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Improved Mathematical Model for
Helicopter Flight Dynamics Applications

F. Saghafi!, F. Shahmiri’

This paper is concerned with the mathematical model development issues neces-
sary for better prediction of dynamic responses of articulated rotor helicopters.
The methodology is laid out based on mathematical model development for
articulated rotor helicopters, using the theories of aeroelastisity, finite element
and the time domain compressible unsteady aerodynamics. The helicopter
is represented by a set of coupled nonlinear partial differential equations for
the main rotor within nonlinear first order ordinary differential equations
representation, describing the dynamics of the rest of the helicopter. The
complezity of the formulation imposes the use of numerical solution techniques
for dynamic response calculations. The validation is performed by comparing
simulated responses to flight test data for a known configuration. The results
show improvement in dynamic response prediction of both on-axis and cross-
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coupled responses of helicopter to pilot inputs.

NOMENCLATURE
Speed of sound
Blade section area
Matrix array
Length of the blade chord
Lift, drag and pitching moment
coefficients of airfoil section
Skin friction drag coefficient, normal
force coeflicient
Main rotor thrust coefficient
Hinge offset of main rotor blade
Vector of the Unsteady aerodynamic
states
Aerodynamic center

Elastic center/shear center
Blade azimuth angle

Axial, Lagwise and flapwise elastic
deflection of a point on the blade

Elastic rotation/twist

Fuselage angle of attack, sideslip angle
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O, Mean angle of attack of airfoil section
Ot Blade built-in-twist

Blade mass density

Main rotor solidity

Advanced ratio

Aerodynamic loads index
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Partial derivative with respect to time
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INTRODUCTION
In recent years, the need for more reliable designed he-
licopters has caused an increasing interest in improving
the accuracy of flight dynamics mathematical models
of helicopters. This has led to more advanced modeling
of the rotor system, both from the dynamics and
the aerodynamics point of view. Particular attention
has been paid to the long-term problem of off-axis
response prediction errors in flight dynamics modeling,
especially in pitch and roll cross coupling. Until
recently, the predictions of the off-axis response (e.g.,



the pitch response to a lateral cyclic pitch input) were
inaccurate compared to the results of flight tests.

The first major contribution to the understanding
of the off-axis response problem has been made by
Rosen and Isser [1, 2], attributing the prediction errors
to the incorrect modeling of the geometry of the main
rotor wake during pitch and roll maneuvers. Pitch and
roll motion reduce the spacing of the wake vortices
on one side of the rotor disk, and increase it on the
opposite side. This change in wake geometry modifies
the inflow distribution at the rotor disk, causes changes
in blade flapping, and in turn changes in pitch and roll
moments. Taking into account these geometry changes
through a specially developed prescribed wake model
improved the prediction of cross-coupling pitch and roll
derivatives for the UH-60 and the AH-64.

Following Rosen and Isser’s work, other re-
searchers have developed aerodynamic models that
capture the inflow changes due to a maneuver using
correction coefficients. Keller [3] and Arnold et. al. [4]
have developed an extended momentum theory that
contains simple additional inflow terms proportional
to pitch and roll rates. The additional terms consist
of correction coefficients, the numerical values are
determined based on a simplified vortex wake analysis.
Slight improvements were obtained for the prediction
of the off-axis response of the UH-60. Basset [5] who
used a dynamic vortex wake model has modeled the
wake geometry changes due to a maneuver. In this
model, the vortex rings represent the wake. Substantial
improvements in the prediction of the hover off-axis
response for the BO-105 were obtained.

Von Graunhagen [6] has suggested a completely
different explanation for the discrepancies of off-axis
predictions by a virtual inertia effect associated with
the swirl in the rotor wake. This results in simple
correction terms that can be added to a dynamic inflow
theory. Some improvements in off-axis predictions for
a BO- 105 were reported.

All previous studies have tried to improve the
prediction of the off-axis response through theoretical
models. Mansur and Tischler [7] have proposed a
different approach by the use of corrected lift and
drag coeflicients of the blade airfoils obtained from
a first-order filter. The time constant is chosen in
terms of an aerodynamic phase lag. This phase lag is
also determined from flight test data by using system
identification techniques.

Finally, the alternative approaches are offered
through implementation of refined free wake models.
The models that can capture the wake structure due to
pitch and roll rates has been recently developed by Celi
et. al. [8-14]. Some simplifications in the assumptions,
namely the structure of vortex filaments, vortex core
size, velocity profile through the vortex, initial strength
and diffusion of the velocities, and discretization of

F. Saghafi, F. Shahmiri

vortex wake are still observed in this modeling, and
hence, these are led to discrepancy problem relative to
flight test data.

In the present research, response improvement
is acquired through modifying the helicopter flight
dynamics mathematical model by incorporating the
generalized, three dimensional, compressible, unsteady
aerodynamics modeling in the time domain. Although
this unsteady aerodynamic model has a challenge from
the viewpoint of the computational expenses, it has
several advantages when it appends to the rest of
helicopter mathematical model. In the following, a
gradual manner for constructing the mathematical
model development is firstly presented, which is then
followed by a representation of the results and discus-
sions on their validities and improvements.

MAIN ROTOR EQUATIONS OF MOTION
This section is composed of a brief description of the
mathematical model of the main rotor system. The
main rotor blades are modeled as flexible beams expe-
riencing coupled flap, lag, and torsional motion. The
blade equations of motion are derived from combining
the main rotor inertial, aerodynamic, and structural
loads through the calculation of the absolute accel-
eration and velocity vector of a generic point on the
blade elastic axis with respect to inertial coordinate
system. The result is a set of nonlinear-coupled partial
differential equations with periodic coefficients in the
undeformed coordinate system. These equations are
ultimately transformed into a system of nonlinear-
coupled ordinary differential equations using the finite
element discretization based on the Galerkin method of
weighted residuals [15]. Figure 1 illustrates the element
and the corresponding nodal degrees of freedom, which
is considered for the current study. According to the
figure, the total number of degrees of freedom for a
blade finite element is eleven.

Hence, the total number of the blade degrees
of freedom for a whole blade with N, finite elements

vbl,m

Figure 1.
freedom.

Schematic of the blade element degrees of
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corresponds to n = 6 N, + 5. The degrees of freedom
are ordered as follows to form the wvector of nodal
displacements, y,:

?JnZ(UM Ubl, +o- Up(N.+1) Ub(N.+1),2 Wbl Wh1,z .-

Wh(N,+1) Wh(N,+1),0 Pb1 - ¢b(2Ne+1)>T (1)

This total is reduced by applying of the boundary
conditions. For an articulated rotor, the total is
reduced by three, since vy, wp; and ¢y are zero for
the first element, corresponding to the location of the
hinge. For making a reduction in either the blade
elements nodal degrees of freedom or the computational
expenses, the modal coordinate transformation is also
required. This means that the vector of finite element
degrees of freedom 1, is written as the product of
a modal coordinate transformation matrix [V] and a
vector ¢ of modal coefficients as:

yn=1[V]g (2)

The nonlinear-coupled second order ordinary dif-
ferential equations of the main rotor in the modal space
are finally generated as:

G () =F (@ qi)
ih=1,...,Ny=4, ipy=1,..,Nu=6 (3)

where, N, and N, are in turn, the total number main
rotor blade and the number of selected modes for modal
coordinate transformation. The main rotor equations
are ultimately appended to the rest of the helicopter
mathematical model, which is defined as:

v = F(y,ust) (4)

where, y is the state vector, v the control vector and ¢
is time. In other words:

y=(uvwpqgré v q @ qiq dids ds i

Nm Nm Nm _Nm Nm Nm Nm Nm
G 4> 43 44y q1 g 43y

Ao Ale Ats Uy QT2 T3 - l’stprb)T (5)

and

u= (0 01 015 Bor)” (6)

where u, v, w are translational velocity components of
the body in the body fixed coordinate system, p,q,r
the angular velocity of the body in the body coordinate
system, ¢, 8,1 Euler angles, ¢ modal coefficient terms,
Ao, AMe, A1s uniform, cosine and sine inflow components
respectively, Q the rotor speed, vy uniform inflow
of the tail rotor, N, the number of unsteady points
on the blade span, and where z’s are the unsteady
aerodynamic states.

In Eq. (6), the control vector also consists of the
main rotor collective pitch, the lateral, longitudinal
cyclic pitch, and the tail rotor collective respectively.
Because the coupled rotor-fuselage-inflow equations of
motion have the state derivatives appearing on the
right hand side of the Eq. (4), this equation is rewritten
as:

gc = Fc(yv Y, U t) (7)

where, 7. is the inertial coupling vector, which contains
all the state derivatives appearing on the right hand
side of Eq. (4).

. T
je=(vowpgr g - aam gy ©®
The Eq. (7) can be arranged as follow:

Yo = [E] Yo+ Fk(yvu;t) (9)

Re-arranging Eq. (9) and express it as follow:

ire] < [En 8] ] s B

?er E21 E22 Ymr

(10)
where
Ypus = (W0 W P g 7) (11)
and
. Nl el el el “N N “N “N T
Yy = (Qq1 G Gz Gy - ql’”qz’”qsmq4m)

(12)

In Eq. (10), [E11 §sus] is the inertial acceleration
due to the fuselage, [E12 §m,] is the inertial acceleration
due to the main rotor, F,,, is acceleration contributed
by the main rotor excluding the inertial coupling term,
F, is the acceleration contributed by the tail rotor, and
Fy,s is the acceleration contributed by the fuselage, the
horizontal, and the vertical surfaces [15].

Main Rotor Inertial Loads

A basic way for the calculation of the inertia force and
moments is to find the absolute velocity of a point on
the elastic axis of the blade, which is the derivative of
the position vector of a point on the elastic axis relative
to the inertial coordinate system, R. The acceleration
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Deformed coordinate system

Inertial coordinate system =(1'2"'3")

Body-fixed coordinate system =(1%,2"3"%)
Shaft coordinate system =(15,2%,3%)
Rotating coordinate system =(1%2%3")

Undeformed coordinate system =(1",2",3")

=(1X /2% 3%)

Figure 2. Schematic of the helicopter coordinate systems.

vector is given by [15]:

(PfR)Y = (Pfry)”

~—~

Pgra)Y + (P(wip x r2))Y
wrp X (PBTQ +wrp X To )U

U

P

r3)Y + (Py(wim x r3)

U

U

P

)Y + (Py(wiy x 14)

wry X (PUT4 + Wiy X Tg )U
U

e e S S

)
)
wiy x (Pyrs +wiy X 13))
)
)
)

PIQ\"T5)U + (PI\"(w][\" X Tx )
+ (wrx % (Prrs +wri X 7’5))U (13)

where the operator P is given by:

r-(3) - (3)

In Eq. (13), 7; is the position vector; w;; is
the angular velocity of the j-coordinate system with
respect to the i-coordinate system; the superscript (..)*
is used to indicate that the quantity is defined in the
i-coordinate system, the subscripts of the P operator
indicate the position from which the observer looks at
the vector. Figure 2 illustrates the position vectors and
the corresponding coordinate systems.

The inertial loads per unit span in the undeformed
coordinate system are finally determined by integration

of Eq. (13) as:

S
(P = - /p (P?R)"dA

A
MY == [[ p(rs x P2R)VdA (15)
i

Equation (15), based on the inertial coupling vector
which is defined in Eq. (9), can be arranged as;

(FnY =[Er)g. + Fr(y;t)

(M1)" = (B, )9 + Far, (93 1) (16)

Structural Modeling of the Rotor Blade

In this section, the structural formulation for the
rotor blade is briefly described. The formulation is
essentially based on coupled flap-lag bending, rigid
pitch, and elastic torsion motion of a blade. The blade
is assumed to be a slender rod made of the linearly
isotropic material, and that the out of plane warping
and strains within the cross section are neglected.
The derivations are based on the Bernoulli-Euler beam
hypothesis such that it is restricted to the case of the
moderate deflections. The final stage of this analysis
is converged to the stress-force relations in the K-
coordinate system as follows:

(F)" = [[ (01" a1
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where
(U)K = (Uxx Tay sz)T
(rs)™ = (0 5o 20)" (18)

The stress-strain relations are obtained as:
1

Ero = Eopy = §(GX “Gx — 1)
1

oy = 2G Ty, = §(GX : GY)

1
€pr = 2G Ty, = §(GX -Gyz) (19)
where, the base vectors of the deformed section at the
specified point are obtained as:

_Os G _0Os G s

GX_%v Y_a_ya Z:&

(20)

Ag shown in Figure 2, s = r3 + r4 + 75 is the
position vector of the point on the deformed blade
section relative to hub center.

Finally, the structural loads in the undeformed
coordinate system are obtained through implementing
the relevant transformation matrix c}. This is because
of the fact that the main rotor equations of motion
are eventually presented in the undeformed coordinate
system [15].

(Fs)" = Cf (Fs)™
(Ms)” = ¥ (Ms)™ (21)

Main Rotor Aerodynamic Loads

The way for calculating the main rotor air-loads is to
determine the total velocity vector of a point on the
blade elastic axis, Ry in the undeformed coordinate
system as:

(vr)"=(Prr1)"
+(Ppratwrp ><7’2)U+(PS7’3+IUIS xrs)”

+ (Pyra +wip x 14)7 + CHCECT (NP
(22)

where the last term in the right hand side, (/\)TPP =
(00 A7 is the contribution of the induced velocity by
the rotor wake, which is known in the tip path plane
coordinate system [13]. Figure 3 illustrates the tip path
plane coordinate system of the main rotor.

The total local velocity components, Eq. (22),
in the blade sectional aerodynamic coordinate system
(1L,2E,3L), can be expressed as:

(v)" = (vr vp vr)" = Ck (vr)" (23)

Finally, the components of force and moment at
0.25 chord are obtained as:

1
fr= S PairCV (Cqvr — Cycos Byvp)

1
fp = =paircv (Cl sec Oy v + Oy Up)

2

1 1
fr= §p,mcv (Cd - Civpvp cosﬂb) VR (24)
and

1
(mR)L = = Pair 02 v (Cm vT sec 6b + fP (Iac - xea))

2
(25)
where
v =1/v}+ 0% + 03 By =cos™t | 2L
Vi 4+
(26)

In this work, the aerodynamic coefficients ¢;(¢),
cq(t) and ¢, (t) are assumed to be time dependent and
are thus obtained as follows [16]:

Ci(t) = (Cn(t) — Cy4(t) sinay) /cosay
Cylt) = Cgo + C(t) sinay (27)

Figure 3. Schematic of the tip path plane coordinate
system.
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Figure 4. Schematic of the blade angle of attack.
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where
t 6 2 2
tan ay = (UT2 an 2b+UP)\/1]T+UR (28)
v3 + vh —vp Ur tandy
and
GY = 90 + 910 cos wb + 915 sin 1/)b + Gtw + (bb (29)

The unsteady aerodynamic coefficients are ob-
tained based on the fundamental principle that the
flow can be linearized about the mean value of angle of
attack a,, and pitch rate gy = fy.

5Cy, Chro Chg Sary
<6cm) ) (Om cmq)amm (m)
av =an
Croe Cug\" [ Crno Cug ™ Say
(e o) lemen) 1o ()

(30)

where the superscripts ¢ and nc is used to indicate
the circulatory and non-circulatory aerodynamic loads
respectively.

The circulatory part is the contribution of shed
vortices that generates time lag effects in aerodynamic
system, and the non-circulatory loads is due to pressure
wave propagation once the input is applied. Eq. (30)
can be expressed by the extended indicial response
theory for subsonic compressible flow as follows:

5C,, Sy
sCn)  \égy

2vt ) ne
-

= * 7 -
=0 f — € Ty oy =am,
qy =49m
2 2 2vt
a* = — 1—5 Age i
ﬂ i=1
- 2
. .2 20t
b* = 3 1-) A=
=1

2
.2 vt
= —g (0.25 — z,.) (1 — E Aie_biﬁmT)
=1

¢ == 2 (1 em )

. 1 _ (=) _(z)
f>.< - _ Ag@ 53713 —|—A4€ by T3 (31)
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By re-arranging Eq. (31), the state-space form is
obtained as follows [16]:

&t =[Al 2+ [B]lu
y=[Clz+[D]u (32)

where x is the state vector, v is the input vector, and
y is the output vector of the aerodynamic system.

T = (l’l X2 T3 ... l’s)T
u=(day, 6g,)"
y = (6C, 6Cn)" (33)

The unsteady aerodynamic matrices are written as:

[A] =
a0 0 0 0 0 0 07
0 b 0 0 0 0 0 0
0 0 -7 0 0 0 0 0
0 0 0 - 0 0 0 0
cTy
0 0 0 0 S 00 0
0 0 0 0 0 a0 0
0 0 0 0 0 0 d=* 0
L0 0 0 0 0 0 0 e
2 2
aX:_(_U)Hlea b”z—(—”)ﬂsz
C C
c 2v 9 a
= 9 X‘ -\ b7 =
¢ b3T4a ( & ) 6 50 € Cb4T4
(34)
T
1 1 101100
[B]_[O.E) 05 01 0 0 1 1] (35)
[C]_[?Tf nt oot % 0 0 0 O}T
0 0 0 0 —dAass _dudes pr g

. 4dass . T [2v . TTags
o' =P 16(0)6,q oar 89

and
4 _1
M M
[D] = (37)
_ 1 7
M 20
where
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The non-circulatory time constants in Eq. (33)
and (34) are equaled to:

Ty = 4M [2(1 — M) + 22 8M? (Arby + Asbo)] ™

Ty = 2M [(1— M) + 2x3M? (Ayby + Asby)] ™

Ty = (Asby + Agbs) [bsba(1 — M)] ™"

Ty = 14M [15(1 — M) + 3x3M3b;) ' (39)

The circulatory constants A, and b, are taken from
[16].

The unsteady aerodynamic loads is challenged by
the computational expenses. This model adds eight
states to the overall size of the helicopter model for each
point at which the aerodynamic loads are estimated 8-
point Gaussian integration. Therefore, it is costly to
perform it for the whole of the Gauss points on the
blade. Thus, in this case, it is important to be able to
calculate the unsteady aerodynamics states only at a
reduced set of points and interpolate the results to the
Gauss points prior to integration.

The interpolation may occur at any of a number
of steps of the calculation of the unsteady aerodynamic
loads. For instance, after integrating the unsteady
aerodynamic state, &, for the selected spanwise points,
the generated states x have to be interpolated to
provide values at each of the Gauss points locations. In
other words, it is possible to do calculations up to the
time of determination of the states, &, at the selected
sample points, and then interpolate them into the
Gauss points prior to integration. The latter procedure
has been implemented in this study because it gives
the minimum computational cost and it is found that
the sensitivity of aerodynamic loads to the values of
the unsteady aerodynamic states is very high. The
interpolation procedure implemented here is based on
a Cubic Spline [17].
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Figure 5. Schematic of the 1st natural blade mode.
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Figure 6. Schematic of the 2nd natural blade mode.

SOLUTION TECHNIQUES

The basic trim procedure used in this study is a coupled
rotor-fuselage trim procedure for a helicopter in a hover
and forward flight. For a given helicopter configuration,
the flight condition is defined by the velocity V' along
the specified flight path angle v and the turn rate 7.
The straight level flight is provided as a special case
with zero turn rate and fight path angle. The vector of
unknowns of the trim procedure corresponds to:

[ 0o O1c f1s  Bosr a B 17
p q r ¢ ¢
Ao A Al vy
Yorim=| @  @e s ANye Dhys
@ @ o AN N
x(l) I%c x%s e .%'}\/[hc x}\/[;bs
R T T VO R
(40)

As noted earlier, in the current work, the modal
coordinate transformation is applied to reduce the
number of degrees of freedom of the main rotor blades.
The modal coeflicients for each flap, lag or torsion
mode are expanded in a truncated Fourier series, and
the coefficients of the expansions become unknowns of
the trim problem. The ¢f is the constant coefficient
and ¢b,, ¢, are respectively the coefficients of the j-
th harmonic Cosine and Sine for the k-th blade mode.
The presented results in this research are obtained for
two flap, two lag and two torsional modes by including
the three harmonics N, = 3 in the expansion of the
modal coefficient.

The trim problem is defined by a set of coupled
nonlinear algebraic equations that impose three-force



and three-moment equilibrium along the aircraft body
fixed coordinate system axes; three kinematic relations
between roll, pitch and yaw rates and turn rate; one
equation imposing coordinated turn, and one kinematic
condition on the flight path angle.

The unsteady aerodynamic states are also ex-
panded in a truncated Fourier series, and hence the co-
efficients of the expansions are considered as unknowns
of the trim problem. The z{ is the constant coefficient
and ¥, ¥ are respectively the coefficients of the j-th
harmonic Cosine and Sine for the selected k-th point
per blade.

RESULTS
In this section, the transient response of an articulated
rotor helicopter to step-inputs at various trim condi-
tions has been calculated and compared with flight test
data [18]. The test data used for comparison were ob-
tained in a series of tests conducted for use in validation
of the Rotorcraft Systems Integration Simulator. The
trim data and selected transient-response time histories
were provided to Sikorsky for use in their validation of
the mathematical models. No stability augmentation
was used during transient-response data runs. Analog

Frequency=2.87/Rev
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Figure 7. Schematic of the 3rd natural blade mode.
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Figure 8. Schematic of the 4th natural blade mode.
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Figure 9. Schematic of the 5th natural blade mode.
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Figure 10. Schematic of the 6th natural blade mode.

and digital stability augmentation systems, the flight
path stabilization system, and the horizontal stabilizer
control system were disabled. This is a highly degraded
configuration; the results are not representative of a
UH-60A in normal operation. The test procedure
normally consists of stabilizing in trim with one of
the two redundant stability augmentation systems
on; this was disabled one second before the control
input. Unsatisfactory stability characteristics of the
un-augmented aircraft, especially in pitch, required the
pilot to initiate recovery within a few seconds of the
input for reasons of instability or safety. Furthermore,
because the test program was organized in order to
provide standard handling qualities data, the presented
results are focused on both off-axis and on-axis dy-
namic response. Validations are discussed in terms
of the pitch, roll and yaw rate responses, which are
important from the handling qualities point of view.

In all cases, trim control settings are normally
obtained from the previous section for 50 knots forward
flight speed, corresponding to p = 0.11 respectively.
All results are taken for an altitude of 3000 feet in a
standard atmosphere and a gross weight of 16000 1bf.
This corresponds to a % of 0.069.

The current analysis uses six main rotor blade
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—— Flight test data —e— Unsteady aerodynamic —s— Quasi-steady
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Figure 11. On-axis yaw rate response to pedal input,

forward flight.

‘—a— Flight test data —— Unsteady aerodynamic —s— Quasi-steady |

20+

Pitch rate {deg/sec)

Time(sec)

Figure 12. Off-axis pitch rate response to pedal input,
forward flight.

modes to model the rotor flexibility, which include
two natural flap modes, two natural lag modes, and
two natural torsion modes resulting from the finite
element analysis. Five finite elements are used in
the calculation of these modes. The blade mass and
stiffness distributions are obtained through lookup
tables [15]. The natural frequencies of the modes
are presented in the followed figures. This mode is
calculated with the geometric pitch angle at the root
of the blade set to zero and the centers of gravity and
shear coincident at the quarter-chord to reduce the
flap-lag and flap-torsion coupling. The presence of the
large amount of structural twist,-14°, of the blade for
this case have a significant influence on the coupling
between the flap and lag modes. Figures 5 through 10
display the six lowest frequency natural mode shapes
that are generated for five finite elements with non-
uniform mass and stiffness distributions.

Figures 11 through 13 show the pitch, roll and yaw
rate responses of the helicopter at 50 knots straight and
level flight to 1 degree step pedal input maneuver. As

shown in Figure 11, it can be seen that the maximum
on-axis yaw rate response is achieved in about 2 seconds
after the control input is applied. The initial acceler-
ation is followed by a rapid growth to maximum rate
12 degrees per second when the control and damping
moments are effectively in balance. The restoring
moments ultimately enforce the response back to the
primary equilibrium path. Although, this is predicted
by both of the unsteady and the quasi steady aero-
dynamic modeling, the unsteady aerodynamic model
shows improvement during the simulated time.
However, based on Figure 9, the predicted un-
steady off-axis pitch rate response closely follows flight
test data, both quantitatively and qualitatively, while
the quasi-steady deviates from the actual data. The
discrepancy is probably due to high damping moment
which is predicted poorly by the quasi-steady modeling
and is modified by applying unsteady aerodynamic
within both circulatory and non-circulatory load terms.
The discrepancies observed in Figure 13 are due
to both predefined non-circulatory time constants and

‘ —— Flight test data —o— Unsteady aerodynamic —e— Quasi-steady |

Roll rate (deg/sec)

Time (sec)

Figure 13. Off-axis roll rate response to pedal input,
forward flight.

|+ Flight test data —o— Unsteady aerodynarmic —e— Quasi-steady ‘

Pitch rate (deg/sec)

Time (sec)

Figure 14. Off-axis pitch rate response to lateral cyclic
input, forward flight.
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Figure 15. On-axis roll rate response to lateral cyclic
input, forward flight.
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Figure 16. Off-axis yaw rate response to lateral cyclic
input, forward flight.

circulatory load coefficients. The initial roll acceler-
ation due to application of pedal displays larger roll
amplitude with smaller roll damping moment in com-
parison with flight test data. The unsteady predicted
response shows a higher accuracy compared with the
quasi-steady base line model.

Figures 14 through 16 depict pitch, roll and yaw
rate response due lateral cyclic stick input at 50 knots
forward flight speed. As shown in Figure 14, the initial
transient pitch response is first traced to a maximum
rate at which the control and damping moment are
being balanced. The figure shows that the pitch rate
response still suffers a problem, possibly due to the
restoring moment which arises from the aircraft trans-
lational acceleration. The sign of restoring moments
is strongly dependent on the amount of the induced
velocity variations which considerably affect the main
rotor reaction.

As shown in Figure 15, the on-axis roll rate re-
sponse both qualitatively and quantitatively follows the
actual flight test data. This means that the unsteady
indicial based approach well simulates the unsteady
conditions around the main rotor which has a major
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contribution in the dynamic behavior of a helicopter as
a whole. It can be seen that both the circulatory and
non-circulatory time constants are sufficiently accurate
when the prediction of an on-axis response under the
action of an on-axis input is concerned. As clearly
seen, the unsteady aerodynamic theory presents an
improvement in comparison with what the quasi steady
approach shows.

In Figure 16, a good correlation is seen when the
unsteady aerodynamic model is applied for studying
the yaw rate response. This is certainly because of the
use of the inflow dynamic model which adds a normal
velocity component to the rotor disk alone. Since, the
dynamic inflow model adds the normal velocity com-
ponent instead of the lateral-directional components;
the off-axis response is quite close to actual flight test
data both qualitatively and quantitatively. Hence,
the dynamic inflow model rather than the unsteady
aerodynamic model is recognized as a principal source
of error.

CONCLUSIONS

A practical implementation of the unsteady aerody-
namic loads has been presented through the compre-
hensive flight dynamic simulation program. This time
domain unsteady aerodynamic formulation, coupled
with a compatible dynamic inflow model, finite ele-
ment discritization and a numerical solution technique,
provides an improvement in the dynamic response
prediction of helicopters.

The presented formulation is considered as an in-
termediate method between the steady state linearized
incompressible and the more comprehensive unsteady
aerodynamic formulation based on computational fluid
dynamics methods CFD. The main advantage of this
model is that the unsteadiness around the helicopter
dynamics can be explicitly modeled in time domain
through a set of ordinary differential equations without
any constraint on a solution algorithm. Response
improvement is achieved by considering the circulatory,
the non-circulatory terms and the compressible flow
assumption which are applied to arbitrary points on the
span wise location of blades. Both the on-axis and off-
axis response predictions of the simulated model are in
good agreement with available flight test data. Thus,
this model can be used as a tool for better determi-
nation of helicopter handling qualities. Consequently,
the movement from the quasi-steady to the unsteady
aerodynamics is a logical trend for improvement of the
dynamic response prediction of helicopters.
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