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Progressive Damage Analysis of Laminated

Composites Using Continum Damage Mechanics

B. Mohammadi', H. Hosseini-Toudeshky?, M. H. Sadr®

In this paper, progressive damage and global failure of composite laminates
under quasi-static, monotonic loading are investigated using SD continuum

damage mechanics.

For this purpose, a finite element program has been

developed using an eight-node 2D layered element including layer-wise plate
theory. Damage analysis of a single orthotropic layer under various uniform
m-plane and transverse loading conditions, and laminate problems with diffuse
damage under simply supported and distributed transverse loading conditions
are performed. The effects of modeling parameters such as hardening rules
and mesh densities along the laminate thickness and in-plane surface on the
progressive damage response and global failure are also investigated.

INTRODUCTION

Composite structures experience local failure or dam-
age such as matrix cracking, fiber failure, fiber—matrix
shear deformation, and delamination. These forms of
microscopic damage have been experimentally shown
to initiate at loads that are far below the ultimate
strength of the composite material. Once a microscopic
damage is initiated, it tends to progress as the loading
is further increased or cycled.

Most of the past efforts in modeling of the progres-
sion of distributed microscopic damage in composite
laminates have relied on the use of continnum dam-
age mechanics (CDM). Kachanov {1}, Lemaitre [2-3],
Chaboche [4-5] and Krajcinovic [6-7] used continuum
damage mechanics to analyze different types of damage
ranging from brittle fracture to ductile failure.

Talreja [8] used CDM for composite laminates
by proposing two first order tensorial damage repre-
sentations associated with the principal direction of
material coordinate, and a specific analytical investiga-
tions of damage states without considering the growth
functions or damage thresholds. In a subsequent
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work, he [9] applied his model to predict the stiffness
reduction in a number of angle-ply laminates, which
showed a good agreement between the predicted and
experimental results.

Voyiadjis and Kattan [10-11], Voyiadjis and Park
[12] and Voyiadjis and Deliktas [13] developed a 3-D
model for coupled progressive damage and plasticity
using a symmetric second order damage tensor. The
eigenvectors of this tensor represent the principal
directions of damage and the eigenvalues represent
the density of the distributed microcracks that are
normal to the respective eigenvectors. Kattan and
Voyviadjis [14] also used a micromechanical composite
approach to study the damage of a uniaxially loaded
unidirectional fiber-reinforced composite thin lamina.
Their method was based on the concept of effective
stress, and overall damage variables. The local damage
effects were modeled through two additional separate
damage variables, which represent matrix and fiber
damages. A relation between tangential modulus and
the initial elastic modulus with damage variables were
derived from the experimental stress—strain curves due
to the uniaxial tensile loading.

Barbero and De Vivo [15] developed a 2D plane
stress model for progressive damage based on the use
of a symmetric second order damage tensor. Damage
evolution and stiffness reduction were computed for the
pre-homogenized composite material simplifying the
formulation. Their model was extended by Barbero
and Lonetti [16] to include plasticity, and further
extended by Lonetti et.al. [17] to include triaxial or-
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thotropic damage in terms of three damage eigenvalues.
They used the triaxial damage model in conjunction
with the 3D solid finite elements methods.

In this paper, 3D continuum damage mechanics
is used for progressive damage analyses of composite
laminates under quasi-static, monotonic loading. For
this purpose, a finite element program has been devel-
oped using an eight-node 2D layered elements includ-
ing layer-wise plate theory. The numerical examples
include damage analysis of a single orthotropic layer
under various uniform in-plane and transverse loading
conditions, and laminate problems with diffuse damage
under simply supported and distributed transverse
loading conditions. The effect of numerical modeling
parameters on the progressive damage response and
global failure are also investigated.

APPLICATION OF CDM IN

COMPOSITE LAMINATE
In the Continuum Damage Mechanics, damage vari-
ables can be presented through the internal state
variables of thermodynamics for irreversible processes
in order to describe the effects of damage and its mi-
croscopic growth on the macro-mechanical properties
of the materials. Using CDM, distributed microscopic
damage can be quantified by the use of a damage
tensor field that describes the orientation and density
of microcracks in the material.

In a homogenized description of damage, the
simplest form of the damage tensor that is capable
of accurately describing microscopic damage is a sym-
metric 2% order tensor ¢ whose principal directions
are assumed to coincide with the principal material
directions, i.e. orthotropic damage. The i eigenvalue
¢; represents the effective fractional reduction in load
carrving area on planes that are perpendicular to the
i** principal material direction. Therefore, this type of
damage tensor field is capable of quantitatively describ-
ing the density and distribution of microscopic cracks
that are associated with fiber breakage, fiber/matrix
debonding, and matrix cracks that are oriented either
parallel to the fibers direction or perpendicular to that
as shown in Figure 1. The eigenvalues of the damage
tensor are in the range 0 < ¢; < 1.

To define stress transformation in a general state
of deformation and damage, the effective stress tensor
is related to the Cauchy stress tensor by the following

Figure 1. Schematic representation of damage eigenvalues
in composites.
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linear transformation:
bso = MI(¢) : o (1)

where M is a fourth-order linear transformation op-
erator called the damage effect tensor. Depending
on the form used for M, it is very clear from Eq.
(1) that the effective stress tensor ¢ is generally non-
symmetric. However, the use of such complicated
mechanics can be easily avoided by symmetrizing the
effective stress. One of the symmetrization methods
given by Cordebois and Sidorof (1979) is used in this
study, and is expressed as follows:

Fis = (8 — din) " ow (65— d5) "7 (2)

where 6 is the Kronecker delta, and ¢ is second-order
damage tensor. Corresponding to Eq. (1), the fourth-
order damage effect tensor, M, is:

Mt = (60 = din) 1" (850 = 630)'” (3)

It is possible to define Hooke’s law in the effective
fictitious undamaged and damaged state as follows:

o =0C%: &,; o =C¢) :€; (4)
where an over-bar indicates that the quantity is evalu-
ated in the effective configuration and the superscript ¢
denotes quantities. Damaged material stiffness at each
step can be expressed in terms of the damage eigen-
values by invoking various strain energy equivalence
principles, which states that the elastic energy of the
damaged material is in the same form as that of the
effective material, which the stress tensor is replaced
by the effective stress.

C(p)=M":C":M " (5)

In Eq. (5), C* and C*(¢) are virgin material stiffness,
and damaged stiffness matrix of material respectively.

State laws in the framework of irreversible
thermodynamics

In the framework of irreversible thermodynamics, it is
possible to decouple the Helmholtz free energy, v, into
a potential function for each corresponding internal-
state variable. Therefore, an analytical expression for
the thermodynamic potential can be given as sum of
two terms, the strain energy, E(e®, ¢), and dissipation
energy, Hd(ﬁ,), as follows:

d
pb = E(e*, ) + [[(v) (6)

where k is overall damage parameter. The strain

energy is defined:

Bleg) = 5 el O (@) ()
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In addition, the free energy Hd(h) introduced to
describe the effect of the accumulated damage can be
expressed as follows:

¢ 1¢d ¢
H(h) = iéhz or H(h) = [('(Zi exp (h/c}i) K
(8)

where ¢, and ¢§ are the material constants The state
laws can be written from the thermodynamic potential
equation in the following form

_ o0

g = paee (9)
o

Y = 36 (10)
_

K=-2" (11)

where o, Y, K are stress tensor, damage conjugate
force tensor, and isotropic hardening/softening conju-
gate relation, respectively. Using these equations, dam-
age potential and damage evolutions can be defined.

Damage condition and evolution equations
Associative damage can be used here to derive the
evolution equations for the constitutive model which
the damage potential, G, is equal to the damage
criterion, g. Analogous to plasticity, it is postulated
that damaging behavior can be distinguished from non-
damaging behavior on a local basis by a damage surface
of the form:

G=g(Y,r)=VY.IY — (K (r) — Ky) (12)

where K (x) is damage hardening/softening law, and
Ky is the initial damage threshold at which damage
begins to occur. The Y, are eigenvalues of damage
conjugate forces tensor defied in Eq. (3). ¢(Y,r) <0
indicates a non-damaging state, g(Y, k) = 0 indicates a
damage inducing state, and ¢(Y,x) > 0 is understood
to be inadmissible.

Damage evolution equations can be obtained from
dissipation potential function. If the potential function
is chosen to define convex surface containing the origin
of the forces space, then the satisfaction of the second
law of thermodynamics, Clausius-Duhem’s inequalities,
is be assured in the local form. The energy dissi-
pation due to damage are found by substituting the
thermodynamic state laws into the Clausius-Duhem
inequality and are thus given as the product of the
thermodynamic conjugate forces with the respective
flux variables as follows:

. 7T
Hza:é”d—Y:@—Kﬁ—qA%zO (13)

p is the mass density, ¢ is the heat flux vector, AT is the
temperature gradient, and dot over the parameters is
the time derivative of parameters. Also, €'
damage part of the strain tensor. Using the theory
of functions of several variables, damage Lagrange
multiplier A is utilized to construct the objective
function Q in the following form:

is inelastic-

Q=J[-c\ (14)

where G = 0 is the damage potential. In order to
obtain the damage tensor rate, and deriving evolution
equations for the hardening state variables, the fol-
lowing conditions are used to extremize the objective
function:

a0 a0 a0
00 =0 oy =% G =0

(15)

when G > 0, the corresponding evolution equations for
the damage tensor, and the corresponding hardening
state variables, are given as follows:

- oG .
cid d
¢ _+80'/\ '

. oG ., .
P= oy N AT

G .,
731{/\7 (16)

The following loading—unloading conditions known as
the Kuhn—Tucker optimality conditions must also be
enforced:
M>0: G<0; MG =0 (17)
Stress Integration algorithm
In the solution procedure, a linearized form of the
governing equation is solved within an incremental
iterative Newton—Raphson solution procedure for the
increment of strain over the time increment.

The increments of the damage multiplier, AA d]',
must be computed, and then the state variables are
updated using Eq. (16):

et = it + A
¢j = ¢o + A‘b,
K=K, + AR, (18)

The o and Y for this integration scheme are defined at

7t iteration as follows:

o, =C": (ej - G;d) =0, +C5: (Aej - Ae;”)

. . 0C°
cops (o2

(e — eid)) E Ao, (19)

, oC™
Yj_a?t(@(b)v:aj (20)
j



The integration scheme used here enforces that g;=0
at the end of the time step:
\/ Y]' J&f7 - (I{ (I{])

9;=9(Y;, k)= —Ky)=0

(21)

In order to address this type of problem, a return-
mapping algorithm is used. This algorithm has an
initial elastic-predictor step, followed by a damage-
corrector step. In the elastic-predictor step, the
incremental strains are assumed to be elastic with no
damage increment such that an initial trial stress and
an initial trial damage conjugate force can be computed
as:

g?;‘r'i’"’l = &, + CZ : A67 (22)
. , oC™* ;
Yﬁ‘rv,n,l — aﬁ‘rm,l . ( ) . aﬁ‘rm,l (23)
J J J
¢ j

The trial state (of¢!, Yol €id ¢ k,) is then used
in a trial damage criterion to decide whether an
elastic point enters the damage regimes or whether a
damage point elastically unloads. For the case when
gi"i*l < 0, the integration point is assumed to be
elastic with no additional damage and the current
state of ( VY, €, 0 Ko) 18 equal to the trial state
of ( trial Yt”“’,egd, s Ko ) When ¢! > 0, the
current state resulting from this trial state lies outside
of the damage surface. Damage has occurred and the
state has to be returned to the damage surface. Using
the definition of the Cauchy stress from Eq. (19) along
with the definition of the trial stress, Eq. (22), the

Cauchy stress is corrected as follows:
Ao;=0;— ol = ACS : Aej; — C5 : Aell

ace
¢

While the trial stress is computed based upon the
increment of the total strain, this inelastic corrector
is computed based upon the total increments of the
damage multiplier, which are computed from the used
integration scheme. In this scheme, the increment of

the multiplier is set to zero (A/\jf(e) = (}, and it is

+C5: (Ce : (e — e’id)) A, (24)

incremented by d/\';'(k) at each iteration, k.

AN = ANTH) gyt (25)

dA; U5 can be computed using a linearization form of
the nonlinear equation of, g (AA):

dg(k) a(h)

o 4 49
T ganim
i J

=0 (26)
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An implicit backward Euler algorithm presented by
Belytschko et.al. [18] is used for the integration of the
constitutive model. The integration scheme is defined
by Eq. (16), where the state variables increments are
written as follows:

Aglt = J.o; A/\’;

7
A¢; = —g,y, AN
Apy = fgy,%‘,.A/\";’ (27)

The increment of the elastic stiffness tensor is also
defined here as follows:

/ e . aCe . 7
ACH = (a¢ )j LA

-T
=205 : M : (al\a/[(b )V:Aqu (28)

Thus, correction of the stress during the corrector
phase can be written as follows:

Ao; = —C: Aeld

ace i
+ ( 90 )j s (&5 + Aey — ejd) A, (29)

It can be seen that the problem defined by this model
can be entirely defined by solving for two unknowns,
Acj, and AN, | through the use of the following two
nonlinear equations obtained from Eqgs. (27) and (21):

& €' +e'+ g0, AN =0 (30)

g = g(Y]',Iij) = \/Y]'AJAY]' - ([X’(Iﬁ) - ;\,()) =0

(31)

Where &; is the residual of the first equation in (27).
Using Eq. (26), these equations can be linearized in the
same as Eq. (24).

The increments of the unknown stress and the
unknown damage multiplier can be derived at k**
iteration, and the unknowns are updated as follows:

ANIFTD = AU 4 g\1®) (32)

a§k+1) = agk) + dagk) (33)

Using the increments of the damage multiplier, the

(k)

increments of the damage surface normals, dg,,; and

dqv , are computed by the expansion in terms of
the increment of the unknowns, and then using the
resulting matrices, the state variables are updated as
follows:

iR t1)

id(k d(k A Ak
; = &'+ g0 a1 dgl) AN (34)
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¢§k+1) = ¢§k) _ 9%"’\?(’“) _ dg,(f()jA/\ff('“) (35)

ﬁ§k+1) e ’i(,'k) - q(ﬁf d/\f;(k) 301

The Newton iteration procedure is repeated until the
convergence is obtained by checking the values of e,
and g; from Eqgs. (30) and (31) which yields to zero.
In order to obtain proper quadratic convergence,
the choice of a tangent operator must be consistent
with the integration scheme, which is defined as follows
using the purposed procedure by Belytschko [18]:

do — al
Cm'()‘ﬂmﬂg (37)
J d € ; J

Where the superscript "alg” denotes the algorithmic
calculated consistent tangent stiffness matrix. Equa-
tion (37) can be used as a consistent tangent operator
to calculate the layer-wise finite element stiffness ma-
trix in a proper form which is explained in the next
section.

Layer-wise finite element formulation in
conjunction with CDM

Considering a laminated plate composed of N or-
thotropic lamina, each being arbitrarily oriented with
respect to the laminate (z,y) coordinates. The coor-
dinate center is taken to be in the mid-plane of the
laminate, z is through the thickness and (z,y) are
in-plane coordinates. The displacements (w1, us,us)
correspond to the (z,y, 7) directions at each point in
the laminate are assumed to be in the form of:

U1 (15,?/,3) = 11;(:(1,?/) + I](J",y,:)
walw,y, 2) = v(x,y) + Ve, y, 2)
7‘3(1:,?/,3) = ?U(:E?y) (38)

where (u,v,w) are the displacement components of a
point (z,4,0) on the reference plane of the laminate,
and U and V are functions which vanish on the
reference plane as U(zx,y,0) = V(z,y,0) = 0. Also
U and V can be approximated as:

Ulw,y,2) = S U™ (0, 9)6™ ()
m=1
V(w,y,00= S V™2, 5)6™() (39)

m=1

where U™, and V™ are undetermined coefficients, and
@ are any continuous functions that satisfy the condi-
tion ¢™(0) = 0 for all m = 1,2, ... ,n. For example, a
finite element approximation based on the Lagrangian
interpolation through the thickness can be obtained
from Eq. (39) considering the n = pN + 1, where N

is the number of layers through the thickness, p is the
degree of the interpolation polynomials of ¢™(z). The
approximation in Eq. (38) can also he viewed as the
global semi-discrete finite element approximations of U
and V through the thickness. In that case ¢™ denote
the through thickness interpolation functions, and U™,
and V", are the global nodal values of U and V at the
nodes through the thickness of the laminate. Note that
the transverse deflection here is assumed independent
of the thickness coordinate, which leads to neglect the
transverse normal stress.

In order to understand the relation between the
nodal resultant forces of laminate and displacements in
layer-wise plate theory, the first variation of potential
energy, equilibrium condition, is expanded as follows:

1 dbu dbv dbu  ddv
= [{ N, | — N, | — Noyl —
ZHL(%J+”(%)H”(%+&J
A

N
Abw Abdw
e 7771 e /7 e
+Qr T, +Qy oy +Z:1 [QusU™+Qrsv™]
N
aou™ aovm™

’\/T . ’\/T .
3 e (%) (%)

aou™  gévm™

N dA =0 4

o (5 + 750} (o

where the resultant forces of the laminate are:

t/2
N, Ny, Ny = / (00, 0y, 00y )dz
Jt2

t/2
Qe Qy = / ((J'M,O'W)d;’
J—tj2

t/2
NN NG = [ (e s
J ¢z

t/2 d@‘mv(,y)

m m g ~

r @y = [ ()™ P (41)
J—t/2 &

Ony Oy Onys Oaz, and oy, are the stress components.

The constitutive equations of the laminate in damage
state are given by:

N
{/\/T} — [A}(alg) {6’} + Z [Bm}(alg) {(,’m}

k=1

N
N7y = (B e} + 30 (0 ey (42)

k=1

where {e} and {e™} are the in-plane and layers
interfaces strain vectors respectively, and [A](*18)
[D™7](e18)  and [B™]{¢!8) are extensional, bending
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stiffness, and bending-extensional coupling stiffness
matrices respectively, defined as follows:

if(pa=1,2,6)

w19 _ S [ g
AAP(} 8) = Z/ C’pq’ 8 dz
k=17 %k
el N Zh1 (a1 )k ‘
B =3 [ el gnis
k=1"7%%

(a )™ N Zhg1 (01 v ‘
Py =30 [ et gt (43)
k=1"7®

if (p,g=4,5)
i _ 3~ [ g
Alple) =%~ / Clats) dz
k=1"7%*

N Zh+1 : d¢777,
B(alg)"' — Z / C(alg)k T dx
k=1"%% “

Pq rq d

N 2 . T
e =3 [ e
k=1 E

rg v s dz

Ag) . . .
where C’,(,f, &) is elastic-damage reduced stiffness matrix.

In the case of pure elastic behavior, C,(f;lg) should
be replaced by the elastic stiffness tensor, and @,
defined in mechanics of composite materials. The local
stresses in each constituent can be obtained from the
applied loading increment by using the assumption of
the lamination theory.

Integration in the thickness direction is performed
using linear variation; two points at the top and bottom
of each numerical layer are considered for calculation
of stiffness properties through the thickness. If the
piecewise linear functions through the thickness of
the laminate are considered for damage effects, the
following explicit relations can be obtained for the
coeflicients of the laminate stiffness matrices.

if pg=1,2,4,5, 6

N
A(alg) — Z 1 (Tc(a]g)k 4 Bcl(z;lg)k> t’;
2 yzi 2

“Tpg pq
k=1
if pa=1,2,6;

T ~(alg)” ! 3 {alg)™ "
B(alg)m — 7’(71()(] #) + RC‘I(JQ #)
Pq 3 6

) lg)™ . lg)™
+ TCI()Q ®) + BCI(JQ ®) tvn
6 3 L

m—1

tr

B. Mohammadi, H. Hosseini-Toudeshky, M. H. Sadr

T lalg)™ ! 3 {alg)™ "
D(alg)mm — TCI(JQ ®) + BCI(JQ ®) t‘n7,71
pa 4 12 I
T (o lg)™ alg)™
+ TCY(JG g) + BCY(JG g) tvn
12 4 L
mr rm m - my t7
(alg) — nlalg) e [T alg) B ~(alg) L
qug _qug _( C‘pqg + C‘pqg )]2
if pg=45
77, 1 E m—1 m—1
(al e AT al B{(al
BPG 8" = 9 ( C]m ) + C]m & )

L (T A(alg)™ | B (alg)™
,5( Cpqg) + Cmg) )

T (alg)™ ' | B lalg)™
plals)™™ (1(71%7 ¥ +B(j‘pq ® )

Pq

m—1
2tL

7 !1,] " !1,] "
Tcy(m g) ch(m 8)
+ ‘

T alg)™ alg)™
D)™ _ plels)™ _ Tci(m g) + ch(m 8)
Pq - “pg - tm

(45)

where the coefficients are computed in terms of the
damage values of the reduced stiffness coefficients in
global coordinates and superscripts T' and B refer to
top and bottom of each layer, respectively.

In the incremental form, the weak form of the
equilibrium equation with the elastic-damaged material
stiffness matrix at j* time step is as follows:

be: C 1 de;dV =
Jv X

- /511 :bh;dV — / Su: tydD — / de :a;dV (46)
S Jry Jv

where ¢, C¢, o, u, b, t, and V are strain vector,
material stiffness matrix, stress vector, displacement
vector, body inertia force vector, traction external force
vector, and total volume of body respectively Note
that this equation is enforced over the entire body,
including both the damage and elastic domains. In
the right hand side of the governing equations, the
stress at j* iteration must be known. It was explained
in the integration scheme, that for each integration
point in an inelastic state, the implicit backward Euler
elastic predictor-inelastic corrector algorithm is used to
compute the stress. The governing equation can be lin-
earized consistently and solved within an incremental
iterative Newton-Raphson solution procedure.

The displacement filed, u;, is discretized using
layer-wise plate theory. The interpolating relation is
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defined as follows:

w:wﬂgih;{M: g ;

a={gn s w=[ B ] W

where [N] and [¢™] contains the in-plane and through
the thickness set of nodal elements of the well-known
finite element shape functions, respectively. Also
{w,v,w) and (U™, V™) are mid-plane and numerical
layers nodal displacements, respectively. By taking the
required derivatives, the strains are obtained using the
following strain-displacement relation:

= [B] {u};

e={§L}; =Bu]{A}; e = [Bu] {7}
| (43)
w= [0 ) o

where [B;] and [B] are matrices of shape function
derivatives of mid-plane and numerical layers degree
of freedom respectively. Using this discretization, the
weak form of the equilibrium equation becomes:

m@/

— o)} | [ 17 o), av

£ [B] {du} aT

T v

where [E°Y] (7,@ '8) i

[Eed] (v"» Ig) —

7

(51)

al mi{al

AL Bﬂg}
milalg) mar1(e1g)

(B™]; (D™7]

It is noted that transpose of matrix [B}T is specially

defined as follows:

Bu” 0

= 5

(52)

This governing equation must be admissible for any
displacement variation, which can be written as a set
of algebraic equations:

(KT {du}; = {7} + ™)+ {£") (53)

where the sub-matrices are defined as follows:

(K = [ 187 (B ) ar (54)

r,

{fefct} _ / W’}T {{}7 dr (55)

)= o o g
v

{fint} — /[B}T {o_}j dv (57)

i//
Using layer-wise lamination theory and finite element

procedure, the stiffness matrix and its sub-matrices are
obtained:

ORI
e &
[BR] (BRG] [RR]

where the sub-matrices [k'], [k12], [K%], and [£22 ]

e e
are as follows:

(K] =32, [ (B 1A “®)[B.]) dT.

(K3 =3 f ([Br"[B™“*)[By]) dT.

(K] =2 [ (B [B™)(«18)[B,]) dT. (59)
LA DI /“ ([Br]T[D™"]t18)[By]) dT.

m,r=1,2,3,.. N

These matrices and vectors can be computed for the el-
ements and then implemented into the global matrices
and vectors for the entire body.

Nonlinear solution procedure

The stiffness matrices and load vectors can be com-
puted for each element and then implemented into the
global matrices and vectors for the entire body. A
finite element procedure is then followed to solve the
equations. The problem defined by these equations
is nonlinear as the stiffness and the residual loads
depend on the deformations. An iterative procedure
is required to solve the problem. The nodal forces are
produced by the stress field that satisfies the elasto-
damage conditions. The difference between these forces
and the applied ones gives the residual forces. During
a load increment, an element or part of that may prone
to damage. All stresses and strains quantities are
calculated and monitored at each Gaussian integration
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point and therefore the damage occurrence can be de-
termined at such points. Consequently, an element may
have partially elastic and partially damage behavior.
For any load increment, it is necessary to determine
which portion of that is in elastic condition and which
part is in damage condition. Then the stress and strain
terms are adjusted until satisfaction of the damage
criterion. It is noted that the layer-wise element uses
a reduced constitutive matrix that is stored as a full
6x6 matrix where its transverse normal stress is zero;
therefore, the layer-wise element can directly utilize
the full 3D damage mechanics equations in the original
form.

For more understanding of the solution procedure,
the main steps of the developed computer program to
analyze the elastic-damage behavior of the laminates
are explained as follows:

1. Defining the problem parameters such as geometry,
boundary conditions, loading conditions, load in-
crements functions, material stiffness and strength
properties, mesh parameters, and etc.

[N

Imposing the jth load increment.

(0}
7

3. Setting the AA = 0 ¢

0 o
b5 hs ) = t;_y Compute the algorithmic con-
sistent tangent stiffness matrix of each gauss points
using the explained procedure in the previous sec-

tions.

W) _ aq . (0) _
i = ghn ¢y =

4. Compute the element stiffness matrix of each ele-
ment by considering the step (4) and constructing
spars global stiffness matrix.

5. Solving the linearized Eq. (53) and obtaining the
displacement field increment.

6. Computing the strains and stresses according to
the current load increment at each gauss point
in local lamina material coordinate system, and
accumulating with the previous converged strain-
stress fields.

~1

Checking the damage condition. If damage oc-
curs then perform the damage corrector using the
explained fully implicit backward FEuler return-
mapping algorithm.

& Updating the  state  variables such  as

Ay id -
A/\j, 0']',63 s @j, Ry
9. Computing the nodal internal forces of each element

by the last updated stress and calculating residual
forces at each gauss point.

10. Checking the force and displacement convergence
criteria of the overall problem. If they are satisfied,
go to the next loading increment; otherwise replace
the residual forces in initial incremental load of this
step and go to the next overall iteration in step (4).
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Figure 2. Progressive damage of a composite ply under
pure uniaxial extension in direction ‘2’ (a) stress-strain
curve (b) @2 versus applied €2 (¢) in-plane transverse
modulus verses applied ea2.

11. Repeating the step (2) to step (11) until the total
load is applied and all state variables return to the
damage surface.
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Numerical examples

In this section, numerical examples are performed
to discuss the results obtained from the developed
program and procedures. To illustrate the basic
progressive damage behavior of the present model,
a single composite material ply subjected to various
modes of imposed homogeneous deformation, resulting
in a homogeneous stress state is considered.

In addition, the progressive damage of a sim-
ply supported cross-ply laminate under uniform
distributed transverse loading is also considered.
This problem is chosen since it exhibits diffuse,
widespread damage that is driven in different re-
gions by qualitatively different types of combined
deformation modes, each of which has different in-
ducing damage characteristics.  The used elastic
constants for the un-damaged composite material
{Graphite/Epoxy) are; Fq11=167GPa, Eyy=F33=8.13
GP&, 1/1211/13:1/23:0‘27, and G12 - G13:G23:8A8252
GPa. Damage surface and hardening constants using
Barbero et.al. approach [15] are Ji1= 0.9524e-15; Joo=
J33= 0.4381e-12.; and the initial damage threshold of
K, 20.15 is used.

The behavior of this orthotropic material in
fiber direction is 20.5 times stiffer than the ei-
ther of the transverse directions. Furthermore,
the damage surface constants are characterized by
Ji1/ Jag=J11/ J33=0.0022 which is an indicative of or-
thotropic material exhibiting easily and more damage
in the directions of ‘2’ and ‘3’ with respect to ‘1’
(fiber direction). Therefore, under general loading,
this particular material is much more likely to exhibit
damage in the form of ¢o and/or ¢;.

PROGRESSIVE DAMAGE OF
COMPOSITE PLIES
Four different modes of homogeneous deformation are
chosen to examine the potential causes for specific
forms of damage that are commonly observed in
laminated composites. Specifically, the following four
modes are examined:

Case 1 Uniaxial extension in the direction ‘2’ (causes
damage growth of ¢q),

Case 2 In-plane shear deformation, (causes damage
growth of ¢2),

Case 3 Longitudinal shear deformation in the ‘1-3’
plane (causes damage growth of ¢3),

Case 4 Transverse shear deformation in the ‘2-3’
plane (causes damage growth of ¢ and ¢3).

It is noted that, with an increase in the micro-damage
density, there begins to be more interactions between
the micro-cracks and between the micro-voids such that
damage increase becomes more difficult and the stress
required producing additional micro-damage increases.
The material exhibits hardening due to the arresting of
micro-cracks because of their respective interactions.
To show the influence of the damage hardening
rule on the progressive damage behavior, each of the
four load cases are solved using three different types of
damage hardening rules. All damage-hardening rules
have the same initial slope of 7.595¢-7 and hence the
same initial rate of damage hardening; however, the
used three rules show significant differences in the rate
of damage hardening after the beginning of damage
accumulation.
Linear hardening:

o o
K(k)=—"Ltr; — L =7595¢~7

at d

ey ey

Exponential hardening:

K (k)= —ci [1 —exp (r/c3)]

(—) ¢t =03; = —395000
(+) ¢t = —-03; cf=2395000

Case 1. Uniaxial Extension in Direction ‘2’

In this case, nodal displacements are imposed to ensure
a uniform distribution of €,>0, while allows the single
ply to freely contract in direction ‘17 in accordance with
the Poisson ratio effect. The maximum imposed node
displacement is sufficient to provide an in-plane normal
strain of €2=0.05, and are applied in a series of 200
non-equal load increments. For this particular mode
of deformation, ¢- is the only damage eigenvalue that
exhibits damage growth.

Parts (a), (b), and (c) of Figure 2 show the
axial stress ¢99, the damage eigenvalue ¢o, and the
damaged modulus Eyy versus the imposed axial strain,
€99, respectively. This figure shows that, the type of
damage hardening rule have a significant influence on
the progressive damage behavior exhibited by the com-
posite material. Since all three damage hardening rules
have the same initial slope, they produce similar dam-
age progression at low strain levels (e.g., 0<e99<0.007);
however, at larger strain levels (e.g., €22>0.007), the
damage behavior is dramatically changed. Figure 2(a)
show that, the maximum stress of, o9, is strongly
dependent on the type of the used damage-hardening
rule. Figure 2(b) indicates that, for the imposed strains
of larger than, ess = 0.007, the rate of damage growth
is strongly dependent on the type of damage hardening
rule. Finally, Figure 2(c) shows that, the damaged
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Figure 3. Progressive damage of a composite ply under
imposed homogeneous in-plane shear deformation (a) in-
plane shear stress-strain curve (b) &2 versus applied vi2 {(c)
in-plane shear modulus verses applied vi2.

axial modulus of elasticity is also strongly dependent
on the type of damage hardening rule. For example,
at an imposed strain of e;2=0.015, the damaged axial
modulus, Fee, may be changed by the order of 30%
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Figure 4. Progressive damage of a composite ply under im-
posed homogeneous transverse shear deformation at plane
1-3; (a) transverse shear stress-strain curve (b) ¢3 versus
applied v13 (c) transverse shear modulus verses applied v13.

to 45% of the original undamaged modulus value,
depending upon the particular used damage hardening
rule. Note that the use of a displacement-controlled
uniaxial test allows damage progression to be simulated
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Figure 5. Progressive damage of a composite ply un-
der imposed homogeneous transverse shear deformation at
plane 2-3; (a) transverse shear stress-strain curve (b) &2 and
¢3 versus applied v23 (c) transverse shear modulus verses
applied va3.

to very high levels as seen in Figure 2. A similar
force-controlled uniaxial test would simply results in
a global material failure (i.e., ¢o=1 throughout the

single ply) as soon as the imposed axial stress oo
exceeded the maximum values shown in Figure 2(a).
The displacement-controlled test was chosen here since
it permits the full range of damage behavior to be
observed; however, in most of the practical problems,
the loading tends to be characterized more as force-
controlled rather than displacement controlled.

Case 2. In-Plane Shear Deformation

In this case, nodal displacements are imposed to ensure
a uniform distribution of iy, while all other strain
components remain zero. The maximum imposed
displacement is sufficient to provide a transverse shear
strain of ~19=0.05. This particular mode of defor-
mation produces the growth damage of both ¢; and
¢o. However, since the damage surface coefficients
are characterized by Jos>>Jy1, the magnitude order
growth of ¢, is larger than ¢y; hence ¢. exhibits
appreciable damage accumulation. Figure 3(a}, (b),
and (¢} show the variations of in-plane shear stress
712, the damage eigenvalue ¢y, and the damaged in-
plane shear modulus respectively versus the applied
in-plane shear strain ~yy9. Similar to the extension
loading condition explained in Case 1, differences in
the progressive damage behavior caused by the three
types of damage hardening rules are clearly evident for
strains ~y13>0.009.

Case 3. Longitudinal Shear Deformation in the
‘1-3’ Plane

In this case, the maximum imposed displacement is suf-
ficient to provide a transverse shear strain of v13=0.05.
This particular mode of deformation produces the
damage growth of both ¢y and ¢3; however, since
the damage surface coefficients are characterized by
J33>>J11, the rate of growth of ¢3 is larger than ¢4;
hence ¢3 exhibits appreciable accumulation. Figure
4(a), (b}, and {(c¢) show the transverse shear stress
713, the damage eigenvalue ¢3, and the damaged
shear modulus versus the imposed transverse shear
strain, 7yy3 respectively. Ounce again, differences in
the progressive damage behavior caused by the three
types of damage hardening rues are evident for strains
~713>0.009.

Case 4. Transverse Shear Deformation in the
‘2-3’ Plane

In this case, the maximum imposed displacement is suf-
ficient to provide a transverse shear strain of y43=0.05.
This particular mode of deformation produces damage
growth of both ¢» and ¢3. Furthermore, since the
damage surface coefficients are characterized by Joo =
Ja3, both ¢9 and ¢3 damages exhibit the same rate of
growth. Figure 5 (a), (b}, and (c) show the transverse
shear stress 7,,, the damage eigenvalues ¢ and o3,
and the damaged shear modulus versus the imposed
transverse shear strain -ys3 respectively. Once again,
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differences in the progressive damage behavior caused
by the three different types of damage hardening rules
are evident for strains v13>0.008. The maximum stress
that can be achieved in the material depends heavily
upon the type of the used damage-hardening rule.

Case 3 and Case 4 were subjected to the trans-
verse shear deformations of i3 and 793 respectively.
In Case 3, the energy dissipation manifests in a single
mode of damage (i.e., ¢3), while in Case 4, the energy
dissipation is divided equally between the two modes of
damage (¢o and ¢3). Therefore, it is not surprising that
the damage growth rate of ¢3 in Case 3 is higher than
the growth rate of ¢ or ¢3 in Case 4. Furthermore, the
difference between faster growths of a single damage
mode versus slower growth of two damage modes causes
differences in the transverse shear stress response and
the damaged transverse shear moduli.

AY

(a)
Computational Domain: 0<x<L/2 ; O<y<L/2 ; -t/2<z<t/2
Boundary Condition:
w(x,L/2,2)=w(L/2,y,z)=0
u(0,y,z)=u(x,L/2,2)=0 ; v(x,0,z)=v(L/2,y,z)=0
Loading: Transverse Pressure
q(x,y,t2)=q.

y AZ
00
1
ey
00
/P Mesh Type : In-plane Thickness direction
E1L4-T1= 4x4 1 per material layer
F14-T2= 4x4 2 per material layer
EL4-T3= 4x4 3 per material layer
EL8-T1= 8x8 1 per material layer
EL8-T2= 8x8 2 per material layer
EL8-T3= 8x8 3 per material layer

(b)
Figure 6. Typical geometry, computational domain and
boundary conditions of a simply supported cross-ply lami-
nate.
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Figure 7. Distributions of 7.4, and transverse damage
eigenvalue at (z = L/2,y = L/2) through the thickness.

PROGRESSIVE DAMAGE AND GLOBAL
FAILURE OF A SIMPLY SUPPORTED
LAMINATE
We first consider the progressive damage of a sim-
ply supported, square, {0/90/90/0) cross-ply laminate
subjected to a uniform distributed transverse pressure.
Figure 6 shows the geometry and boundary conditions
for the simply supported laminate. The boundary
conditions are defined for the computational domain
is reduced to a quadrant of the laminate via symmetry
conditions that exist on the two planes defined by z = 0
and y = 0. The span to thickness ratio of the laminate
is chosen to be L/t = 10 in order to ensure that the
transverse shear effects play a significant role in the
stress field of the laminate. For this example problem,
the fiber-reinforced composite material used for each
of the four plies is described by the following set of

homogenized material coefficients.

A uniform transverse load is imposed by
q(x,y,t/2) = qo on the mid-plane of the laminate
in the z-direction. In the solution procedure, the
magnitude of the uniform distributed transverse load is
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Figure 8. Distributions of 7,., and thickness direction
damage eigenvalue at (z = L/2,y = L/2) through the
thickness.

increased until the global failure occurs. The objective
to perform this example is to investigate the effects
of transverse discretization level and 2-1) mesh density
on the predicted local damage eigenvalues, and global
failure load of the laminate. The effect of in-plane mesh
density is investigated using uniform 4x4 and 8x8&
meshes of 2-D &-node quadratic quadrilateral elements
with one, two or three discretizations through the
thickness of each material layers.

Figure 7 shows distributions of 7, and ¢ (dam-
age eigenvalue) through the thickness of the laminate
at x = L/2,y = L/2. It is known that the in-plane
stresses of o,,, and 7., have more affects on ¢,. At
a considered point, o, can be neglected rather than
Tay. Considering the bending nature of the loading,
it is expected that, the in-plane stresses are increased
by increasing the distance from the mid-plane and
the in-plane damage eigenvalues are also increased.
These facts can also be seen from the results obtained
for this example in Figure 8. This figure also shows
that there are not considerable differences between the
results obtained for the in-plane stresses and damage

eigenvalue with various discretizations through the
thickness and various in-plane meshes. Therefore, even
using a 4x4 mesh may lead to the acceptable results.

Distributions of r,, and damage eigenvalue, ¢z,
at {z = L/2,y = 0) through the thickness of the
laminate are shown in Figure & It is noted that
the ¢3 parameter depends on the out of plane shear
stresses, 7., and 7,,. Figure 8 also shows that the
behavior of ¢3 is similar to the behavior of 7, and it
has a maximum value at the mid-plane. This figure
also shows that various in-plane mesh densities have
not considerable effects on the obtained results. In
contrast, dividing the materials layers through the
thickness has significant effects on the obtained results,
especially on the outer material layers (layers close to
the laminate free surfaces). By increasing the thickness
discritization, the obtained 7., and the corresponding
damage eigenvalue, ¢3, tend to zero at the laminate free
surfaces. It is noted that the values of ¢» had almost
the same values of ¢3 at the mid-plane surface (except
at the corners). Therefore, it can be predicted that, if
the uniform applied pressure is increased, delamination
type damage may occur at the mid-plane surface of
this laminate. Figure 9 shows the variation of damage
eigenvalues versus the applied transverse pressure at
{(r =L/2,y=0.0,2=0.0) and (= L/2,y=L/2, 5=
t/2). The trend of increasing the ¢» values at the
corner doesn’t show a damage condition in the applied
pressure range. However, the trend of increasing the
do and é3 at (x = L/2,y = 0.0,z = 0.0) which ¢ and
@3 have almost the same values show that the damage
eigenvalues tend to unity and therefore damage may
occur at this point earlier than the corners.

Table 1 shows the predicted global failure loads
of laminates with various transverse discretization and
2-D mesh density. Resolution of the peak transverse
shear strain value can affect a progressive damage
analysis of fiber-reinforced composite materials. These
materials tend to be relatively weak in transverse shear;
consequently, the rate of local damage accumulation is
quite sensitive to the local magnitude of the transverse
shear strain. On the coarse 4x4 2-1 mesh, with one
division per each material layer predicts a global failure
load that is almost 8% higher than that predicted by
the most refined model (4x4 2-D mesh with 3 divisions
per each material layer). Thus, it can be concluded
that by increasing the transverse discretization the

Table 1. Effect of 2-D mesh density and transverse
discretization of material layers on global failure load, ¢o
(MPa), for a simply supported [0/90]s laminate.

2D Mesh density

Thickness Discretization

4x4 8x8
1 div. per Mat. Layer qo=14.12 qo=14.07
2 div. per Mat. Layer qo=13.4 qp=13.325
3 div. per Mat. Layer qo=13.175 qo=13.125




predicted global failure load is decreased. In addition,
the differences between the predicted global failure
loads with 2 and 3 division per each material layer
is about 4 times smaller than the differences obtained
with 1 to 2 division per material layer, indicating
the numerical convergence by increasing the number
of divisions per material layer. It is noted that the
global failure load is slightly decreased as the 2-D mesh
density increases.

TENSION TEST LAMINATES
In this section, elastic-damage analyses are performed
for four different symmetric angle-ply laminates speci-
mens including free edge effects. The obtained results
are compared with the available experimental results
to validate the developed procedure and code based
on the CDM theory. For this purpose three angle-ply
lay-ups of [10/-10]2s, [30/-30]2s, [45/-45]2s and a quasi-
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Figure 9. The damage eigenvalues versus the applied
transverse pressure at {(r = L/2,y = 0.0,z = 0.0) and
(z= L2,y = L/2,z=1/2).
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Figure 10. Elastic-damage and experimental average axial
stress versus applied axial strain for various lay-ups.
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isotropic lay-up of [0/45/-45/90]s made of T300/5208
graphite-epoxy are considered.

The following homogenized material coefficients
are also used for the fiber-reinforced composite

material. Elastic constants for the un-damaged
T300/5208 [19] are Ey; = 137.11 GPa; Egy =
E33 = 9.58 GP&, P1o=l13=— 1/232028; and

G1o=G13=G93=4.48 GPa. The damage surface and
hardening constants using Barbero et.al. approach [25]
are also Jy1= 0.1557320185e-14; Joo= 0.5066112225e-
13; J33=0.1676262159%-13;c%, and cf.

The obtained average axial stress versus applied
axial strain from the elastic-damage analyses are com-
pared with the experimental results [19] for various
lay-ups in Figure 10. It is worth to note that the
CDM analyses were performed up to the almost the
same stress level of experimental failure point for each
specimen. This figure shows a good agreement be-
tween the obtained responses from CDM analyses and
experimental results. The more accurate prediction
of the results for the shear stress dominant lay-up
of [45/-4512s may be due to the obtained material
characterization for damage initiation and hardening
from the pure in-plane shear tests in [25]. For the
other lay-ups such as [10/-10]2s and [30/-30]2s the
dominant damage mechanism near the final failure is
delamination. Therefore, for more accurate prediction
of the overall responses and final failure of these lay-
ups, the material characterization of thin interface
layers between each two layers of the laminates have
to be performed and implemented in to the CDM
analyses.

CONCLUSIONS
Continuum damage mechanics was implemented to
the laminated composites using finite element method
including layered 2D elements with layer-wise plate
theory. Initiation and propagation of various damage
mechanisms in composite laminates can be predicted
using the developed procedure.

The resulting layer-wise finite element model was
shown to be stable and efficient for the simulation of
progressive damage in composite laminates. It was
shown that using different types of damage harden-
ing rules may lead to considerable differences in the
progressive damage behavior of the laminates. For
the simply supported laminate subjected to a uniform
distributed transverse load, it was shown that there
are not considerable differences between the results ob-
tained for the in-plane stresses and damage eigenvalue
with various discretizations through the thickness and
various in-plane meshes. In addition, various in-plane
mesh densities have not considerable effects on the
obtained results. In contrast, dividing the materials
layers through the thickness has significant effects on
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the obtained results, especially on the outer material
layers. It was shown that there is a good agreement
between the obtained average axial stress versus ap-
plied axial strain responses from CDM analyses and
experimental results for various laminates.
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