind Square Cylinders”, Int. J.
Numer. Meth. Fluids , 14, PP 327-341(1992).

Williamson C.H.K., “Vortex Dynamics in the Cylin-
der Wake”, Annu. Rev. Fluid Mech., 28, PP 477-
539(1996).

Davis R.W., Moore E.F., Purtell L.P., “A Numerical-
Experimental Study of Confined Flow Around Rectan-
gular Cylinders”, Phys. Fluids, 27(1), PP 46-59(1984).

Shair F.H., Grove A.S., Petersen E.E., Acrivos A.,
“The Effect of Confining Walls on the Stability of the
Steady Wake Behind a Circular Cylinder”, J. Fluid
Mech., 17, PP 546-550(1963).

Mukhopadhyay A., Biswas G., Sundararajan T., “Nu-
merical Investigation of Confined Wakes Behind a
Square Cylinder in a Channel”, Int. J. Numer. Meth.
Fluids , 14, PP 1473-1484(1992).

Suzuki H., Inoue Y., Nishimura T., Fukutani F.,
Suzuki K., “Unsteady Flow in a Channel Obstructed
by a Square Rod (Crisscross Motion of Vortex)”, Int.
J. Heat Fluid Flow , 14(1), PP 2-9(1993).

Liu Y., So R.M.C., Cui Z.X., “A Finite Cantilevered
Cylinder in a Cross Flow”, Journal of Fluids and
Structures, 20, PP 589-609(2005).

He X., Luo L-S., “A Priori Derivation of the Lattice
Boltzmann Equation”, Phys. Rev. E , 55, (1997).



Numerical Simulation Using a Lattice Boltzmann Method

23. He X., Luo L-S., “Theory of the Lattice Boltzmann 27.

Equation: From Boltzmann Equation to Lattice Boltz-
mann Equation”, Phys. Rev. E , 56, (1997).

24. Qian Y.H., d’'Humi”eres D., Lallemand P. | “Lattice

BGK Models for Navier Stokes Equation”, FEurophys. 28.
Lett., 17, PP 479-84(1992).

25. Chapman S, Cowling T.G., “The Mathematical The-
ory of Nonuniform Gases”, Cambridge University 929.

Press, (1970).

26. Inamuro T., Sturtevant B., “Numerical Study of Dis-
crete Velocity Gases”, Phys. Fluids A | 2, PP 2196-
203(1990).

17

Inamuro T., Yoshine M., Ogino F., “A Non-Slip
Boundary Condition for Lattice Boltzmann Simula-
tions”, Phys. Fluids, 7(12), PP 2928-2930(1995).

Zdravkovich M.M., “Flow Around Circular Cylin-
ders, vol 1: Fundamentals”, Ozford University Press,

(1997).

Breuer M., Bernsdorf J., Zeiser T., Durst F., “Accurate
Computations of the Laminar Flow Past a Square
Cylinder Based on Two Different Methods: Lattice-
Boltzmann and Finite-Volume”, International Journal
of Heat and Fluid Flow, 21, PP 186-196(2000).



