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Dynamic Stability of Step Beam Carrying

Concentrated Masses under Follower Force

M. Sohrabian', H. Ahmadian?

This paper investigates the dynamical behavior of an assembled beam like
structure with tip masses modeling a two stage space rocket structure. The
beam like structure is composed of two beams connected together carrying two
masses at the free ends to model the payload and the stabilizing fins mass
properties. The effect of non-homogeneity of the structure due to different
cross section properties at each stage of the rocket and the tip masses strongly
affects the dynamical behavior and stability regions of the structure if excited
using a follower force. In this study the rocket thrust is considered as follower
force as in flexible space structures the thrust direction is affected by the lateral
vibrations of the structure. As demonstrated in this study the primary mode
of instability in such a structure, i.e. divergence or flutter, depends on the
stiffness and mass distributions of the structure. This would enable the designer
to alter the mode of instability by modifying these distributions. In inspecting
the instability regions of the structure under follower force, and establishing an
analytical solution, the Galerkin method is employed and the stability regions

of the structure are determined.

INTRODUCTION

In general, forces acting on a structure can be grouped
into conservative and non-conservative. The follower
force is a typical example of non-conservative force.
When a structure is excited under a constant follower
force with direction changes according to the deforma-
tion of the structure, it may undergo static instability
(divergence) whereby transverse natural frequencies
merge into zero, or dynamic instability (flutter), where
two natural frequencies coincide with each other re-
sulting in the amplitude of vibration growing without
bound.

The flexible structure of a rocket deforms under
applied engine thrust and consequently the trust di-
rection changes. This phenomenon is modelled using a
non-conservative follower force which changes its direc-
tion according to the deformation of a space structure.
Free-Free beams have been intensively exploited to
simulate the stability behaviour of flexible space struc-
tures [1-9]. Beal [1] deals with a uniform beam under
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constant and pulsating thrust including a simplified
control system in the model. Park and Mote [2] have
studied a similar problem with emphasis on the effects
of the location and the inertia of a concentrated mass
on the dynamic behaviour of a uniform beam. They
also investigated other parameters such as the location
of the follower force direction control sensor, the sensor
gain and the maximum thrust magnitude allowable for
stable planner motion. Wu [3, 4] studied the maximum
controlled follower force on a free-free beam carrying a
concentrated mass. Parks [5] is concerned with stabil-
ity of a uniform free-free Timoshenko beam excited by
a constant follower force with controlled direction, and
discussed the effects of changes in the location of sensor,
the sensor gain, and the magnitudes of the rotary
inertia and shear deformation parameters of the beam.
Kim and Choo [6] have studied dynamic stability of a
free-free Timoshenko beam with a concentrated mass
under a pulsating follower force and considered the
effects of axial location and translation inertia of the
concentrated mass. Sohrabian [7] has studied the eigen-
properties of a rocket model under conservative force
using several methods. Ahmadian and Sohrabian [8]
have studied the eigen-values and stability margins of



a piece-wise uniform free-free beam under follower non-
conservative force.

The current paper is concerned with the stabil-
ity of a stepped beam with concentrated masses at
both ends. The added masses and step changes in
beam characteristics have a significant influence on the
dynamical behaviour of the structure and alter the
stability margins of the structure from those obtained
by an analysis which had neglected these effects. The
assembled structure consists of two different beams car-
rying two concentrated masses. The following presents
the governing equations, the compatibility equations,
and boundary conditions required to determine the
dynamic behaviour of the structure. The exact solution
for the developed governing equations is not available
as the coeflicients of these equations vary along the
structure axis. An approximate solution for the set
of developed model is presented using the Galerkin
method. The solution is obtained using a linear
combination of trial functions where weight of each
function in the solution is specified by minimizing
the residue of the governing equations. A parametric
stability analysis study is provided using the obtained
solution and the results are discussed in this paper.

STATEMENT OF THE PROBLEM

The typical beam like space structure whose dynamic
response is investigated in this paper is shown in Figure
1. The structure consists of two jointed beams carrying
two concentrated masses at the free ends and excited
at one end using a time invariant follower force. The
force direction is normal to the end of the second beam
cross section.

One global z-y axis at the tip of the first beam as
shown in Figure 1 and two local axes at the beginning
of each beam are defined (z1 — y1 andx2 — y2). The
Euler-Bernoulli beam theory is employed to model the
two beams with the length of L;, flexural rigidity of
E1;, linear mass density of pA; and mass and moment
of inertia of M, and I'¢ for the concentrated masses
at the end of each beam, where index i refers to the
section number. The equations of motion for the beams
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Figure 1. The compound beam like structures.
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according to Fuler-Bernoulli beam theory are:
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In the governing equations the axial force distri-
butions along the structure, p;(z), i = 1, 2 are defined
as follows:
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where M; and M are the end masses. In order to
solve the set of governing equations defined in Eq.
(1), one needs to specify the boundary conditions of
the structure and its compatibility requirements. The
boundary conditions are:
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where J; and Jo are moments of inertia of the end
masses.

The compatibility equations of the structure at
the interface of the two beams are:

at x = L1 :
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This leads to four compatibility requirements. As
mentioned earlier in the paper one can not obtain
an exact solution for the set of partial differential
equations defined in (1) that could satisly the eight
compatibility requirements and boundary conditions.
An approximate solution for the defined problem is
presented in the following section.

APPROXIMATE SOLUTION USING

GALERKIN METHOD
The set of partial differential equations defined in Eq.
(1) have an exact closed form solution when the follower
force is set to zero. The modes of the structure with
no force excitations ;,i = 1,2,... can be used to
form the trial functions in reconstructing the modes of
the structure when it is excited under a follower force
excitations:

¢(n) Z a; 7/] (5)

Inserting the assumed solution (3) into the partial
differential Eq. (1), one obtains the following vector
of residues:
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where X% = 24¥ . (6) the actual eigen-value A
is replaced by the approximate estimate of it namely
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Figure 2. (a) The deformed uniform beam under follower
force, (b) Changes in natural frequencies at different loading
levels for a uniform beam.

X. The residue can be defined in terms of excitation
follower force as:
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Next, one may minimize the residue R(¢(™(x),z) by
projecting it into the trial functions ¥;, j =1,2,...,n
over the considered domain and setting the results to
Zero.
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This results in the coeflicients a;, 7 = 1,2,...,n as
follows:
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Simplifying Eq. (7), one obtains:
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(8)
The expressions used in Eq. (8) are as follows:
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The obtained eigen-values from Eq. (8) are approxi-
mates of the eigen-values of the original problem.

The following section presents numerical case
studies. In these studies the stability of the uniform
and piece-wise uniform beam-like structure with and
without concentrated masses is investigated and their
effects on the instability modes are generated.
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Figure 3. (a) The deformed piece-wise beam, (b), (c) and
(d) Instability regions of piece-wise beam under follower
force caused by non-homogeneity property of the beam.
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NUMERICAL CASE STUDY
In the numerical case study initially the stability of a
uniform beam with no attached masses under follower
force is considered. The same problem is considered in
Ref [1] and the obtained results can be validated using
Ref [1] monographs.

Moreover the same properties for a piece-wise
beam are assumed and mass and moment of inertia
of the concentrated masses are set to zero. This
assumption will change the model to a uniform one
(Ref [1] case) which can utilize the one to validate the
current model. The stability analysis is performed by
increasing the follower force from zero to a large value.
The results, demonstrated in Figure (2-b), show that
flutter occurs by merging the first and second modes as
demonstrated in Ref [1]. It should be noticed that in
the current graphs, the behavior of frequency changes,
should be discussed only up to the instability points
whether flutter or divergence point.

Next, for the aim of inspecting the non-
homogeneity effects on the instability regions, the sta-
bility problem is investigated for the same beam when
two beams have different cross section properties but no
masses are attached to the structure. This provides the
effects of non-homogeneity on the structural stability
properties.

The chosen step beam is made of an aluminium-
steel beam with various lengths. Both beams have the
same cross sections of diameter 0.07m. As is shown,
changing non-homogeneity parameters will alter the
instability modes. The natural frequencies of the
structure under follower force are obtained using the
Galerkin weighted residual method as explained in the
previous section. The results are shown in Figures (3-
b) to (3-d) for different amplitudes of follower forces.

Figure (3-b) describes the instability plots for
a step beam with aluminum length of 1.5m, steel
length of 0.5m and the same diameter of 0.07m for
both beams. For this non-homogeneity parameter
values, instabilities occurs in pure flutter modes like
the previous uniform beam.

Figure (3-c) shows the instability plots for a step
beam with aluminum length of 0.75m, steel length of
0.25m, and the same diameter for both beams. The
instability regions for this example of non-homogenous
beam under follower force appear like the beam under
constant directional force (dealt by Ref [7]) as pure
divergence. In some examples of non-homogeneous
beam (like the current one) no flutter occurs for the
structure under the non-conservative follower force.

Figure (3-d) describes the instability plots for a
step beam with aluminum length of 1lm, steel length
of 0.5m and the same diameter for both beams. As it
can be seen on this example of non uniform beam, the
first four modes of instability in the piece-wise beam
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are divergence. Flutter occurs in the structure when
the fifth and sixth modes merge at high amplitudes of
follower force.

The instability plot for this example shows occur-
rence of flutter and divergence simultaneously.

As it can be noticed, the instability regions and
critical points are altered from the case where the
uniform beam was the case of study. Non-homogeneity
can make the instability modes completely different
from a uniform beam under follower force.

As one realizes, the results are completely differ-
ent from the pervious homogenous case, and the non-
homogeneity severely affects the dynamical behaviour
of the system by changing the instability regions or
even the instability modes. Unlike the uniform beam,
appearance of pure flutter is not the only prediction for
non-homogenous beam instability.

As the third case, the stability is investigated
for the same beam but made of only steel with two
masses attached to the free ends (to realize the con-
centrated masses effects on the structural stability).
The concentrated masses are assumed to be equal to
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Figure 4. Changes in natural frequencies of a uniform

beam carrying concentrated masses under follower force.
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Figure 5. Instability plot of a two stage (St-Al) beam
under follower force.
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Figure 6. Instability plot of a two stage (Al-St) beam
under follower force.

m = 5 kg and J = 3 kg.m? at both sides. The same
procedure as in the previous case studies is performed
using Galerkin weighted residual method to obtain
the natural frequencies of the structure under follower
force. Again as can be seen in Figure 4, dynamic
instabilities for the structure under different levels of
follower force are not purely flutter (like the uniform
beam), but presence of divergence on the inspected
range. Similar to the latter non-homogenous case, the
instability modes occur as flutter, divergence or both of
them simultaneously (pure flutter and pure divergence
appearance are not brought here). It is observed that
presence of concentrated masses, like material non-
homogeneity, severely affects the dynamical behaviour
of the system.

In the last case study a step beam with two
sections and concentrated masses is considered. This
free-free beam under follower force can model a rocket
under its thrust. The first section is made of steel with
the length of 0.5m and the second section is aluminium
of length 1m, and the concentrated masses are similar
with the properties of m = 5 kg, J = 0.003 kg.m?. The
same procedure is preceded and dynamic instability
graphs for the system under follower force are shown
in Figure 5. The plot says both divergence and flutter
instabilities are observed for this example.

As another example, lets swap the material prop-
erties of each of the sections of the latter model.
Therefore, the first section is made of aluminium with
the length of 0.5m and the second section is steel
of length 1m; the other parameters are identical to
the latter example. Figure 6 describes the instability
regions of the current case. For the taken bound, it can
be seen that the structure face to only the divergence
instabilities.

So, non-homogeneity and concentrated masses
have profound effects on the dynamical behaviour of
the structure as well as its level of critical force, and



change the instability modes of the structure from
flutter to divergence and vice versa.

CONCLUSION

This paper investigates the dynamical behaviour of
a free-free step-beam structure carrying concentrated
magses under constant follower force. The problem
leads to a set of partial differential equations with
variable coefficients. As the exact solution for the
problem is not available, an approximate solution is
presented using Galerkin weighted residual method.
The selected trial functions were chosen as the shape
functions of the same system when the level of follower
force is set to zero. It is demonstrated that the non-
homogeneity and concentrated masses have a profound
effect on the dynamical behaviour of the system. Using
numerical examples, it is shown that the added masses
and heterogeneity of the beam change the instability
mode of the structure from flutter to divergence. The
level of critical force also changes significantly.
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