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Preload Effect on Nonlinear Dynamic Behavior

of Aerodynamic Two-Lobe Journal Bearings
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This paper presents the effect of preload on nonlinear dynamic behavior of
a Tigid rotor supported by two-lobe aerodynamic noncircular journal bearing. A
finite element method is employed to solve the Reynolds equation in static and
dynamical states and the dynamical equations are solved using Runge-Kutta
method.  To analyze the behavior of the rotor center in the horizontal and
vertical directions under different operating conditions, the dynamic trajectory,
the power spectra, the Poincare maps and the bifurcation diagrams are used.
From. this study, results show how the complex dynamic behawior of this type
of system comprising periodic, KT -periodic and quasi-periodic responses of the
rotor center varies with changes in preload values by considering two bearing
aspect ratios. The results of this study contribute to a better understanding
of the nonlinear dynamics of two-lobe aerodynamic noncircular journal bearing

system.
NOMENCLATURE p Absolute gas pressure, (-5 )
C Conventional radial clearance, (m) P Partial gas pressure, (25
C. Mm{)r clearance.when rotor and p. Ambient pressure, ( N )
bearing geometric centers are ~ "
coincident, (m) t Time, (s)
R Rotor radius, (m) U Peripheral speed of the rotor in
Fxo,Fye Components of the fluid film force on dynamical state, ()
the rotor in the steady state, (V) Xy Cartesian axes with origin at the
Fx,Fy Compounents of the fluid film force on bearing geometric center, (m)
the rotor in the dynamical state, (N) X0,Y50 Coordinates of the rotor center in
W Static load, (N) steady state, (m)
B Film thickness, (m) XY Coordinates of the rotor center in
hic , (m IR !
_ ) dynamical state, (m)
L Bearing length, (m) . .
i T,y Perturbation coordinates of the
M Rotor mass, (Kg) rotor center measured from its static
Ny Shape function equilibrium position, {m)
Te Number of nodes in an element V., V, Dimensionless velocity of the rotor
ny Number of nodes in fluid domain center in horizontal and vertical
directions
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A Bearing number

7} Ambient dynamic viscosity of the
lubricant, (%)

d Angular coordinate measured from X
— axis

05 Angle of lobe line of centers

0%, 65 Angles at the leading and trailing edge
of the lobe

w Rotational speed of the rotor, (TZ’”’)

7 Mass eccentricity of the rotor, (m)

T Dimensionless time

£ Coordinate along bearing axis
measured from mid span, (m)

Superscripts

e Element numbers

k Lobe designation

Subscripts

0 Static equilibrium position of the rotor
bearing at 7 =0

i Tteration number

INTRODUCTION

During the past few decades, aerodynamic bearings
have received great attention from practical and analyt-
ical tribologists. The rapid growth of gas bearing tech-
nology is mainly due to its wide range of engineering
application such as precision machine tools, high speed
aircraft, nuclear reactors, textile spindles, dental drills,
ete. Aerodynamic journal bearings have the advantage
of negligible friction, cleanliness and easy availability
of air as the lubricant; however, poor dynamic stability
due to low viscosity is a major problem. Therefore,
investigation of dynamical behavior is necessary to
avoid settling the system in a region whose control is
severe.

In 1961, Castelli and Elrod [1] made a significant
contribution towards a better understanding of the
complex fluid dynamic phenomenon in gas lubrica-
tion. These authors presented their assessment of
the validity of the assumptions and in the analysis of
earlier investigators. They neglected the pressure time
derivative term in the Reynolds equation, and obtained
the rotor center orbits for a specified set of operating
and initial conditions by numerical integration of the
equations of motion of the rotor.

Ausman [2] solved the linearized Reynolds equa-
tion of self acting bearings to investigate the stability
of the static equilibrium position of the rotor. In
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1978, Holmes et.al. [3] discussed aperiodic behavior
in short journal bearings. They noted that moderate
level of unbalance and high eccentricity ratio led to
an aperiodic response of the shaft at speeds above
a critical threshold value. Chandra et.al. [4] studied
static and dynamic characteristics of four gas lubri-
cated multi-lobe journal bearing configurations. In
their work, linearized Reynolds equation was solved
by finite element method and comparative stability of
four gas-lubricated noncircular journal bearing config-
urations was done. In 1994, Zhao et.al. [5] investigated
nonlinear dynamic behavior of an eccentric squeeze
film damper-mounted rigid rotor system. The authors
showed that for large values of unbalance and static
misalignment, the sub-harmonic and quasi-periodic
motions generated at speeds of more than twice the
system critical speed were bifurcated from the unbal-
ance harmonic solution.

Nonlinear dynamic behavior such as sub-
harmonic, quasi-periodic and chaotic motions for suit-
able values of system parameters in a rigid rotor
supported by short bearings were reported by Adiletta
et.al. through the theoretical and experimental investi-
gations [6-8]. Czolezynski and Kapitaniak [9] described
a method which allows control of the Hopf bifurcation
of a rotor system supported by two gas bearings.
They showed that the damage caused by the growing
amplitude of self-excited vibrations can be avoided by
proper selection of stiffness and damping coefficients of
the air ring.

Nonlinear dynamic and bifurcation analysis of
a rigid rotor [10} and a flexible rotor {11] supported
by self-acting gas journal bearing were studied by
Wang et.al.. In both works, by considering rotor
mass and rotational speed as the parameters of system,
periodic and sub-harmonic motions of the rotor center
were reported. In 2005, Wang Jiun-Shen and Wang
Cheng-Chi {12] presented bifurcation of a rigid rotor
by relative short aerodynamic journal bearings. They
discussed how the existence of a complex dynamic be-
havior comprises periodic and sub-harmonic responses
of the rotor center. Also, Wang [13] provided a further
understanding of a rigid rotor supported by a relatively
short externally pressurized porous gas journal bearing
and showed the dynamic behavior of the system with
respect to rotor mass and bearing number.

In 2007, Wang et.al. studied the behavior of a
rigid rotor [14] and a flexible rotor {15] supported by a
herringbone-grooved gas journal bearing system. Also,
Wang provided a further understanding of a flexible ro-
tor supported by a relatively short herringbone-grooved
gas journal bearing system [16]. Their analysis revealed
a complex dynamic behavior comprising periodic and
quasi-periodic responses of the system.

In references [10-16], a finite difference method
with a successive over-relation method was employed



Preload Effect on Nonlinear Dynamic Behavior of Aerodynamic Two-Lobe Journal Bearings 147

to solve the Reynolds equation. In later studies, Wang
and Yau [17] and Wang [18] used a hybrid numeri-
cal method combining the differential transformation
method and the finite difference method to study the
nonlinear dynamic behavior of a rigid rotor and a
flexible rotor supported by a spherical gas-lubricated
bearing system, respectively.

Rahmatabadi and Rashidi investigated static and
dynamic characteristics of noncircular gas-lubricated
journal bearings by considering the effect of mount
angle [19] and preload [20]. They showed noncircu-
lar bearings have better dynamic characteristics than
circular bearings. Also, by using a suitable value for
the mount angle, stability margin can be increased.

Although previous works provide insight into the
behavior of the system, the bifurcation and nonlinear
dynamic behavior of the gas film in an aerodynamic
noncircular journal bearing has not been examined.
Therefore, this paper presents the effect of preload on
nonlinear dynamic behavior of a rigid rotor supported
by two-lobe noncircular aerodynamic journal bearing
{Figure 1).

The amount of preload of a noncircular bearing
determines its noncircularity or ellipticity relative to
a plane journal bearing. For zero preload, the rotor
touches the lobes at their line of centers whereas with
unit preload, a lobed bearing reduces into an axial
groove plane journal bearing [20].

Due to the nonlinearity of the gas film pressure,
it is very difficult to solve the Reynolds equation
analytically. Therefore, finite element methods have
been employed to obtain the solution, and then Runge-
Kutta method has been subsequently used to solve this
equation and equations of motion simultaneously to
obtain position, velocity and acceleration of the rotor
center.

MATHEMATICAL ANALYSIS

Governing equations

The geometric details of a two-lobe noncircular bearing
configuration are shown in Figure 1. Analysis of
aerodynamic noncircular bearing involves solution of
the governing equations separately for an individual
lobe of the bearing, treating each lobe as an inde-
pendent partial bearing. To generalize the analysis
for all noncircular geometries, the film geometry of
each lobe is described with reference to bearing fixed
Cartesian axes (Figure 1). Thus, the film thickness in
the clearance space of the kth lobe, with the rotorin a
dynamical state is expressed as [4}:

h=C—(X;)cosf— (Y;)sinf+ (C— C,,) cos(d— 6F)
(1)

where (X;,Y;) is the rotor center coordinate in the
dynamical state and 8% is angle of lobe line of centers.

DYNAMICAL STATE
ROTOR POSITION

9

o

Oj (X, Yi)

lobe2 -~

(b)
Figure 1. (a) Model of a rigid rotor supported by two
aerodynamic noncircular journal bearings and (b) geomet-
ric model of two-lobe noncircular bearing.

C and C,, are conventional radial clearance and minor
clearance, when journal and bearing geometric centers
are coincident. The pressure governing equation of
isothermal flow field in a bearing lobe is modeled by
the Reynolds equation as follows [11]:

9 (-y.,0P 9 (.4 ,0P
_pipr IR Yl
X {h X }+ Y {h Y }

ax T 28% (P*h) (2)

in which P* is the absolute gas pressure, /i is the gas
viscosity, U is the peripheral speed of the rotor and f
is the time.

It will be more convenient to express P* as:

P*=P,+P (3)

where P, and P are the ambient and partial pressure,
respectively.
In order to nondimensionalize Eqs. (1) and (2),

C‘m - C‘S$ ( rj-, ,7) = é‘m(}(j?}/j% X = R‘9$ V= R£$
=
&

P=P,P, U =1, = RiylU,

where wy is the rotational speed in the steady state,
and R is the rotor radius. Substituting these variables
in Eq. (1), the nondimensional film thickness can be
obtained as:

h= o= (Xj)cos — (V))sinf + (]3 — 1) cos(f — )
(4)
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and by substituting Eq. (3) in Eq. (2) and simplifying
it, the Reynolds equation in nondimensional form can
be expressed as:

o (P0G g (g

=A {Uaae + Qaﬂ {(P+1)h}

()

where # and £ are the coordinates in the circumferential
and axial directions, respectively and:

6 jiog B2
P,C?

m

A=

is the dimensionless parameter called the compressibil-
ity number or bearing number.

The Reynolds equation is a nonlinear partial
differential equation; therefore, it can be solved using
finite element method. For this purpose, let the
function variable:

U= (r)=Ph

be introduced into Eq. (5), which then becomes:

(fe{h(q/m)g‘g —(U+h) T ah}+§£{h(\ﬂ+h)a@\f}
= A (Uﬁe +9§) (T + h) (6)

For the finite element formulation, the Galerkin’s
welghted residual of Eq. (6) for an element of the
discretized space domain of ¥ field is written as:

pve 1o, av __ ph
//{ ae{h(\lf TR L

10 INCL S0 N S oh
m%{h,(\lf +h) 5 } U5 (T +h)+aj

Nidodeé =0 (T)
where NF is an approximation function and A® is the
area of the element. By considering the discretized
domain of ¥ variable and letting, the ¥ function be
approximated as:

T,

e =3 N7, (1) (8)

Jj=1

where ‘e’ refers to an element, n. is the number of nodes
in the element, N¥ ’s are the shape functions and ¥;
s are the nodal valueq of ¥ at time 7. Using Eq. (8)
in Eq. (7) and with integral sunphﬁcatlons, the finite
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element equations for an element of the discretized flow
field domain can be obtained as:

A {9} = v+ Q) (9)

in which the components of the element matrices are:

Fr = / /A NN dad (10a)
e . i e ow* 31\;;’ owr az\ff
Ve = iAH/ﬁ(\D +h){h(89 9 T o€ ot )

(qﬂgg +AU) ON; }d&d{ / / —V‘Zdedf

(10b)

o oh
i e _ € _ 7 re d
o / (T +h){h R AL}A/,Ldf

n / (@ + h 2 Neas (10¢)
o s¢ af
where S is the boundary of the element.
The assembly of Eq. (8) for all elements of ¥
domain vields the global equations:

[F]n,fxnf {\p}nfxl = {L’}‘n,pd + {Q}npd (11)
where ny is the total number of nodes.

The boundary conditions of the variables for the
solution of Eq. (11) are:

W (6,67) =W (05.6,7) =0
W (0,6,7) = (05,6,7) =0
T (f, N 7)=

W (h,+)\,7)=0 (12)
At any instant when kinematic state of the rotor center
is known, Eq. (11) comprises two variables, ¥, and @,
to be determined. However, at the internal nodes of the
discretized space domain, the flux Q; is zero and ¥, is
unknown. At the nodes on the boundaries £ = £A,
and edges of the lobes (6 and %), ¥, is known while
Q; is not known. Thus, Eq. (11) really involves as
many unknowns as the number of equations, and may
be solved by implementing the boundary conditions.
The solution of these equations yields:

{\Tl}nf “ {.‘i}nf x1

where g; = ¢, (P,7); i=1,2,...,ny

(13)
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Rotor dynamic equations and computation
procedure

In the dynamical state, the equations of motion of the
rotor can be written as:

A7 . _

m, dt_: = (FX — F)(()) + 1, pw? cos @t (14)
d*y .

L (Fy — Fyq) + m, po” sin ot (15)

where M., is the mass of rotor, j is the mass eccentricity
of the rotor and @ is the rotational speed. (Z,7) is the
perturbed position of the rotor center defined as:

=X - X0, 9=Y; Y (16)

also, (Fx, Fy) and (Fxg, Fyg) are the components of
fluid film force on the rotor in the dynamical and steady
states, respectively.

The components of fluid film force on the rotor
are given by:

Fx —Fx, | _ 5 52 cosf -
[ omn Y =-nm{ oo b s (17)

where, A is the pressure area on the rotor, Py =
Py(X;0,Y0) and P = P(X,Y.V,,V,,7) are the film
pressures in the steady state and in the dynamical
state, respectively.

The following transformation is introduced:

T = ‘/7"/6‘77“?/ - ?7/6771

and defining nondimensional groups, we have:

_ Fx _ Fx, Py
YT pRr YT pRr VT P RY
- Fy, My Crp? Ty i
= = 5 my = = s = s A
WS B R bR "7 PR

substituting these nondimensional groups into Egs.
{14-15) vields:

d’z  Fx — Fxq P
R + p— COS 7 (18)

'y  Fy — F
AR S I (19)
dr? m, m,

A, =

By defining the state variables:
Sl =T, SQ =Y, Sg - ‘IT S4 = ‘/y (20)

the equations of motion are transformed into the
following state space equations:

dS,
dr

=53 (21)

dSs
=S 22

i (22)
ds Fy — F

8o I T IXO L P sy {23)
dr m, m,
ds Fy — F

ERNRR S P sint (24)
dr my My

Equations (13) and (21-24) describe a nonlinear dy-
namic system. The equations are restated for conve-
nience:

s, _, :

(1"'/ = f; (P, 87,5953, 54,7) i=1,234

AP, .

dr = g (P,S1,SQS3,S4,T) 2:],2,“A,nf (25)

The solution procedure commences with an initial
static equilibrium state, and initial conditions are
selected from the static model. Therefore, at the
beginning, Reynolds equation should be solved in the
steady state to obtain ¥, and (X;¢,Yjs). Meanwhile,
the initial velocity of the rotor is assumed to be zero.
The numerical integration of Eq. (25) is carried out
by the fourth order Runge-Kutta method. By this
method, acceleration, velocity and displacement of the
rotor are estimated at each time step, and are utilized
for initial conditions in the next time step. Then, the
displacement of the rotor center obtained from each
step is used to update the film thickness and the new
pressure distribution can be obtained to yield the new
dynamical force by integrating it.

NUMERICAL STUDIES

Due to the high nonlinearity of gas film forces, the
system behavior is studied numerically using the finite
element method. The flow domain of each lobe of two-
lobe noncircular bearing is rectangular, therefore, four-
noded rectangular isoparametric element is employed
to mesh flow field. In this study, the fourth order
Runge-Kutta method is used for the integration of Eq.
{(25). By many trails, time interval of At = /300 is
found to be the optimal considering accuracy of the
results and computation time.

The Gauss-Siedel iteration method is employed

for the solution of Eq. (11) to obtain {\Tf

during the time integral scheme. The convergence
criterion is applied on every nodal value ¥; as:

} column

| = d .
|\pi,j+1 — \DVL‘J’| < W0 2 =1,2, LTy (26)

where j is the iteration number. This condition states
that no nodal values of ¥ in the solution field should
change by an amount greater than ¥, as a result of
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Figure 2. Trajectory of the rotor center at § = 0.42 (a); phase portraits of rotor center (b) and power spectra of rotor
displacement in horizontal (c¢) and vertical (d) directions for A = 1.
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Figure 3. Trajectory of the rotor center at § = 0.48 (a); phase portraits of rotor center (b) and power spectra of rotor
displacement in horizontal (¢} and vertical (d) directions for A = 1
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Figure 4. Trajectory of the rotor center at & = 0.516 (a); phase portraits of rotor center (b) and power spectra of rotor
displacement in horizontal (c) and vertical (d) directions for A =1
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displacement in horizontal (¢) and vertical (d) directions for A =1
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Figure 6. Trajectory of the rotor center at § = 0.554 (a); phase portraits of rotor center (b) and power spectra of rotor
displacement in horizontal (c) and vertical (d) directions for A = 1

one Gauss-Siedel iteration. In the present work \Tltol is
taken to be 1079,

The time series data of the first 600000 time
steps are excluded from dynamic behavior investigation
to ensure that the data used represent steady state
conditions. The resulting data include the orbital
paths of the rotor center. These data are then used
to generate the power spectra, Poincare maps and
bifurcation diagrams.

Fast Fourier transformation is used to obtained
power spectra of the rotor center in horizontal and
vertical directions.

To generate Poincare map, a Poincare section that
is transverse to the flow of a given dynamic system is
considered. A point on this section is a return point
of the time series at the constant time interval of T,
where T' is the driven period of the exciting force in
non-autonomous systems. The projection of a Poincare
section on the ©—y plane is related to the Poincare map
of the dynamic system. Bifurcation diagram is a useful
means to observe the nonlinear dynamic behavior of
a system. To draw a bifurcation diagram, an obtained
point on the Poincare map is used with varying preload
values by a constant step.

RESULTS AND DISCUSSION
In this paper the detailed data are as follows [10-11}:

C =3x10"m, R=0.05m,

i=18x 10*5ﬁ, P, =1.013x 105l2

m.s m
Also, the mass eccentricity of the rotor is p =
0.001 mm. Two-lobe noncircular gas bearing is loaded
by considering a bearing number of A = 25; the static
load is taken to be Wy = 506.5 N, and mass of the rotor
is specified to be m, = 25.82 Kg.

To be sure of the proper working of the prepared
algorithm, validation of our results has been done in
the following manner:

Finite difference method has been applied to
solving Reynolds equation, and instead of using Runge-
Kutta method, direct method discussed in Refs. [10-
15] has been used to obtain acceleration, velocity and
displacement of the rotor center. Table 1 shows the
results obtained from the time series data for a two-lobe
bearing through two methods, where static load and
mass of the rotor are chosen to be W, = 506.5 N and
m, = 25.8 K g, respectively. Also, the bearing number
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Table 1. Comparison of the results in the dynamical state calculated by two methods for a two-lobe bearing.

Preload Methods X ¥
T =10 T = 100 T = 1000 =10 T = 100 T = 1000
0.4 FEM -0.041972 | -0.036867 0.062038 0.025430 | -0.019359 | -0.015659
FDOM -0.041974 | -0.035860 0.061688 0.024744 | -0.019265 | -0.015123
0.5 FEM 0.070029 -0.087053 0.002880 0.012823 | -0.004511 -0.013407
FDM 0.068351 -0.086471 0.003743 0.013035 | -0.004903 | -0.013310
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Figure 9. Local bifurcation diagrams of (a) z(nT) and (b) y(nT) versus preload (0.49 < < 0.56) for A = 1.
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Figure 11. Trajectory of the rotor center at é = 0.45, (a); phase portraits of rotor center (b) and power spectra of rotor
displacement in horizontal (c) and vertical (d) directions for A = 1.5.

is taken to be A = 25. It is observed that the results
of these two methods are very close.

Case 1
In the first case, the bearing aspect ratio is taken to be
A =1 and its results are as follows:

Figures 2(a}, 3(a),... , 7(a) show the rotor center
orbits at different values of the preload. Regular
motion is shown at § = 0.42 and 0.48. But, regular
motion loses its stability and becomes irregular when
the preload is increased to ¢ = 0.516. Regular motion
can be seen at & = 0.548 again. By increasing the
preload value, irregular motion appears at § = 0.554,
and 0.558. This condition persists for all preload values
in the range 0.554 — 0.56.

From Figures 2(b), 3(b), ..., 7(b) it is observed
that the phase portraits of the rotor center are regular
at & = 0.42 and 0.48 and they then become irregular at
6 = 0.516. It can also be seen that the phase portraits
of the rotor center are regular at § = 0.548, but become
irregular at 6 = 0.554 and 0.558.

Figures 2(c,d), 3(c,d), ..., 7(c,d) show the dy-
namic responses of the rotor center in horizontal and
vertical directions. It is found that the frequency
responses of the rotor center demonstrate a harmonic
motion for the preload values § = 0.42 and 0.48 in

both directions. The frequency responses of the rotor
center become quasi-periodic motion at § = 0.516. But,
they become KT-periodic motion at § = 0.548. By
increasing the preload value to § = 0.554, the frequency
responses of the rotor center become quasi-periodic,
and this behavior persists at § = 0.558.

By considering the preload value as a parameter of
system, qualitatively different behavior can be observed
in Figure 8 at the range of 0.4 < § < 0.56. Local
bifurcation of the rotor center in the preload range of
0.49 < é < 0.56 is shown in Figure 9. Results show
that, before é = 0.5, the system has a periodic motion
in the horizontal and vertical directions. Figures 10(a)
and (b) show the Poincare maps at § = 0.42 and 0.48,
respectively. Oune point on these maps confirms T -
periodic motion of the rotor in both displacements.
It can be seen that quasi-periodic motion occurs in
the interval of 0.5 < é < 0.518. The Poincare map
at & = 0.516 is shown in Figure 10{c) and closed
curve formed on this map demonstrates quasi-periodic
motion of the rotor center at § — 0.516. 27T -periodic
motion occurs in the interval of 0.518 < § < 0.552
and two discrete points in Figure 10(d) confirms this
behavior at § = 0.548. The system is irregular in the
range of 0.552 < § < 0.56 and closed curved is shown
in Figures 10(e) and (f} demonstrate quasi-periodic
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Figure 12. Trajectory of the rotor center at § = 0.5, (a); phase portraits of rotor center (b) and power spectra of rotor
displacement in horizontal {c) and vertical (d) directions for A = 1.5.
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Figure 13. Trajectory of the rotor center at § = 0.55, (a); phase portraits of rotor center (b) and power spectra of rotor
displacement in horizontal (c) and vertical (d) directions for A = 1.5.
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Figure 14. Trajectory of the rotor center at § = 0.6 (a); phase portraits of rotor center (b) and power spectra of rotor
displacement in horizontal (c) and vertical (d) directions for A = 1.5

motion at ¢ = 0.554 and 0.558, respectively. When
preload value exceeds § = 0.56 contact between rotor
and bearing would occur.

Case 2
In the second case, the bearing aspect ratio is taken to
be A = 1.5, and its results are as follows:

Figures 11(a), 12(a), 13(a) and 14(a) show the
rotor center orbits at different values of the preload.
Regular motion is shown at § = 0.45 and 0.5. But,
regular motion loses its stability and becomes irregular
when the preload values are increased to § = 0.55 and
0.6.

From Figures 11(b), 12(b}, 13(b) and 14(b) it is
observed that the phase portraits of the rotor center are
regular at § = 0.45 and 0.5 then they become irregular
at ¢ = 0.55 and 0.6.

Figures 11(c,d), 12(¢,d}, 13(c,d) and 14(c,d) show
the dyvnamic responses of the rotor center in horizontal
and vertical directions. It is found that the frequency
responses of the rotor center demonstrate a harmonic
motion for the preload values § = 0.45 and 0.5 in both
directions. By increasing the preload value to § = 0.55,
the frequency responses of the rotor center become
quasi-periodic motion and this behavior persists at
6 =0.6.

In Figure 15, a qualitatively different behavior
can be observed in the range of 04 < § < 0.602.
Local bifurcation of the rotor center in the preload
range of 0.51 < 6 < 0.602 is shown in Figure 16.
The results show that, before § = 0.522, the system
has a periodic motion in the horizontal and vertical
directions. Figures 17(a) and (b) show the Poincare
maps at & = 0.45 and 0.5, respectively. One point
on these maps confirms the T-periodic motion of the
rotor in both displacements. It can be seen that
quasi-periodic motion occurs in the interval of 0.522 <
6 < 0.602. The Poincare maps at § = 0.55 and 0.6
are shown in Figures 17(c) and (d) and the closed
curve formed on this map demonstrates quasi-periodic
motion of the rotor center at these values. When
preload value exceeds § = 0.602, contact between rotor
and bearing would occur.

CONCLUSION
The effect of preload on nonlinear dynamic behavior
of a rigid rotor supported by two-lobe noncircular
aerodynamic journal bearings has been studied in this
study. Due to the nounlinearity of the gas film force,
computational methods have been emploved to study
the dynamical behavior of the system. Dynamical
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Figure 16. Local bifurcation diagrams of (a) x(nT) and (b) y(nT) versus preload (0.51 < § < 0.602) for A = 1.5.
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Figure 17. Poincare maps of the rotor center trajectory at (a) § = 0.45, (b) 0.5, (c) 0.55, (d) 0.6.



Preload Effect on Nonlinear Dynamic Behavior of Aerodynamic Two-Lobe Journal Bearings 159

orbits, power spectra, Poincare maps and bifurcation
diagrams are used to identify the dynamic behavior of
this system.

From this study, it is shown that by considering
the preload value as a parameter of the system, pe-
riodic, KT -periodic, quasi-periodic motions as well as
contact between rotor and bearing occur in eccentric
two-lobe bearings. It is found that at lower preload
values, the system has better stability in a dynamical
state. Also, by increasing the bearing aspect ratio, the
onset of quasi-periodic motion and the contact between
rotor and bearing occur at higher values of preload.

The variation of this parameter plays a major role
in noncircular bearing systems. Thus, by changing the
system parameter to suitable values, rotor center can
be avoided from the undesirable behavior.
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