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Near-Optimal Tuning of Linear Controllers
Based on Genetic Algorithm and Swarm
Intelligence: A Flight Control Example

Ali Reza Mehrabian', Jafar Roshanian?, Caro Lucas®

This paper presents a method for the tuning of PID-type controllers for systems
with time-varying dynamics based on optimization by genetic algorithms (GA)
and swarm intelligence, i.e. a modified version of particle swarm optimization.
The power ful abilities of biv-inspired computing in locating the optimal (or near-
optimal) solutions to a given optimization problem are utilized for determining
the parameters of the controller in order to meet specified per formance objectives
for a given problem in terms of weighted integral of different signals. The
presented study recommends a new modification n PSO algorithm where o
novel approach for tuning of the learning factors is employed to improve the
speed of convergence and the accuracy of the search in the multi-dimensional
space. The proposed technique has the flexibility to be applicable to a wide range
of control problems. In order to illustrate the performance of the technique,
development and application of this algorithm for an aerospace launch vehicle
during atmospheric flight in an experimental setting is presented.
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M, Angular momentum along the Y axis
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INTRODUCTION
Mathematical optimization methods can be classified
into two different sets: direct and gradient-based search
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methods.! In direct search methods, only objective
(also called “fitness” or “performance”) function and
constraint values are used to guide the search strat-
egy, whereas gradient-based methods use the first
and /or second-order derivatives of the objective func-
tion and/or constrains to guide the search process.
Since derivative information is not used, the direct
search methods are usually slow, requiring many func-
tion evaluations for convergence that increases the
computational load. For the same reason, they can also
be applied to many problems without a major change
of the algorithm. On the other hand, gradient-based
methods quickly converge to an optimal solution that
needs not to be the global optimum, and cannot be used
in the case of non-differentiable or discontinues objec-
tives. In addition, there are some common difficulties
with most of the traditional direct and gradient-based
techniques:

1. Most algorithms tend to get stuck to a suboptimal
solution.

2. An algorithm efficient in solving one optimization
problem may not be efficient in solving a different
optimization problem.

3. Algorithms are not efficient in handling problems
having discrete variables.

Because nonlinearities and complex interactions
among variables often exist in engineering design prob-
lems, the search space may have more than one optimal
solutions, of which most are nndesired locally optimal
solutions having inferior objective function values.
When solving these problems, if traditional methods
get attracted to any of these locally optimal solutions,
there is no solution. To overcome these problems, re-
searchers have proposed evolutionary-based algorithms
for searching near-optimum solutions to problems.?

Evolutionary algorithms (EA) are stochastic
search algorithms that imitate the metaphor of nat-
ural biological evolution and/or the social behavior
of species. Examples include how birds find their
destination during migration and Darwin’s theory of
evolution, which basically stresses on the fact that the
existence of all living things is based on the law of
“survival of the fittest”. Various researchers have devel-
oped computational systems that seek fast and robust
solutions to complex optimization problems mimick-
ing the behavior of biological systems. The leading
evolutionary-based optimization research introduced
in the literature was the genetic algorithms (GA).?
Basically, GA is a method for finding solutions to
optimization or search problems by means of simulated
evolution (i.e. concepts from genetics). GA is a set
of adaptive (search, learning) methods based on the
genetic processes of biological organisms. Based on its
demonstrated ability to reach near-optimum solutions
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to large problems, the GA method has been used to
solve several problems in science and engineering.*~"
Though GA techniques have heen employed success-
fully to solve complex optimization problems, recent
studies have acknowledged some difficulties in GA
performance. This degradation in efliciency of GA
is noticeable in applications when the objective func-
tion should be optimized by highly correlated pa-
rameters. Furthermore, the premature convergence
of GA degrades its performance and decreases its
search capability that directs to a higher probability in
the direction of obtaining a local optimum.®:® Beside
various improvements in GA, recent developments
in EA include other techniques inspired by different
biological processes, e.g., memetic algorithms (MA ),
particle swarm optimization (PSO),!! invasive weed
optimization (IWO),'? and ant-colony system (ACS).'?

PSO has recently developed as an important
branch of combinatorial meta-heuristic techniques
which operate on a population of potential solutions
to explore the search space for optimization.'* PSO is
motivated by the simulation of social behavior instead
of survival of the fittest. While each member of the
swarm bears minimal intelligence, the swarm as a
whole shows a good amount of intelligence as if the
intelligence of each member is added up. Associated
with a velocity, each candidate (also called “particle”)
“flies” through the search space. The velocity is
constantly adjusted according to the corresponding
particle’s experience and the particle’s companions’
experiences. It is expected that the particles will move
towards better solution areas.!®

Regardless of vast advances in the field of control
systems engineering, PID scheme still remains the
most common control algorithm used today in the
industry. It is widely used because of its flexibility,
high reliability and ease of operation and tuning (see for
example Ref. 16). PID controller design methods differ
with respect to the knowledge of the process dynamics
they require.!®'7 These techniques were developed
empirically through the simulation of a large number of
process systems to provide a simple rule. The methods
operate particularly well for simple systems and those
which exhibit a clearly dominant pole-pair, but for
more complex systems the PID gains may be strongly
coupled in a less predictable way. In many practical
sitnations the system is parameter varying and/or non-
linear with powerful disturbances; thus design methods
based on classical PID tuning methods are not reli-
able. Another possibility for obtaining a compromise
bhetween several different criteria is to use optimization
methods. Optimization is a powerful tool for controller
design. The method is simple in conception. A control
scheme with few parameters is specified. Next, system
specifications are expressed as inequalities of functions
of parameters. Then, the important specifications

are chosen as a function (performance index) to be
optimized. The method can be applied to design PID
parameters easily. Different performance criteria for
PID controllers are addressed in Ref. 16. Indeed
care must be exercised when defining performance
index, since it may have many local minima. Another
difficulty is the computations required may easily be
excessive. However, optimization based on EA can
overcome these difficulties.

In the current study it is sought to employ two
evolutionary algorithms, i.e. GA and PSO, for optimiz-
ing gains of an Aerospace Launch Vehicle (ALV) PID-
like autopilot during atmospheric flight. The problem
of designing intelligent adaptive autopilot for the ALV
was conducted in a pervious study (Ref. 18). However,
the study of optimal constant gain controller for the
system is not addressed before. The design procedure
and controller performance evaluation is addressed to
compare GA and PSO for finding near-optimal gains
for control.

GA AND PSO BASED OPTIMIZATION

In general, EAs share a common approach for their
application to a given problem. The problem first
requires some representation to suit each method.
Then, the evolutionary search algorithm is applied
iteratively to arrive at a near-optimum solution. A
brief description of the two algorithms, GA and PSO
is presented in the following suhsections.

Genetic algorithms

GA is a search/optimization technique that uses ge-
netics and natural selection as a model for problem
solving. In the GA, a population of randomly created
individuals (chromosomes) goes through a simulated
process of evolution, which is a digital version of the
survival of the fittest, law in which individuals in the
current population are bred to produce new individuals
hopefully hetter suited to the environment. Each indi-
vidual represents a potential solution to the problem,
a candidate set of parameter values. GA works on
the coding of the parameters and not on the exact
parameters so that it does not depend on the continuity
of the parameters or the existence of derivatives of the
functions required in some conventional optimization
algorithms. The coding method allows the GA to
handle multi-modal (i.e. many-peaked) and multi-
parameter type optimization problems easily, which
are rather difficult or impossible to be treated with
classical optimization methods. The sequential steps
for searching optimal solution using GA are shown
in Figure 1. Reference 2 gives a general overview of
heuristic search methods inclnding GA.
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Figure 1. GA computational llow chart.

Particle swarm optimization

The particle swarm optimization (PSO) technique was
developed by Kennedy and Eberhart.!! The PSO is
inspired by the social behavior of a flock of migrating
birds (or fishes) trying to reach an unknown desti-
nation. A particle is analogous to a chromosome
(population member) in GA. Nevertheless, the evo-
lutionary process in the PSO does not create new
particles from the parents. To a certain extent,
the birds in the population only change their social
behavior and accordingly their movement towards a
destination. Physically, this mimics a flock of birds
that communicate together as they fly. Each bird looks
in a specific direction, and then when communicating
together, they identify the bird that is in the best
location. Consequently, each bird speeds towards the
best bird using a velocity that depends on its current
position. Each bird, then, investigates the search space
from its new local position, and the process repeats
until the flock reaches a desired destination. It is
important to note that the process involves both social
interaction and intelligence so that birds learn from
their own experience (local search) and also from the
experience of others around them (global search).?

To formulate this social behavior, Each “particle”
is represented by a vector in multi-dimensional space
to characterize its position. x, and another vector to
characterize its velocity v. To update velocity in each
time step v+ is a function of three major components:
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the current velocity of the particle (vy), the difference
of the best position particle ever reached (best local
position, Ppest) and the current position (xz), and
the difference of the best position found so far in the
swarm (global best position, gpest) and the current
position (x). The second and third components are
stochastically weighted and added to first component.
The basic PSO algorithm can be described in vector
notation as follows:

Vit1 = w X v +rand X1 X (Ppest — Xk )

cognitive component

+ Rand XCo X (gbest - Xk) (13)

social component

Velocity clamping :

it ka1 > Umar  then  vei1 = Vmax (1b)
if vpe1 < Vimin  then  vpe1 = vimin
Displacement clamping :
if Te+1 > Tmaz then Tk+1 = Tmax (1(‘)
if Tr+1 < Tmin then Tk+1 = Tmin
Xp41 = Xg + Vi1 (1d)

At iteration k the velocity vector vi is nupdated
based on its current value affected by a momentum
factor, or inertia weight (w),!® and on a term which
attracts the particle towards previously found best
positions. The strength of attraction to the best local
position is given by the coeflicient , and to the global
best position by the coefficient ¢o (¢1 and ¢y are also
called “acceleration coefficients” or “learning factors”).
The particle position, x, is updated (xx+1) using its
current value and the newly computed velocity viyi.
Randomness necessary for good space exploration is
introduced via the vectors of random numbers rand and
Rand, usually selected as uniform random numbers in
the range [0, 1].

Since the first publication of PSO algorithm, a
large body of research has heen done to study either
the performance of PSO, or to improve PSO perfor-
mance. Showing very fast convergence, much effort
has been invested to obtain a better understanding
of the convergence properties of PSO. These studies
concentrated mostly on the influence of the basic PSO
control parameters (the learning factors, momentum
factor, velocity and displacement clamping, and swarm
size). From these empirical studies it can be conclunded
that the PSO is sensitive to control parameter choices,
specifically the momentum factor, learning factors and
velocity /displacement clamping. Wrong initialization
of these parameters may lead to divergent or cyclic
behavior.2%:21 In a well tuned PSO the particles show
a logical behavior as follows:
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1. The velocity of particles increases; thus, the parti-
cles are spread over the search space.

2. The particles can locate optimal (global and/or
local) solutions to the optimization problem while
moving randomly over the search space.

3. The particles try to move towards global optimal
solution while slowing down; but some of them are
being trapped in locally optimal solutions.

4. The particles being trapped in founded local or
global solution slow down and search for better
solutions in their local search space, until they can
find the best possible answer.

Nevertheless, a search algorithm that suffers from bad
tuning may show any one of the following behaviors:22

1. The velocity of particles increases rapidly, and
particles go out of the search space.

2. The velocity of particles decreases rapidly, and
particles nearly stop.

3. Particles are trapped in locally optimal solutions
and cannot get out.

In order to avoid these undesirable conditions an
analysis between the relation of the parameters and the
behavior of particles can be carried out.?!?? However,
there is not any rigid formulation/procedure reported
in the literatures for determining PSO parameter; thus,
the parameters are often selected by trial and error.
It is suggested to choose learning factors within 0.2
to 2 and select a momentum factor that decreases
linearly from 1.4 (wWmax) to 0.5 (Wmax).>'® In this
fashion, global search starts with a large weight and
then decreases with time to favor local search over
global search.?23

Particle swarm optimization with dynamic
learning factor (MPSQ)

Introducing the concept of momentum factor (inertia
weight), Shi and Eberhart!® suggested that a better
performance would be obtained if the momentum
factor were chosen as a linear-time-varying dynamically
decreasing quantity, rather than being a constant
value.?® This idea was followed by Chatterjee and
Siarry,'* where they suggested a non-linear dynamic
decrease in the momentum factor. A higher value of the
momentum factor implies larger incremental changes
in velocity per time step which mean exploration of
the new search areas in pursuit of a better solution.
However, a smaller valne of the momentum factor
implies less variation in velocity to provide slower
updating for fine tuning of a local search. It is
supposed that the PSO algorithm should start with
a high momentum factor for crude global search and
the momentum factor should decrease (linearly/non-
linearly) to facilitate finer local explorations in later
iterations. 1419

o

The learning factors, ¢; and ¢, are parameters
that characterize ardency of the particles in moving
towards best local/global positions. It is clear that at
the beginning of the search, when particles are being
spread over the search space by an initially large mo-
mentum factor, the swarm is not intended to converge
to optimal solutions; but in return, it is desired that the
swift swarm keeps on locating the possible solutions for
the problem. This idea can be achieved by selecting
relatively smaller values for learning factors in the
beginning of the search that means the swarm has lesser
tendency in gathering around local solutions, which are
found in the heginning of the search. As a consequence,
the swarm keeps on exploring new spaces for possible
potential solutions to the problem that may contain
even better answers for the optimirzation problem. The
value of the learning factors, therefore, can be increased
when the exploration of the search space is performed
successfully, in order to absorb the particles towards
locally /globally optimal solutions for finer tuning in
later iterations. The idea is determination of the
learning factors as a non-linear function of the present
iteration number (iter) at each time step. The proposed
formulation for learning factors is given as:

(iterpax — iter)™

(itermax )nl

where =12 (2)

iter _

A (Cr_nin _ Ct_nax) 4 cmax

2 2 2

where ™ is the ith (4 = 1,2) minimum (initial)
learning factor at the commence of a given search, and
cx ig the ith (¢ = 1,2) maximum (final) learning
factor at the end of a given search, when iter,,.x is the
maximum number of iterations in a given search, iter
is the iteration number at the present time step, ci**
is the ith (4 = 1,2) learning factor at the present time
step, and n; is the ith (4 = 1,2) non-linear inflection
index. Figure 2 shows typical learning factor with
iterations for different values of n; (i = 1,2) on either
side of unity. With n; = 0 (i = 1,2), the system
becomes a special case of constant learning factor with
time, as proposed by Shi and Eberhart.

The search algorithm starts with low initial learn-
ing factors, which should allow it to explore new search
areas aggressively without much interest in assembling
around local/global salutions of the problem, and then
increases it slowly according to equation (2) following
different paths for different values of n; to reach ¢"**
at iter,.x. The abjective is to arrive at an attractive
solution for any given problem by decreasing the chance
of being trapped in potential local answers that are
found in commerce by the immature swarm for a given
search problem.
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Figure 2. Variations of learning lactor [or different values ol non-linear inflection index.

A DESIGN EXAMPLE
The model used in this analysis is based on the
aerospace launch vehicle model employed as a base line
in previous studies for non-linear/adaptive control (see
Ref. 18).

ALV model

The equation of motion for an ALV can be derived
from Newton's second law of motion. Considering rigid
airframe for an ALV, six degree of freedom (6-DOF)
equations of motions can be obtained as follows:??

E, =m(U +qW —rV)
Fy=m(V + qU — W)
F,. =m(W +qV —rU)
M, =Ip

M, =1L+ (I, —I,)pr
M. =17+ (I, - L)pq

The control design for a linear ALV is being
considered in this paper, due to the fact that the ALV

attitude control systems are usually designed using
linearized equations of motion. This mainly is because
the nominal trajectory of the system is planned to
maintain the ALV at near-zero angle of attack. This is
normally attempted by programming the pitch attitude
or pitch rate to yield a zero-g trajectory. ?* Therefore,
the assumption of near-zero angle of attack for the
equilibrium condition is quite valid, and any changes in
angle of attack can be considered perturbations from
the equilibrium conditions. Thus, considering small
perturbations and rigid airframe, linearized longitudi-
nal equations of motion of an ALV can be obtained as
follows:

U = ZUU+qu+ZQG+Z5§ (4)

(5)

where Z, M represent dynamic coefficients, and the
control force is provided by the deflection of thrust vec-
tor shown by 6. Variations of longitudinal dynamic co-
efficients and ALV parameters during the atmospheric
part of powered flight nsing 6-DOF implementation are
obtained as shown in Figure 3. ( For confidentiality
reasons, given flight time and parameters are unit-less.)

G = MyU + Myq + Mé6
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Figure 3. Figure 3 Longitudinal dynamic coellicients.

The servo dynamics describing the thrust vector
deflection is:

O 1

TF servo — T T A a1
[TF] O 0.1s+1

(6)
with rate limit of | £, | < 2.5 deg/sec. Reference signal
of the control system is pitch rate, so that a rate gyro
is used for measuring obtained pitch rate which has
dynamics described as follows:

(807)?

TF ro — .
[TFe 82 + 407s + (807)2

(M)

ALV control circuit

Pitch program of an ALV is provided by guidance
systems. Some gunidance systems provide only a pitch
program whereas some others also require that the
control system be capable of accepting a commanded
pitch rate. Considering the second case, block diagram
of a typical ALV attitude control system is shown in
Figure 4. It is illustrated in the mentioned figure that
the controller is provided by the pitch rate program
and measured pitch rate signal. Constructing pitch

rate and pitch angle error (by integrating pitch rate
error) the controller allocates constant gains Ky, and
I, to each signal respectively. There is also a K;
gain associated with the integral of the pitch angle
error. Thus, the control command, 6., is generated
by multiplication of the pitch rate, the pitch angle,
and the integral of pitch angle error signals with
assigned constant gains. The controller is similar to
the conventional PID controller where the differential
signal is available by measurement. (Gains of the
control law are generally selected by automatic control
theory techniques, such as pole-zero placement method
of the closed-loop transfer function. Solution to this
problem in application to the launch vehicle attitude
control system has the following particular features:
1) Vehicle dynamic coefficients are time-variant along
the trajectory. Therefore, to satisfy the response and
accuracy requirements, the feedback loop gains can
be chosen as a time variable. These gains can be
selected as programmed versus time or the wvehicle
net acceleration along the nominal path, or can be
calculated during a flight by some adaptive optimal
or robust algorithms considering external disturbances
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Figure 4. ALV control circuit.

acting on the wehicle. 2) Attitude control system
is influenced by different disturbances, such as stage
motor thrust deviations from nominal, stage separa-
tion disturbances, atmospheric density deviations from
reference, wind in atmosphere, vehicle aerodynamic
coefficient uncertainties, etc.

To take into acconnt the above mentioned features
and to satisfy design requirements of modern autopilots
many methodologies have been developed during the
last few years.?? 29 The procedure for tuning controller
gains based on non-linear optimization technique is
specified in the following section.

ALV AUTOPILOT DEVELOPMENT BASED
ON EA
To reach an adequate controller with good performance
and low sensitivity to wind disturbances it is proposed
to tune the parameters of the controller throughout
atmospheric flight. It is clear that classical dynamics
and steady-state measures of performance, e.g. over
shoot, rise time, and settling time are inconveniencing
in multi-step reference trajectory evaluation. This
is particularly true when the final scalar objective
function is to be a weighted sum of the different perfor-
mance measures. The problem here arises in attaching
weighting coeflicients to each of these measures so that
they correspond directly to the relative importance of
the objectives or allow trade-offs between the objectives
to be expressed. Therefore, use of integral criteria as
a measure of performance for control systems was con-
sidered in this work. The comprehensive performance
index (fitness function) employed in this study is given

in equation (8):

! !
Min: J=10In {/ |:10|F,pr(t)| +10 / lepe ()] dt
Jo Jo

Ki 0, K g
+0.1]8.(t)| + 100]e..()]] dt} + 1

=101In { /f [10|€pr(t>| + 10|€pa(t)‘ (8)
70

+0.1]66()] 4 100|eac(t)]] dt} + 1

where e, (t) indicates pitch rate error, ey, (t) stands
for pitch angle error, and e,.(t) for actuator realization
error as illustrated in Figure 4. The mentioned fitness
function minimized errors in tracking nominal pitch
rate and pitch angle (shown in Figure 5) as well as
the control effort, |6.(¢)] and the error caused by the
difference between actuator input and output signals.
The latter term is included to prevent difficulties

Pitch angle

20

Mag [deg]

time
Pitch rate
0.5
o
2 0
=)
o
=2
o
g 0.5
- i
0 2 4 6 8 10
time

Figure 5. Nominal pitch program.
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caused by improper control signal, e.g. noise and
saturation in the command signal 6.. Clearly, there
is no analytical solution to minimizing the mentioned
performance index; thus, the performance index is min-
imized using GA and PSQO by tuning the parameters of
the controller.

ALV autopilot development based on GA

Gains of the controller were tuned by GA in order to
minimize performance criteria given in equation (8).
Parameters of the GA algorithm used in this research
are given in Table 1. In order to reach near-optimal
solution, in every iteration the best population is found
by maturing best individuals of the previous step. The
size of the population must be related to the size of the
search space, ensuring a sufficient number of points for

“particles”) are randomly spread over the design space.
There is only one difference in the way they converge
to the optimal position as addressed in Section 2. PSO
parameters in this study, obtained by trial and error,
are given in Table 2 for both original PSO and modified
PSO (MPSO).

Results addressed in Ref. 14 indicate that a
higher choice of wmax consumes more iterations to give
the required solution; hence, experiment with different
values of wmax and number of iterations is avoided
here. The values for the learning factors in PSO are set
equal to average values of the respective parameters in
MPSO, i.e. (¢ + ¢in)/2 (where § = 1,2). The best

Table 2. PSO and MPSO parameters

the evolutionary algorithm prospect. In the present PSO MPSO
case, a population of size N = 10 was selected in Population of particles 10 10
order to reduce the computational time, with the search Initial range for particle position [-15, 15] [-15, 15]
space limited to Kl;,q € [-1818]. The maximum » } )
D . e Initial range for particle velocity [-1.1]  [-1, 1]
population iteration was used as a stop criterion; i.e.
the search algorithm stops after 100 iteration. The Iterations 100 100
controller parameter evaluation process by GA is shown Winax 9 9
in Figure 6. The best fitness function reached after 100
. . L . Win 0.3 0.3
iterations is given in Table 3.
Vmax 5 5
ALV autopilot development based on PSO Vinsin -5 -5
The controller design procedure by PSO is very similar ) 15 15
to the design by GA method. Like GA, agents (in PSO Tmax J J
Tmin -15 -15
Table 1. GA settings c1 1.1 —
Population size 10 C2 0.6 -
Initial range for particle position [-15, 15 enax - 1.4
Iterations 100 ciriv - 0.8
Mutation Gaussian cyPex - 1
Crossover probability 0.8 cipiv 0.2
Selection strategy stochastic uniform ni - 2
Coding scheme double vector Ny - 2
4 . . :
! -~ =GA |
L PSO A Ty
S RXATREE MPSO | " \
3 b : E ®
g o '
3 =~ £ -
2.2_53 ______ 1 1 I e ~,..,._§,:-.=\...
& l i Sookee, -
g 2rie \ o T
£ vt TTmmTmmm T ,
T sr ‘, itev:gons » 10
i Lo
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Figure 6. Fitness [unction values plotted against iterations for GA, PSO, and MPSO algorithms.
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Table 3. Controller parameters obtained by GA, PSO,
and MPSO

GA PSO MPSO

Ky 1.9578 1.6022 1.8558
I, 2.7258 3.1111 2.5333
K; 18.0000 12.9201 18.0000

Fitness function value 0.8885 (0.938%6 (.8631

fitness function found after 100 iterations is given in
Table 3.

SIMULATION RESULTS AND ANALYSES
The evaluation process of controller parameters for GA,
PSO, and MPSO algorithm is illustrated in Figure 6.
One can see that in each case the algorithm does
converge to a solution. Results indicate that the GA
algorithm improves gradually, and could successfully
reach fairly near-optimal solution at the end of the
run; however, it is slower than PSO algorithm.? PSO
algorithm was able to locate an optimal answer quickly
and converge to the solution in a short time. As a
matter of fact, it was trapped in a local solution (pre-
mature convergence) as it can be seen from achieved
parameters and the objective function mentioned in

GA parameterized controller command

PSO parameterized controlier command

All Reza Mehrabian, Jafar Roshanian, Caro Lucas

Table 3. MPSO, on the other hand, was able to locate
potential solutions to the problem, whilst the swarm
had a high speed at the beginning of the search. In the
middle of the course for finding the optimal solution
while GA and PSO were kept on locating fitter answers,
MPSO was gathering the agents in order to look for
fitter particles later, the fact that was established at
the end of the search.

Performance of the designed controllers is studied
by simulating them on the system for nominal condi-
tions as shown in Figure 7. The MPSO parameterized
controller is intended to have lesser fitness function
during atmospheric flight; however, the results indicate
satisfactory outcomes with small differences in tracking
commands provided by guidance section for all three
controllers. This, in fact, acknowledges the decency
of the selected performance index. In Figure 8 the
performance of the controller that was parameterized
by MPSO algorithm is demonstrated in presence of a
powerful gust to illustrate the robustness of the design.
The gust profile is given in Figure 9.

For performance comparisons, the results are
given against a GS controller presented in Ref. 18
and 30 (proposed in Ref. 26 for first time). Showing
very good robustness, the proposed controller tracks

MPSO parameterized controller command
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Figure 7. Time history of the closed-loop system [or nominal conditions.
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MPSO vs GS parameterized controller command
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Figure 9. Sample wind velocity profile.

the commanded pitch angle and pitch rate very closely
in presence of such a powerful disturbance.

CONCLUSIONS
Socio-biologically inspired algorithms have, in recent
years, been widely applied for finding good solutions
to complex tasks. This paper sought to develop a
new-modification in PSO algorithm and use it in a de-
manding aerospace engineering task, i.e., the problem
of controller development for time-varying systems. In
this paper, two evolutionary algorithms, GA and PSO,
are employed for non-linear problems of tuning the
gains of a linear controller. The controller parameters
are found by optimizing a fitness function. Both GA
and PSO have shown very good convergence powers for
finding proper controller gains.

A new variation of PSO, i.e. MPSO, which is
introduced in this study, employs non-linear variation
of the learning factors of the swarm. Using proposed
algorithm, the swarm is not intended to converge
to optimal solution at the beginning of the search
(premature convergence), so that the swarm can do
aggressive search during initial iterations to achieve
better search of the solution space, with little interest
in early founded near-optimal solutions. Thus, the
swarm can arrive at the global optimal solution at
the end of the search, and is not trapped in locally
optimal solutions. Fine tuning of the answer is left for
later iterations when the slower particles are brought
together by increasing the learning factor so that the
optimal solution can be reached with higher accuracy.
Application results, i.e., the problem of optimization
of a fitness function presented by a weighted integral
of different signals, e.g., tracking error (for pitch angle
and pitch rate), control effort, and actuator realization
error are reported to acknowledge applicability of this
thesis. Notice that the fitness function has various
numbers of local minima with no noticeable difference
in their fitness function value. For instance, the minima
that were found by PSO, however were local, but are
slightly different in value with the minima found by
MPSO. while the values of the parameters (K;, K,
K,y), were far-away. This fact certainly makes the
problem of finding the global minimum more difficult
for any search algorithm.
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