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Evaluation of 2-D Aeroelastic Models

Based on Indicial Aerodynamic Theory

and Vortex Lattice Method in Flutter
and Gust Response Determination

S.A. Sina ', M. Kheiri?, H. Haddadpour®, H. Razie*

Two 2-D aeroclastic models are presented here to determine instability
boundary {flutter speed) and gqust response of a typical section airfoil with
degrees of freedom in pitch and plunge directions. To build these 2-D aeroelastic
models, two different aerodynamic theories including Indicial Aerodynamic
Theory and Vorter Lattice Method (VLM) have been employed. Also, a 3-
D aeroelastic framework constructed using Boundary Element Method (BEM)
and modal technique is used to show the accuracy and reliability of the presented
2-D aeroelastic models. The methods reviewed in this study are used to predict
the non-dimensional flutter speed and its corresponding frequency for a typical
section awrfoil (for the 3-D model a high aspect ratio wing with the same cross-
sectional characteristics is used) Then, a group of figures show how different
time-marching schemes can change the dynamic responses due to the sharp edge
gust. Also, a set of figures demonstrate comparisons between the 2-D aeroelastic
models, and also, with the 3-D model. As seen from the results presented in this
study, 2-D aeroelastic models output a lower non-dimensional flutter speed than
the 3-D model. In addition, the dynamic responses due to the sharp edge qust
predicted by the 2-D models show larger amplitudes than the 5-D model. Thas
means that since the 2-D aeroelastic models can overestimate the dynamical
behavior such as flutter speed and responses to the sharp edge gust, they can be

used in the preliminary design steps to reduce the cost and to save time.

INTRODUCTION
In the recent years, significant progress has been made
to predict the flutter speed and the forced response
of isolated airfoils, cascades of airfoils, wings and even
complete aircraft configurations. In the case of simple
harmonic motion of an airfoil, as a pioneering work,
Theodorsen presented a solution to the unsteady flow
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which is known as Theodorsen function {1]. This seems
to be the first place where the important integrals
arising from the wake circulation are identified as
Bessel functions. But the main drawback of this work
is its limitation to account only for periodic pitching
and plunging motions, and therefore, it cannot deal
with unsteady phenomena like rapid maneuvers and
gust entry. Thus, two different approaches have been
developed which were used extensively in solving these
types of problems. The first one (from the historical
point of view) consists of direct numerical approach to
some of the integral equations of the vortex sheet, and
the other one employs Fourier-Integral superposition of
the linear response of simple harmonic motion. There-
fore, Fourier-Integral transform of the Theodorsen
function along with curve fitting techniques leads to
two important indicial functions called Wagner and
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Kussner functions. Wagner deals with the response
to the step change in the airfoil’s angle of attack,
and Kussner comes up in the case of response to the
sharp edge gust. Then, a solution to the unsteady
aerodynamic problem due to an arbitrary motion of
the airfoil in the time domain will be obtained through
Duhamel superposition integral [2].

Several aerodynamic models have been employed
up to now within the numerical methods developed for
aeroelasticity problems. These range from classical,
incompressible, potential flow to viscous, full Navier-
Stokes models. Here we intend to focus on those
aerodynamic models which are based on the well-
established panel methods. Generally, in these meth-
ods, a distribution of singularity elements are obtained
according to the governing equations and existing
boundary conditions. Thus, from the computational
viewpoint, these methods seem to be more economical
than those methods which solve the whole flow-field.
In this study, two different aerodynamic models based
on Vortex Lattice Method (VLM) and Boundary El-
ement Method (BEM) are considered. The first one
is a classical method, which relies on developing a
distribution of vortices on the surface of the lifting
body. An integral representation of any potential flow,
which assumes incompressible, inviscid and irrotational
flow, in terms of singularity distributions is obtained by
applying Green’s theorem {3, 4]. The second method is
the BEM, in which the boundaries of body immersed in
the flow-field will be discretized, and the adapted form
of the governing equations will be solved only on its
boundaries rather than in the whole flow-field. In fact,
BEM will reduce the dimensions of the problem by one.
Thus, it will require lower CPU time and cost to handle
numerical problems with respect to the other numerical
solvers. For more details on this method, its historical
development, powerful points and its weaknesses see
[5-8].

As a general rule, a numerical aeroelastic method
builds a discretized form of governing equations (in-
cluding structural dynamic and aerodynamic equa-
tions) on a computational mesh, and that reduced
form marches from one time level to another. For
example, Davis and Bendiksen [9] applied a time
marching scheme to the two dimensional Euler equa-
tions to find the unsteady flow about vibrating airfoils.
Moreover, Batina [10] computed the time dependent
Euler flow about a complete harmonically deforming
aircraft. Almost at the same time, Robinson et.al.
[11] performed an aeroelastic analysis of wings using
the Euler equations with a deforming mesh. Rausch
et.al. [12] also performed a three dimensional time
marching aeroelastic analysis using an unstructured
Grid Euler method. Although this approach was
relatively straightforward, it was computationally ex-
pensive. Furthermore, separate analysis had to be
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performed for each reduced velocity or mass ratio of
interest.

Although a variety of methods and approaches
have been presented and developed to reduce compu-
tation time and memory usage in the aerodynamic
and aeroelastic numerical solutions, these reduction
schemes are still very demanding. Hence, a novel
method based on the eigenanalysis of unsteady flow has
been developed to reduce the numerical computations
in aeroelastic problems. In this approach, which is
very similar to the modal technique in the structural
dynamics, only a small number of modes are used in
computations. Therefore, an aeroelastic modal model
will be formed with a minimum number of degrees
of freedom. This model, which is called Reduced
Order Model (ROM)}, was first presented by Hall [13] in
the eigen analysis of the unsteady flow around airfoil,
cascade and wing. Then, Romanowski and Dowell [14]
used the eigen modes of a time domain Euler code to
build Reduced Order Models of flow about isolated
airfoils. Moreover, Esfahanian and Behbahaninejad
[15] applied ROM to the subsonic unsteady flow about
complex configurations using BEM.

In this paper, we use both Indicial Aerodynamic
Theory and VLM to simulate unsteady aerodynamics
around a 2-D plunging-pitching airfoil. Mainly, we
intend to make some comparisons between the exact
analytical aerodynamic model and VLM in finding
flutter speed and aeroelastic response of the airfoil to
the various gust profiles. Also, to verify the accuracy
and capability of the present 2-D aeroelastic models in
flutter and dynamic response predictions, we compare
the results with those coming from the 3-D BEM model
coupled with a structural dynamic model based on
beam theory. Thus, the remaining parts of the paper
are organized as follows:

First, the equations of motion will be addressed;
then, each Indicial Aerodynamic Theory, VLM and
BEM is presented subsequently. In section 2, a general
description for time marching schemes is presented.
Then, some numerical results are given to show and
verify the accuracy and capability of the present 2-
D aeroelastic models in predicting flutter speed and
dynamic response.

EQUATIONS OF MOTION
The general form of aeroelastic equations for a typical
section is given below:

[M]{g} + [CHqg}t + [K g} + ¢ [QH{g} = 0, 1)

where [M], [C] and [K] are generalized structural mass,
damping and stiffness matrices, respectively and {¢}
is the generalized coordinate vector and ¢ is the
dynamic pressure. The generalized structural matrices
can be set easily based on the structural modeling
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scheme and Lagrange’s equation. For example, in the
case of a typical section airfoil shown in Figure 1, these
matrices are given by [16].

Moreover, the matrix [Q)] defines the generalized
aerodynamic forces as follows:

faero = qoc [Q] {a} . (2)

Indicial Aerodynamic Theory
The discrete sharp edge gust model used here can be
expressed as:

we(t) = H(t)Uq, (3)

where Ug is a measure of gust intensity, and H(¢) is the
Heaviside’s step function. The total lift and pitching
moment coefficients can be obtained as [2]:

dt

[ / dwe (o) -I
G (t) = 27 fwg (0) 4 (s) + (s —o)do},
oo |

0
1
cm (t) = b (9

Z

+ 0) O (1), (4)

where #(s) is Kussner function, and s is the reduced
time (s = %) A convenient analytical form of the
Kussner function, which is represented in a simple
exponential form, is attributed to Sears and Sparks
[17}, and is written as follows:

P(s)m1—0.5e 0185 057108 {5)

Therefore, by substituting Eqs. (4) and (5) in Eq.
(1), the governing aeroelastic equations based on the
indicial aerodynamic theory will be built.

2-D Vortex Lattice Method

In this method, the airfoil and its wake are divided
into panels with the same length. Each panel has one
vortex point (£;) and one collocation point (x;). The
vortex point, where the vortex strength is assumed
to be concentrated, is located at the quarter of the
chord length, and the collocation point is located in

/

Figure 1. Schematic of a typical airfoil.

~1

three quarter of the chord length. Applying the no-
penetration condition yields to the well-known Biot-
Savart law as given below [3, 18]:

M+N

L
LD D = P

g=1

i=1,..., M, (6)

where w; is the downwash at the ith collocation point,
and I'; is the strength of the jth vortex. Also, M is the
number of panels on the airfoil, and N is the number of
panels placed on the wake. The downwash vector can
be stated in terms of airfoil’s plunging (h) and pitching
{a) amplitudes as given in Eq. (7):

h h -
{wh =[]y 2 { a } + U [L2] g0 { a } ) (M)
where matrices [I1] and {I,] are as follows:
1 oxs — h{l+a) 0 1

(hl= 1 : :
1 s —b(1+a) 0 1

Hence, Eq. (6) can be cast in the matrix form as given
in the following equation:

{wh =1 Ky [Kelyxn }{ Ei } )

According to the Kelvin’s circulation theorem the time
rate of change of circulation around any closed curve
consisting of the same fluid elements is zero [18];
therefore, the total circulation has to be constant.

d(T, +T,)
dt

The vortex is shed with the free stream velocity into

the wake. So, the latter equation is simplified as below:

ar ar

— +U— =20. 11
ot T on (1)
The lift force (L) and the pitching moment (M, )
about the elastic axis are obtained by using the

Bernoulli equation as appears below:

=0. (10)

)

M M
L=pUY Titpy > TiAz;, (12)
i=1

i=1 j=1

M M b
Moo =pU» (G —ab)Ti+ p> (G —ab) Az > T,
i=1 i=1 Jj=1

(13)

where p is the flow density, b is the half of the chord
length, and ab is the distance of the elastic axis aft
of the mid-chord. If one plugs Eqgs. (6-13) into the
general form of aeroelastic equation (Eq. (1)), it will
give the aeroelastic equations based on VLM. Later on
the time-marching scheme used to solve these equations
is discussed.
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Figure 2. Schematic of the flow-field around a typical
body.
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Figure 3. FEffect of different time marching schemes on
subcritical (U = 0.75 Uy) dynamic responses of the airfoil
subjected to a sharp edge gust (U, = 0.738Us); (a)
plunging, (b) pitching.

3-D Boundary Element Method

For a flow which is incompressible, ir-rotational and
inviscid, the Navier-Stokes equations will reduce to a
simple well-known form:

V2¢ =0, (14)

where @ is the total velocity potential of the flow-field,
and V?() is the Laplacian operator. Some analyti-
cal techniques were developed to solve the potential
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flow problems, but these can only be applied when
major simplifications were made on the geometrical
boundary conditions. Hence, some numerical methods
have been proposed to solve more realistic geometries
whose geometrical boundary conditions will be treated
on their actual surface. Panel method is known as
a powerful numerical method for flow-field solution
around complex configurations. For a general problem
like what is shown in Figure 2, the integral form of
the governing equation is obtained after some ma-
nipulations by applyving Green’s second identity, and
considering the existing boundaries {6]. In addition, it
is assumed that each panel located on the body or wake
carries a constant velocity potential.

2w¢p=/ {@ 0 (Ulﬂ(zm/mw 2 Lyas.

AN T r ON ON T

(15)

Equation 15 gives the velocity potential on an arbitrary
panel {¢,) in terms of the influences made by panels
located on the body (the first integral on the r.h.s),
and those placed on the wake (the second integral on
the r.h.s).

This integral form can be cast to a set of algebraic
system of equations according to the discretization
made on the domain.

Ny N N a¢
dp, — Z CrEO P, *Z cnedop, = Z due(—3)ps
k=1,ksh B=1 k=1,k5th ON

(16)

The latter formulation gives the perturbed velocity
potential on each panel (¢p, ) in terms of the potential
distributed on all other panels on the body and wake
{(6p,, Aép, ), and the downwash ((5—]‘%) p, ) induced on
the body panels. Also, in this equation, ¢z, and dyy, are
influence coefficients, which are computed numerically
based on the method presented in [5]. In addition,
N, and N, are the number of panels placed on the
body and wake, respectively, and N is the outward
unit normal vector of each panel. Some additional
equations must be included to find a unique solution.
These equations are provided through applying Kutta
condition and Kelvin’s circulation theorem [6, 8].

TIME MARCHING SCHEMES

Two independent disciplines (aerodynamics and struc-
tural dynamics) are brought together through the
downwash term and this new coupled set governs
the aeroelastic equations [3]. The aeroelastic model
according to each aerodynamic model leads to a set of
first order time derivative differential equations shown
below:

(Al {n} + [Bl {n} = {W} 17
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where [A], [B] and {w} are matrices and a vector
of known values, respectively, and {7} represents the
unknown vector. In order to solve Eq. (18) in the time
domain a # family of approximation methods will be
introduced by using linear interpolation at two time
steps as given below:

Loy = T o oy

oG 1 o

(18)

By putting different values for 8, various time-marching
schemes are achieved. The following equation sum-
marizes four different time-marching schemes used in
numerical calculations.

0 Forward scheme
1/2  Crank — Nicolson scheme

2/3  Galerkin Method
1 Backwardscheme

(19)

where forward and backward difference schemes are
conditionally stable, and the other two schemes are
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Figure 4. Subcritical dynamic responses of the airfoil

subjected to a sharp edge gust (U, = 0.738U;) based
on different 2-D aerodynamic theories; (a) plunging, (b)
pitching.

unconditionally stable. The following equation gives
the discretized form of Eq. (18) obtained using Eq. (19):

[A] {m}™*" = [B] {m}" + (W}, (20)
where

[A] = [4] + 62 [B],

[B] = [4] — (1 —0) At [B]. (21)

The desired time marching scheme is initiated from a
starting time, and is repeated up to a desirable final
time. In this regard, more information is provided
in {19]. In this paper, all presented time marching
schemes are examined via the 2-D aeroelastic model
based on VLM, whereas the 3-D aeroelastic model
based on BEM is solved using backward scheme only.

NUMERICAL RESULTS
The numerical results are presented for a typical section
airfoil shown in Figure 1, and characterized by the
values in Table 1. Also, a relatively high aspect ratio
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Figure 5. Critical dynamic responses of the airfoil

subjected to a sharp edge gust (U, = 0.738U;) based
on different 2-D aerodynamic theories; (a) plunging, (b)
pitching.
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Figure 6. Supercritical dynamic responses of the airfoil
subjected to a sharp edge gust based (U, = 0.738 Uy)
on different 2-1 aerodynamic theories; (a) plunging, (b)
pitching.

wing with the same non-dimensional cross sectional
characteristics as the airfoil is used within the 3-D
aeroelastic model based on the BEM to show the
accuracy and reliability of the 2-D aeroelastic models
in flutter and gust response determination. Here,
the subecritical, critical and supercritical conditions

Table 1. Non-dimensional characteristics of the airfoil.

Parameter Description Value
w R R .
o= 2k The bending-torsion frequency ratio 0.4
wy
a The elastic axis location -0.2
Ty = % The dimensionless static unbalance 0.1
= - The density ratio 20
wph? -
T R . . R P
‘ri = e The dimensionless radius of gyration 0.25

Table 2. Non-dimensional flutter speed obtained with
different methods.
Indicial Aero. | VLM | Peters et.ol. [16] | BEM |

u

| g | 2.168 | 2.182 | 2.165 | 2.48 |
Wy

| o | 0.644 | 0.675 | 0.655 | 0.636 |
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Figure 7. Pitching and plunging responses of the airfoil
subjected to a sin profile gust; (a) subcritical, (b) supercrit-
ical.

correspond to the conditions where the flow velocity
is lower, equal and higher than the flutter speed,
respectively.

In the first part of results, the non-dimensional
flutter speed and non-dimensional corresponding fre-
quency are given in Table 2. The numerical values of
the parameters are given in Table 1. For the 3-D model,
a wing with a relatively high aspect ratio (AR = 7) is
used, and the cross-sectional characteristics are set to
be the same as the airfoil. As seen, the results given by
the 2-D models as well as the previous work by Peters
et.al. [16] show a reasonable agreement with each other
for both non-dimensional flutter speed and the non-
dimensional corresponding frequency. However, it is
quite interesting that the 3-D model based on BEM
predicted higher (non-dimensional) flutter speed and
lower (non-dimensional) frequency. In fact the values
given by 2-D and 3-D models are in a reasonable range,
and fortunately the 2-D models give lower values, which
result in an overestimate of the flutter speed.

Figure 3 shows how different time marching
schemes can change the subcritical dynamic response
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for the 2-D aeroelastic model based on VLM. It is
seen from the figure that the forward scheme gives a
really different behavior relative to the other schemes.
In fact, the stability of the finite difference schemes
as applied to linear partial differential equations can
be investigated by performing Von Neumann stability
analysis (also known as Fourier stability analysis) [20].
Indeed, all the schemes could predict almost the same
response frequency and also, converging behavior for
both the plunging and pitching motions.

In the next set of results (Figures 4 to 6}, the
aeroelastic models based on Indicial Aerodynamics
and VLM have been compared through the subcritical
(U = 0.75U;), critical (U = Uy;) and supercritical
(U = 1.05Uy) responses due to the sharp edge gust.
The gust intensity is U, = 0.0738U;. These figures
show that the Crank Nicolson and Galerkin schemes
are closely in agreement with the analytical results
obtained via indicial aerodynamics in both transient
and steady state responses. Also, this set of figures con-
firms the converging, limit-cycling and diverging forms
of responses for subcritical, critical and supercritical
conditions, respectively.

0

-0.05 -

-0.1

h/b

0.2

0256 N b 1

Time (s)

(a)

2 4 6

8
Time (s)

(b)
Figure 8. Subcritical dynamic responses of the wingtip
subjected to a sharp edge gust (U, = 0.738 U;) using BEM;
(a) plunging, (b) pitching.

The next figure (Figure 7) simply gives the
subcritical and supercritical dynamic responses of the
airfoil obtained through the model constructed by
using VLM when a sin-profile gust impacts it. Here,
it is assumed that the sin-profile gust has the same
intensity as the sharp edge gust used in the previous
numerical results. Oscillations in both plunging and
pitching directions are presented in the figure. It is
quite clear that the frequencies of responses in the
plunging and pitching directions are almost the same
as each other whereas this is not true for the results
shown in the previous figures. There (for the sharp
edge gust responses), the pitching frequency usually is
higher than the frequency of oscillations in the plunging
direction.

The last group of figures (Figure 8 and 9) in-
cludes the subcritical and supercritical responses of
the wingtip given by BEM. Generally speaking, the
responses frequencies and amplitudes are lower in case
of results provided by 3-D model than the results given
by the 2-D models {compare Figure 8 with Figure 4
and Figure 5 with Figure 9). Also, it seems that in
the subcritical condition (see Figures 4 and 8) the 2-
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0 (rad)
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8
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Figure 9. Supercritical dynamic responses of the wingtip
subjected to a sharp edge gust (U, = 0.738 U;) using BEM;
(a) plunging, (b) pitching.



D aeroelastic models take more damping into account
than the 3-D model, and that’s why they converge more
quickly. Moreover, in case of the supercritical condi-
tion, one can say that the 2-D models impose higher
negative damping values than to the 3-D aeroelastic
model.

CONCLUSION

First, two different aerodynamic theories including
Indicial Aerodynamics and Vortex lattice Method
{(VLM), which can be used to make 2-D aeroelastic
models, have been reviewed. Then, a 3-D aeroelastic
framework made of Boundary Element Method (BEM)
and Modal technique has been presented. This model
has been used to verify and show the reliability and per-
formance of the 2-D models to find the stability margin
and dynamic responses to the gust. Latter, a veriety
of numerical results has been generated to present,
e.g. the effects of different time marching schemes on
predicting the dynamic responses of the airfoil entering
the sharp edge gust. Also, some comparisons have been
made between the 2-D aeroelastic models and the 3-D
model. These show that if the 2-D aeroelastic models
based on either Indicial Aerodynamics or VLM are used
in the preliminary design steps, the design would be
on the safe side since they overestimate the instability
onset and the dynamic responses.
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