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Viscous Nutation Damper, Modeling and Analysis
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In some aerospace vehicles, the tracking sensors which act as stabilizers in a
tracking loop are mounted on a two degree of freedom gyro. The gyro must
align its rotor axis with the line of sight in order to remowve tracking errors.
The tracking precision and sensitivity are functions of the gyros performance.
One of the main factors in reducing the precision and producing instabilities
is nutation vibration. This fluctuating motion, which is a dynamical inherent
property of the system, is related to the gyro lateral moment of inertia, the
length of gyro and its rotating speed. In order to investigate the capabilities of
nutation damper and removing the wobble motion of a freely precessing body,
this paper we analyze a ring damper partially filled with viscous liquid by taking
into account the behavior of the damper and its subsystems. The equations
of motion for the dynamical motion of gyro are obtained using Lagrangian
approach, taking into account the friction of dampers and interaction of the

liquid with the system equations of motion.

INTRODUCTION
Homing aerospace vehicles follow radiated target signa-
tures. In these aerospace vehicles, the sensitive sensors
are located on a two degree of freedom gyroscope. The
optical set has the duty of filtering, concentrating,
separating and finally signal-processing of received
waves. The mechanical set of gyro consists of inner and
outer gimbals, which can sensitively rotate about two
orthogonal axes. The magnetic rotor of gyro surrounds
these two axes. In homing aerospace vehicles, the
gyroptic set is called the seeker head. To increase
accuracy, seeke sensitivity and follow the target, all
factors of the accuracy loss should be removed. One
of the main factors which reduces the accuracy and
even makes the gyro unstable is the dynamical in-
herent property of the system called nutation.When
a moment-free inertial symmetric spinning body is
subjected to an impulsive torque, i.e., a suddenly
applied torque with short duration, it will result in
coning (or precession) motion of the spin axis about
the angular momentum vector (which is fixed in space
in the absence of subsequent external torques). This
paper investigates a viscous damper for removing this
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nutation vibration [1], [2]. The ring damper, partially
filled with fluid and mounted on the spinning body (or
the rotor of a gyroscope), has the effect of reducing
the cone angle (or nutation angle), so it has been
extensively used in satellites to keep their orientation
and in gyroscopic seeker to confirm precise tracking [3],
[4]. In the present paper, the nutation of a gyroscopic
seeker, which carries a ring damper partially filled
with fluid, and which spins at a high speed of 60
Hz, is analyzed. When the optical detector inside the
rotor detects the deviation of the target, the rotor is
driven immediately to lock it by an impulsive torque
generated by the coil surrounding the rotor. From some
experimental observation, the shape of fluid in the ring
looks like a crescent, so the fluid in the ring is modelled
as a rigid slug in our analysis [5-8].

VISCOUS DAMPER, DYNAMIC ANALYSIS
The idealized rotor and fluid-filled ring are shown in
Figure 1. Let H denote the height of the ring damper
to the point O which is center of mass of the gyroscope,
AR and D the width and depth of the rectangular cross
section of the ring, respectively, v the angle of fill of
the fluid in the ring, and R the mean radius of the
ring. The angular momentum vector of the gyroscope
h about point O is fixed in space since the gyroscope
is free after application of an impulsive torque. Let
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the Cartesian coordinate system X, Y, Z be the inertial
reference frame with the origin coinciding with the
mass center of the gyroscope and the Z axis parallel
to h. The Cartesian coordinate system z,y, z is fixed
on the rotor with the origin coinciding with the center
of the ring o’ and xy plane lying on the plane of the
ring damper. The system wu, v,z is fixed on the slug
with the u axis passing through its center of mass, the
angle B measured from the z axis to the u axis is the
angular displacement of the slug relative to the rotor.
Euler’s parameters p = (eg, 1, €2, e3)”, which are
a quaternion, are introduced instead of the Eulerian
angles here to describe the orientation of the rotor
with respect to the system X,Y, Z. The reason is that
quaternion have no inherent geometrical similarities
and no singularities in kinematic differential equations,
but the Eulerian angles have these two characteristics.
In terms of Euler’s parameters, the rotational transfor-
mation matrix A from system X,Y, 7 to system z,y, z
can be expressed as the product of two matrices as:

A =EGT =

Ireé+effe§fe§ 2(e1eq—eqges) epes + eres -|

2(
2(eres + eges) €2 — e +e2 — el (6263 — egeq)
[Q(eleg—egeg) 2(eger+ese3)  e2—e3 —€2+63J
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where:
|'*61 €p —€3 €9 -‘
E = —E€y €3 €n —eq (2)
[*63 —€2 € €0 J
and
[—61 €q €3 762-|
G = —€y —€3 €p €1
[—83 €2 —€1  €p J

These Four Euler’s parameters are not independent;
they satisfy the following constraint equation:

PPT =1 (3)

Let w = (wy,wy,wz)! and W' = (wx,wy,wz)"
denote the angular velocity of the rotor in the X,Y, Z
system and z,y, z system, respectively. They satisfy
the following kinematic equations:

w=Aw' =2EP = —2EP (4)

W' =2GP = —2GP (5)

Multiplying both sides of Eq. (5) by GT, and using Eq.
(3) and the following identity,

GTG=-pp" + Tiaxa) (6)
one obtains:

1
= ieTw’ (7)

.

Figure 1. Idealized rotor and fluid-filled ring.
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EQUATIONS OF MOTION
The inertia matrix Ig of the rotor about the point O
in the z,y,z system is defined as Iz = diag(J, J, J3),
Where J and J3 are the moments of inertia of the rotor
about the z,y,z axes. The inertia matrix I, of the
mercury about the point o in the u, v, z system is:

I 0 -1
I.=0 L, O
-, 0 I3

where the values of I, Iy, I3 and I are:

I =1, = /(1)2 + 2%)dm

3 2
=2/ (R?sin® 0+ H?) ™ dp = m[HQ—i—R?(l—K)} :
Jo Y

I =1,, = /(’U.Q + ZQ)dm

ol

, . . , R?
=2/ (R%cos? 0+ H) " dp :m[H2+2(1+K)} .,
Jo Y

I3 =1,, = /(u2 +v%)dm

R%(sin? @ + cos® 0)%d0 = mR?,

K- sinv7 K sin7/2’
gl /2

The kinetic energy T, of the rotor is:

m =~ RDpAR.

1 1
T, = EWITIgwI =3 [J (wi +w§) + J3 w?]

The kinetic energy T,, of the fluid is:

1
T, = 5&13BTImB¢uS

- %{(11 cos B + Iy sin? ) w?

+ (I cos® B + I sin® ) wi + I3w?
+ 332 + (I — 1) sin 2B wyw,

— 214 cos fwyw. — 204 sin fwyw.

— 214 cos BBw, — 21y sin B3 wy + 2158w,
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where B is the transformation matrix from system
x,Y,z to system u, v, 2:

cos@ sinf 0
B=|—-sinfg cosf 0
0 0 1

and
ws = (o, wy,ws + )"
The gravitational potential V,,, of the fluid is:
Vi = —mgTABT(RK',0,H)T
=m{gH (e§ — e} — €5 +¢€3) —
RK'[2gcos 3 (egex — erez) — 2gsin 3 (eger — eses)]}

where g = (0,0,9)7 is the gravity with components
parallel to XY, Z. Using the Lagrange multiplier
method, the equations of motion of the gyroscope are:

d (0L oL
%<%>_%_Q"“p ®
d (0L oL
at (aﬂ) “a Y )

where L =T, +T,, —V,, is the Lagrangian of the
gyroscope, A is the Lagrange multiplier due to the
constraint Eq. (3), Qp is the generalized force resulting
from the gravitational force of the fluid, and @ is the
generalized force due to the frictional force between the
fluid and the wall of the ring. The above equations of
motion are five nonlinear second order ordinary differ-
ential equations and one nonlinear algebric equation
for six unknowns, i.e., p, 3, and A. In order to avoid
solving A\ and the constraint equation, and to reduce
the number of governing equations, the arguments p in
L are replaced by the quasi-coordinates w’. Therefore,
L(p,p. 53, 3) alters to L(p,w,3,3). Using the chain
rule, one has:

OL 0L 0}

op Ow; Op

OL 0L dw; OL

— =4 (11)
dpi 0w Op;  Opi

From Eq. (5) and the following identity,

o' =2GGT =2GgT (12)

where
N [ 0 —Ww; Wy -|
w' = [ Wy 0 —Wg J

—Wy Wy 0
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one obtains:

oL oL

=~ =2GT 13
Jp ow’ (13)
oL g OL OL

- G et ap (14)

From Eqs. (13) and (14), Eq. (8) can be rewritten as:

d  OL
2GT =
G dt(

.pOL OL
T —_— —— =
8w') + dw Op AP (15)

Premultiplication of Eq. (15) by G and using two
identities, i.e., G GT =TI and Gp = 0, one has:

d 9L 0L

oL
a0 T

1

-G— =0 16
“ow 2 op (16)
Subsequently, the equations of motion can be rebuilt
in the following form:

(o) + @' 55 — 3G =0

d (0L 9L

a(yg)*%_Qs (17)
f): %GTw/

Frictional Force

Since the shear stress is a linear function of the
gradients of velocities with respect to spatial coordi-
nates from the viewpoint of viscous fluid mechanics,
we assumed that the frictional force Fp between the
mercury and the wall of the ring is proportional to their
relative velocity. Using the principle of virtual work,
one can obtain the generalized force resulting from Fp
as:

Q. = —C4R*B (18)

The equivalent Reynolds number of a straight rectan-
gular pipe is:

_UnDy _RB 2DAR

v v (D+AR)

R.

where v is the kinematic viscosity. Since the cross-
sectional area of the ring is small and the spin rate
of the rotor is high in our case, the magnitude of the
Reynolds number is of order 10* on average. So the
evaluation of shear stress from turbulent flow must be
considered. For the turbulent flow, the shear stress 7
on the wall of a straight pipe with circular cross section
is:

1 )
0 = 0.0791 R, "A(YypU?) (19)

where p is the density of fluid and U,, is the average
flow velocity (U, = Rf3). Considering the effect of

H. Abedi, M. Sohrabian

the curved pipe with circular cross section, Eq. (19) is
modified as:

1 1

L —1+0.075RADPnfyp) 2 (20)
To

where D is diameter of the circular cross section.
The D), in Eq. (20) is replaced by % for the
curved pipe with rectangular cross section. Equating
the frictional force Fp with the shearing force, which
is obtained by multiplying the shear stress by the
common contact area of the fluid slug and the ring,

Fp = C4RB3=2(D + AR)Ry7 (21)

The damping coefficient ¢, can be evaluated by sub-
stituting Eqs. (19) and (20) into (21) and using 3 =
(0 — 1)w,, one has,

Cy =6.65x10"2p(D + AR)

(D + AR) U4 3
Lrakpy _ /4
[ AR } Ry (0 —1)Rw,)]

1, 3
+5.93x10 3 xp[(D+AR)DAR] 2R (0 — 1) w.
(22)

Js

where 0 = =

State Equations

Considering  state vector X as X =
(eo,el,eg,eg7wz,wy,w2,ﬁ,,B)T, and using Egs.
(17) and (22), we can write the state form of dynamic
equations in the form of X = g(X).

where:
Xs
16T | X
g- | 167 & (23)
M-1f

Hence Mjy5 is:

J+Ih cos? Xo+I sin? Xg

hele gin 2X,
% sin 2.Xo

J+Iz COS2 Xg +Il sin2 Xg

—1I, cos Xy —1I, sin X
—1I4 cos Xg —1I,sin X
0 0
—IycosXg —IycosXg O
—I4 sin Xg —I4 sin Xg 0
I3+ J;3 I 0
I3 I3 0
0 0 1
(24)
and,
f=1[fi fo fs fa 0] (25)
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where,
fi =(J = I3 — Jg + I  sin® Xg + I cos® Xg)X¢ X7

I — L
+ (I cos X9) X5 X6 + (——2

sin 2X9) X5 X7
+ (I sin Xg)XZ — (I, sin Xg) X7
+ [(I — I) sin 2Xg]) X5Xg — (214 sin Xg) X7 X3
+ [(Iy — I ) cos 2Xg — I3] X6 Xg — (I, sin Xg) X7
+ 2mgH (X1 X5 + X3X4)
+mgK'R(—X? + X3 4+ X2 — X7)sin X,

fo= (I3 — J4 J3 — Iysin? Xg — I cos® Xg) X5 X,

I -1

+ (—I4 sin Xg)X5X6 + ( sin 2X9)X6X7

— (I cos Xo) X2 + (I cos Xo) X7 + (I; cos Xo) X3
+ [Iz+(Io—1I1) cos 2Xg) X5 Xg+ (214 cos Xg) X7 X5
+ (I — 1) sin 2Xo) X Xs+2mgH (X1 X3 — Xo.X4)
+mgK'R(X? — X3 — X2 4 X])cos Xg

f3=[(I1 — Is) cos 2Xo] X5 X6 + (14 sin Xg) X5 X7

I -1

— (I4 COS Xg)X6X7 + (

sin 2Xg)(XZ — X3Z)
—2mgK'R(X1 X5 + X3X4) cos X
+2mgK'R(Xy X4 — X1 X3) sin X

fa=[(I1 — I3) cos 2Xo] X5 X¢ — (I4 cos Xg) X6 X7

L — 1

—+ (I4 SiIng)X5X7 —+ (

sin 2X,)(XZ — X?2)
— 2mgK'R(X1 Xs + X3X4) cos Xg
+ 2mgK'R(X, X4 — X1 X5)sin Xy — CyR%3

NUMERICAL RESULTS

By implementing the above equations for two types of
fluid comprising mercury and oil with the following
values of parameters, nutation angle variation ver-
sus time is obtained as shown in Figures 2 and 3.
As demonstrated in these figures, mercury-filled ring
damper has better performance in reducing nutation
angle than oil-filled ring damper.

R =16.71mm, AR = 1.4mm,
H =30.39mm, D =0.78 mm,
v =1.33rad, J = 400 g.cm?, J; = 600 g.cmm>
Prterenry = 13.6g/cm® v, . =0.00117 cm?/s

Pon =0.912g/cm® v, =4.2cm? /s

Xo=[l 0 0 0 100 0 250r 0 0]"
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Figure 2.
damper.

Nutation angle variation for mercury-filled
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Figure 3. Nutation angle variation for oil-filled damper.

SUMMARY

In this paper, the effect of parameters of viscous
damper on the decay of wobble motion of the rotor is
analyzed. Complete nonlinear equations of motion are
adopted here on the parameter analysis since the use
of simplified equations of motion may result in losing
something important. Coupled equations of motion are
derived in terms of quasi-coordinates in order to reduce
the number of equations of motion. The shearing force
between rotor and the fluid is obtained by assuming a
steady turbulent flow over a straight pipe. Finally, the
effects of two different fluid types such as mercury and
oil are inspected in viscous damper.
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