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Conventional magnetic attitude control methodologies require several or-
bital periods to accomplish the required attitude maneuvers due to the existence
of an uncontrollable axis, namely the local Earth’s magnetic field vector. Since
in some attitude maneuver missions the elapsed time is of critical importance,
those time-consuming controllers are not satisfactory, and we need a much
faster controller to achieve the maneuver in « fraction of an orbit. In this
research the attitude slew maneuver using magnetic torquers is formulated as
a time optimal problem and solved through the calculus of variations. The
resulting controller is shown to be very fast in forcing the attitude to converge

to the desired condition.

NOMENCLATURE Rewrin The Earth’s reference radius
The Earth’s magnetic field vector r Distance from the Earth’s center
Body frame u Control vector
Unit vector in the direction of nadir V The Earth’s magnetic potential
Gaussian coeflicients of the IGRF W, Positive scalar penalizing the elapsed
model time
Positive semi-definite weighting matrix X State vector
Sampling time X0 Initial state vector
Inertial frame Xdes Desired state vector
Satellite inertia tensor 6.1k Costate vector
Discretized time index 0, Geographic co-latitude and longitude
Control magnetic moment ¢,0,v Euler angles around the roll, pitch &
Total torque exerted on the satellite yaw axes

Control torque

Gravity gradient torque
Disturbance torque
Rotation axis

Schmidt quasi-normalized associated
Legendre function of degree n and
order m

Four Euler parameters, quaternions

Last three elements of the quaternions
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Rotation angle

T Positive update step size for the
numeric algorithm

s The Earth’s gravitational constant

w Angular velocity of the body frame
w.r.t. the inertial frame

INTRODUCTION
Utilization of magnetic actuators for the purpose of
attitude control of small LEO satellites due to light
weight, low cost and high reliability has received a lot of
interest over the last two decades. Several researchers
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Since magnetic actuators are unable to produce
mechanical torque around the local Earth’s magnetic
field vector, the satellite will not be fully controllable
at a fixed point in its orbit; however, because of the
satellite motion around the orbit, the direction of the
uncontrollable axes is subject to variation, hence, every
attitude maneuver can be achieved using magnetic
coils/rods as the sole actuators. Unfortunately almost
all of the developed magnetic attitude controllers need
several orbits to complete a desired maneuver [1-5]
which is very time consuming for some satellites.

Since in some satellite missions the elapsed time is
critical and of importance, control algorithms capable
of performing the required slew maneuver in a fraction
of an orbit are of great interest. In [6] the author
has used a software package, RIOTS, working based
on the direct method of optimization, in order to
solve the time optimal formulation of the magnetic
attitude control problem and has shown that rest-to-
rest attitude maneuvers can be performed in a small
fraction of an orbital period.

In this research, the dynamics and kinematics of
the satellites are modeled in the state space form and
utilized to formulate the optimal control problem sub-
ject to the input saturation constraints using calculus of
variation. Subsequently the resulting problem is solved
through an iterative numeric algorithm for the free final
time to be optimized. Finally two slew maneuvers
are simulated and the resulting states trajectory and
control are presented.

SATELLITE DYNAMICS & KINEMATICS
For the purpose of this research an inertial pointing
satellite is selected for the proof of the proposed
concept. The satellite dynamics can be represented as
[7):

dw

IE = —wxlw+ Nnet (1)

where all vectors are represented in the body frame.
The total torque exerted on the satellite is composed
of control, gravity gradient and disturbance torques.

Nnet = thrl + Ngg + Ndist (2)

The control torque is created as the consequence
of interaction of the Earth’s magnetic field and the
magnetic moment created due to the electrical current
through the magnetic coils.

th/f»l =mxB (3)

The apparent cross product between the two
vectors causes the problem of inability to create me-
chanical torque about the Earth’s local magnetic field
vector. The gravity gradient torque is [7]:

3p

Ngg = 3 (exTIc) (4)
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where ¢ is the unit vector in the direction of nadir.
In nadir pointing satellites the gravity gradient will
be usually exploited as a passive stabilization torque
while in the inertial pointing ones, the gravity gradient
torque is a disturbing torque with a cyclic nature, and
is categorized as the disturbance torques. Hence, the
inertia tensor of the satellites will be usually selected in
such a way that is proportional to the identity matrix
in order for the gravity gradient torque to vanish.

Finally disturbance torque is mainly composed
of an aerodynamic drag because of the existence of
low density air in LEO orbits, solar radiation torques
and residual magnetic moment of the internal electrical
equipment [7].

To avoid singularity conditions in modeling the
kinematics of the satellites, four Euler parameters
known as quaternions denoted by {q} are utilized [7].

Describing the rotation of the body frame with
respect to the inertial frame by a unit vector n rep-
resenting the rotation axis and a scalar e representing
the rotation angle, the quaternions can be defined as:

0 cos(g/2)
o q nq sin (e/2)

tal [[qd U nasin (g/2) (5)
q3 ngsin (¢/2)

where

n=— [nl n2 ng]T (6)

Now, the kinematics equation can be written as [7]:

. 1 1

[4] = 5w = 5w x [d] (7)

: 1

Go = —5w [d] (8)

In order to initialize the quaternions based on
available initial Fuler angles, the following set of
equations is utilized.

Go =COS (%) cos (g) cos (g) +sin
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Similarly the Euler angles are related to the quater-
nions through the following equations.

2(q2q3 + qoq1)
tan(¢) = 5—5————
g5 — 41 — 45 T 43

sin (0) = —2(q193 — qog2)

2(q1g2 + q0g3)
tan (¢) = 5 2 _ 2
dy T 47 — 45 — 43

(10)

OPTIMAL CONTROL FORMULATION
Choosing the four elements of the quaternions and the
three elements of the angular velocity vector as the
states and the three elements of the magnetic moments
as controls and discretizing the resulting time-varying
nonlinear system for NV time steps with equal sampling
time of h = t; /N will result in the discrete form of the
system state equation.

x[k + 1] = £ (x[k], ulk], k. k),  k=0,1,..N—1

(11)
with
x[0] = xo (12)
where f,x and u are:
I (—weq1 —wyga—w.q3) /2 1 T[]
(waO'szqz—waS)/Q q1
(WyGo—w q1+waq3)/2 i
f=nh (W qotwyq1—weq2)/2 +| @
(wywy(Iyy—1.,)+m,B,—m,B,) /I, Wy
(wxwz(Izz_Ixx)"_szx_mxBZ) /Iyy Wy
[(wawy(Too—Tyy)+m,By—mBy) /L. | [w:]
(13)
T
x=[t00 @1 @ @ w. w; w (14)
u= [mx my mZ]T (15)

Moreover, I,,.I,, and I, are the moments of inertia
about the three principle axes, and the elements of
vectors w, B and m are denoted by subscripts z, y
and z.

As can be seen through the state equation, the
system is time varying and of course nonlinear. Its
time dependency is because of the change of the Earth’s
magnetic field vector, which is due to the satellite
motion around the orbit.

The problem at hand is a time-optimal terminal-
control one, therefore a suitable cost function can be:

N—-1
J = (x[N] = %ges) T HE[N] = xqe0) + 3 Wih  (16)
k=0

where x4.. 18 the desired final states of the satellite
(attitude + rates), H is a 7 x 7 positive semi definite
weighting matrix penalizing the terminal errors in the
states and W, is a positive scalar weight penalizing the
total elapsed time.

Adjoining the system Eq. (11) to the cost func-
tion (16) as an equality constraint using Lagrangian
multipliers (costates) 6,[k], produces the augmented
cost function.

Jaug = (X[N] - Xdes)T H (X[N] - Xdes)

N-1
+ {Wth+ 6T [k + 1) (f (x[k], wlk], k, h) — x[k + 1])}

k=0
(17)

In order to find the minimal of the augmented
cost function (17), a mathematical approach is followed
where its derivatives with respect to all independent
variables are set to zero to derive the required optimal-
ity conditions.

0wy Of (x[k], u[k], k, h)

o] = 67k + 1] o] 6Tk =0
k=0,1,.,N—-1 (18)

Ooug T

T (£ (x[k], u[k], k, h) —x[k + 1T =0
k=0,1,.,N—1 (19)

0wy Of (x[k], u[k], k, h)

aalt] = 2= =0
k=0,1,.,N—1 (20)

g~ o OF (x[k], ulk], k)|

W_;){thf[kﬂ] ) }_o

(21)
gi’fﬁ/_g] = 2H (x[N] — Xges) — 6, [N] =0 (22)

Re-arranging the results yields:

6.1 = (ZLOULMEL ) g ey

k=0,1,..,.N—1 (23)

x[k + 1] = £ (x[k], u[k], k. h), k=0,1,...N—1 (24)



8.[N] = 2H (x[N] — Xaes) (27)

Eq. (23) and (24) are the costate and the state
equations respectively. Eq. (25) and (26) are the
resulting optimality conditions. The free final time
problem is formulated using a fixed number of time
steps N and the variable sampling time h. Hence h
must be optimized as a parameter as well using the
optimality condition (26).

NUMERIC ALGORITHM
The two point boundary value problem attained thus
far can be solved using iterative methods such as the
first order gradient as outlined below.
Choose an initial guess on the control history and
the sampling time and follow the three step algorithm
given next.

1. Use the system Eq. (11) and the initial condition
(12) to propagate the states through time and store
the resulting state trajectory.

2. Use the costate Eq. (23) and the final condition
(27), back-propagate the costates through time and
store the resulting costate time history.

3. Update the guess on the control history and the
sampling time according to the following rules:

Aulh] = -7 (af (X["g’“[k]’k’h)) 6.k +1] (28)

ulk]

ulk] — ulk] + Aulk] (29)

Ah=

S fo () )
(30)

h— h+ Ah (31)
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The above algorithm should be iterated until the
control history and the sampling time converge to
their optimal values. Selecting a suitable update step
size T causes the number of iterations needed for
convergence to decrease substantially and this selection
is usually attempted either through a search algorithm
or through trial and error.

Finally in order to take the control saturation
problem into account, in the control update process,
one can simply restrict/saturate the control values in
the desired admissible interval.

SIMULATIONS
To simulate the proposed magnetic attitude controller,
one needs a precise model for the Earth’s magnetic
field. In this research the spherical harmonics model
with coeflicients set IGRF2000 of degree 13 is utilized
[8]. In the spherical harmonics model, the geomagnetic
field vector is approximated as follows:

B=-VV (32)

where the Earth’s magnetic potential V' is:

k R h n—+1
V(r,0,8) = Rearin Y { (%)
n=1

i (g7 cos (m®) + A" sin (m®)) P (cos (@))} (33)

m=0

In this form, R.qr:n is the Earth’s reference radius
(6371.2 km), 7,0 and @ are the distance from the
Earth’s center in km, the co-latitude (©@ = 90 —
lattitude), and the longitude respectively. ¢7 and
h7 are Gaussian coefficients provided by International

Association of Geomagnetism and Aeronomy (TAGA).

Table 1. Characteristics of satellite A & its orbit.

Parameter Value

Orbit Apogee Altitude 850 km

Orbit Perigee Altitude 450 km

Inclination 96.1°

Argument of Perigee 0

Right Ascension of the Asc. Node  105.2

Eccentricity 0.028599

Orbital Period 5855 s

Satellite Inertia Tensor Diag([2.5,2.5,2.5]) kg.m?
Actuators Saturation Limits 11.5 A.m?

Table 2. Maneuver specifications for satellite A.

Parameter Value

Initial Euler Angles [40,-40,50] deg.
Initial Angular Velocities [0,0,0] rad/s
Desired Euler Angles [0,0,0] deg.

Desired Angular Velocities  [0,0,0] rad/s

Satellite’s Position The Perigee
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The set of these coefficients in the model is called In-
ternational Geomagnetic Reference Field (IGRF) and
every 5 years, IAGA updates the set of coeflicients and
calls the updated set “IGREF” followed by the year of
revision, .. IGRF2000. Finally P is Schmidt quasi-
normalized associated Legendre function of degree n
and order m. Additional information about this model
can be found in [8].

The iterative algorithm for two different satellites
in different orbits and maneuvers has been solved and
the results are shown below.

Satellite A:
The characteristics of the satellite subject to this
simulation and its orbit are mentioned in Table 1.

The weighting matrix H is selected such that it
penalizes the final rates error (with unit of rad/s) with
factor of 1000 and penalizes the final quaternion error
with a factor of 0.01. The elapsed time penalizing
weight W is selected equal to 2 x 1077, and the number
of time steps (N) is selected to be equal to 100.

Simulation has been performed for a rest-to-rest
maneuver with specifications mentioned in Table 2.
The optimal states are depicted in Figures 1 and 2, and
the optimal control is shown in Figure 3. To have an
intuition of the attitude changes during the maneuver,
the Euler angles trajectory is depicted in Figure 4.

As can be seen in Figure 3, the optimal control is
in the form of bang-bang and the optimal time-to-go is
about 240 s. Since the orbital period is equal to 5855 s,
the maneuver is accomplished only in a fraction of an
orbit, namely less than 5 percent of the orbital period.

The final attitude error is less than 1 deg. and
the error rate is less than 1 x 1075 rad/s. The balance
between the rates error and the attitude error is tuned
by the elements of the weighting matrix H. For
the purpose of decreasing the total error, one should

Table 3. Maneuver Required Time.

Satellite Position Req. Time
Passing through the perigee 240 s
Passing above the north pole 228 s
Passing through the apogee 319 s
Passing below the south pole 214 s

Table 4. Characteristics of satellite A & its orbit.

Parameter Value

Orbit Apogee Altitude 630 km

Orbit Perigee Altitude 630 km

Inclination 45°

Argument of Perigee 0

Right Ascension of the Asc. Node 0

Eccentricity 0

Orbital Period 5829 s

Satellite Inertia Tensor Diag([1,1,1]) kg.m?
Actuators Saturation Limits 10 A.m?

decrease the value of W; as compared to the value of
the elements of matrix H.

Comparing these results to the time-to-go of
periodic finite horizon controller or infinite horizon
controller suggested in [2] and also those of the sliding
mode controller suggested in [3], where two or more
orbits are required to complete a similar attitude
maneuver, shows that the time optimal controller has
considerable benefits in time critical maneuvers.
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Figure 1. Quaternions propagation (simulation A).
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Table 5. Maneuver specifications for satellite A.

Parameter Value

Initial Euler Angles [30,40,50] deg.
Initial Angular Velocities [0,0,0] rad/s
Desired Euler Angles [0,0,0] deg.

Desired Angular Velocities  [0,0,0] rad/s

Satellite’s Position The Perigee

To check the ability of the controller in different
orbital positions, the algorithm has been solved for
three other orbital positions for the same satellite and
the same maneuver. The results are summarized in
Table 3. As mentioned in this table, the controller has
satisfactory performance in all four positions.

Satellite B:

In this simulation another satellite within another orbit
is selected to check the controller’s performance. The
satellite and its orbital characteristics are mentioned in
Table 4 and its maneuver conditions are mentioned in
Table 5.

Using the same weights of the simulation A, the
solution of the algorithm is depicted in Figures 5 to
8. The optimal time-to-go for this satellite and this
maneuver is 234 s, ¢.e. 4% of its orbital period.

CONCLUSIONS

Unlike the common notion of time consuming nature
of magnetic attitude control methods, the time opti-
mal controller is able to complete the attitude slew
maneuvers in a small fraction of an orbital period.
Hence using time optimal attitude control for satellites
with time critical missions is a desirable choice. Of
course, a drawback currently under consideration for
this controller is its open loop nature; thus presenting
it in a closed loop form through a hybrid approach is
of considerable value.

REFERENCES

1. Arduini C., and Baiocco P., “Active Magnetic Damp-
ing Attitude Control for Gravity Gradient Stabilized
Spacecraft”, Journal of Guidance, Control, and Dy-
namics, 20(1), PP 117-122(1997).

2. Wisniewski R., “Linear Time Varying Approach to
Satellite Attitude Control Using Only Electromagnetic
Actuation”, Proceedings of the AIAA Guidance, Navi-
gation and Control Conference, 23, PP 243-251(1997).

3. Wisniewski R., “Sliding Mode Attitude Control for
Magnetic Actuated Satellite”, Proceedings of theljth
IFAC Symposium on Automatic Control in Aerospace,
(1998).

4. Psiaki M. L., “Magnetic Torquer Attitude Control via
Asymptotic Periodic Linear Quadratic Regulation”,
Journal of Guidance, Control, and Dynamics, 24(2),
PP 386-394(2001).

5. Lovera M., Astolfi A., “Global Magnetic Attitude

Control of Inertially Pointing Spacecraft”, Journal of

A. Heydari, S. H. Pourtakdoust

1.5
Z — % - =94 — -9 3
(5] L -
< 1 M
<
g
= 057
.S Tes
N “mTos
= RN _ - S e
5 0 - =
o S - —
-0.5 L s s L N
0 50 100 150 200 250 300
Time (s)

Figure 5. Quaternions propagation (simulation B).

0.02

0.01f s N

Angular Velocity (rad/s)

0 50 100 150 200 250 300
Time (s)

Figure 6. Angular rates history (simulation B).

-
o

2

Optimal Control (Am®)
o (6]

0 50 100 150 200 250 300
Time (s)

Figure 7. Magnetic control history (simulation B).

60

40

20

oF

20 +

Euler Angles (deg)

40

-60 : : : : :
0 50 100 150 200 250 300

Time (s)

Figure 8. Euler angles trajectory (simulation B).

Guidance, Control and Dynamics, 28(5), PP 1065-
1067(2005).

Liang J., “Optimal Magnetic Attitude Control of
Small Spacecraft”, PhD Thesis, Utah State University,
Logan , (2005).

Wertz J. R., Spacecraft Attitude Determination and
Control, Kluwer Academic, (1978).

Davis J., “Mathematical Modeling of Earth’s Magnetic
Field”, Technical Note, Virginia Tech., Blacksburg,
(2004).



