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Multi Fracture/Delamination Analysis of

Composites Subjected to Impact Loadings

S. Mohammadi', A.A. Moosavi Khandan?®

A combined finite/ discrete element method is presented for modelling
composite specimens subjected to dynamic/impact loadings. The main task
is set on developing an algorithm for simulation of potential bonding and
debonding/delamination phenomena during impact or general dynamic loading
conditions. In addition, full fracture analysis also be performed. The proposed
approach adopts a gemeral node to face nonlinear frictional contact algorithm
to enforce bonding/debonding constraints between composite plies. The method
is also capable of analyzing progressive fracture and fragmentation behaviour as
well as potential post cracking interactions caused by the newly created crack
sides and segments. A local remeshing technique is adopted every time a new
crack is formed, while an overall remeshing is performed anytime a certain
criterion of error estimation is violated. The special local remeshing technique
is designed to geometrically model an individual crack by splitting the element,
separating the failed node, creating new modes and dividing the neighboring
elements to preserve the compatibility conditions. The same procedure is capable
of modelling application of fibre reinforced polymer (FRP) layers to other
engineering structures in order to improve their flexible behavior in static and

dynamic loading conditions.

INTRODUCTION

Composite structures are subject to various types of
damage in their life time, induced by either chemical
processes due to aggressive environmental conditions or
loads higher than the design service loads. Progressive
and catastrophic crack propagation is known to be a
major safety concern in all composite applications. As
a result, development of reliable and efficient models for
determining failure behaviour of composites has been
an active subject of computational research. One of
the most considerable problems in designing composite
structures is their vulnerability to transverse impact,
which can cause significant internal damage in terms of
delamination (debonding), matrix cracking, local and
global bucklings and fragmentation.

For a wide range of composite applications, con-
tinuum mechanics has been frequently used to formu-
late the basic governing equations [1]. Their main
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disadvantage, however, has been in their restriction to
laminates with simple geometries and behavior. More
sophisticated models have been developed by adopting
contact interaction algorithms within a finite element
procedure for simulation of debounding behavior [2-7].

Nevertheless, the finite element method (FEM)
has roots in the concepts of continuum mechanics,
and is not suited to general crack propagation and in
particular to fragmentation problems. In contrast, the
recently revived discrete element method (DEM) is well
suited to problems with strong material and geometric
discontinuities [8].

This paper is dedicated to the introduction of a
new approach based on the combined finite/discrete
element method to fracture and delamination analysis
of composites. The proposed algorithm consists of
full material and geometric non-linearities. A central
difference explicit time integration technique is adopted
which is computationally efficient for impact simula-
tions. The present discrete element method utilizes
principles of penalty based contact mechanics in order
to enforce developing contact constraints. The discrete
element method can be basically regarded as a finite
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element method coupled with concepts of multi-body
dynamics, specifically designed to solve problems that
exhibit strong discontinuities [8].

First, the simulation strategy is briefly explained.
Consider a composite plate is subjected to a high
velocity impact by an external object as illustrated
in Figure 1. The specimen is discretized by a finite
element mesh, except for the potentially susceptible
damage region of composite, which is modelled using
discrete element mesh. Coarser finite elements may
be used in regions far from the impact point and
the potential damage region in order to reduce the
analysis time. Each discrete element is discretized by
a finite element mesh. Interlaminar characteristics of
plies such as debonding, impenetrability, friction and
sliding determine connection (bonding) states of the
adjacent discrete elements. Plies bonding (debonding)
interaction and the interlaminar behavior in the post
delamination phase, such as slipping and crack faces
interactions are governed by contact mechanics. Dis-
crete element system and finite element mesh of the
rest of the plate are connected together by transition
interface, preventing separation/penetration under all
stress conditions.

WEAK FORMULATION OF FEM WITH
CONTACT MECHANICS
A weak form of the boundary value problem of the
finite element formulation is adopted. Assume € and
T' represent the body of interest and its boundary,
respectively. Also, the boundary is assumed to consist
of a part with prescribed displacement u, I',, a part
with prescribed traction force f***f T',, and a part
I'c in contact with another body (see Figure 2).
The variational form of the dynamic ini-
tial/boundary value problem can be expressed as [4]:

wint(éu7u) + M (bu,u) = wezt(éu) + W (6u) (1)
where

w™ (Su,u) = /Qé(u) : (w)dv (2)

Projectile

Transition
interface

Figure 1. A composite plate subjected to a high velocity
projectile.  The combined finite element mesh is only
used for the delaminated/fractured part. Damaged and
undamaged regions are connected to each other by means
of contact transition interfaces.
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M(bu,u) = /(5u - piidv (3)
wt (bu) = / du - fo%dy +/ Su- f5 da (4)
Q Iy

W' (6u) = /F 5g(u) - oo da (5)

denote, respectively, the virtual work of internal
forces, the inertial forces contribution, the virtual work
of external forces and the virtual work of contact forces.
Here 6 is the Cauchy stress tensor, & is the strain tensor,
u is the displacement vector, while g represents the
contact gap vector:

g=lon,9r]" (6)

where gy is the normal distance between contactor
node and contact segment. ¢ is a tangential vector
whose size is equal to the distance between the projec-
tion of the contact node in the current configuration
and the initial configuration. Figure 3 defines the
adopted 3D node to face contact interaction model.

According to the weak form of the boundary value
problem (1), the component form of the virtual work
of the contact forces associated with the contact node
is given by [4]:

D @

obw’ = ffog = It ous

where ! = n,t and ¢ = x,y, and v is the i-component of
the displacement vector at node s, and f€ is the contact
force vector over the contact area A€,

fc — Aca_c (8)

Figure 2. Boundary value problem for a body in contact
with another body [8].
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Figure 3. 3D node to face contact interaction.
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where k¢ is the penalty term matrix , which may vary
between contact nodes. The calculated contact force
has to be distributed over the target and the contactor
nodes [8].

INTERFACE MODEL
One of the major failure modes of composites subjected
to impact loadings is the debonding failure in interface
of composite plies. Here, a 3D Hashin model is adopted
to predict initiation of interfacial debonding. Within
a large deformation framework, the rate of Green-

Lagrange strain tensor E can be decomposed into

—el —in
elastic £ and inelastic E  parts.

—el —in

E=EFE +E (10)

—el

E =C§ (11)

where C is the elasticity matrix for plane isotropic
behavior of the material and S is the stress matrix The
inelastic strain rate follows the associated flow rule:[5-
6]
—in  —pl . OF

oS
Here, A is the inelastic coefficient and F is the yield
function. The Hashin delamination criterion is defined
as:

) EVE N

=33 =13 =23 . .
where S°7, S, S are interlaminar stresses, and Zg

and Ry are tensile and tangential strengths of layer,
respectively.

The yield function F(S, 3) is defined from the
delamination criterion and a linear softening function

Z(B):

F(5.8)=0(5) - 2(8) <0 19
g(8) =5 45 (15)
0000 0 0
0000 0 0
0010 0 0
A=l0 000 0 0 (16)
2
0000 (&) o
oooo o (%))
Z(B)=Z (1 - pp) (17)

The internal variable 3 can be assumed as the
equivalent inelastic strain. The parameter p describes
the slope of the softening function Z(/3). It is a material
parameter and can be determined from the critical
energy release rate G, tensile strength Z; and the
thickness of the intermediate layer hp:

_ZOXhT

Ye (18)

I
The rate of the internal variable 3 is defined from the
evolution law:
. :OF

=)A= 19
b=-hs (19)
The gradient of the yield function F is derived as
follows:[9]

OF 1 =

S  g(3) (20)
OF

57 = L (21)

Adopting a backward Euler algorithm within a time
step tny1 = tn, + At, and using equations (10-12) yields
to:

_ o _ A _
En+1 =C 1Sn+1 + EZZ + _714577‘4_1 (22)
9 (Sn+1)
S =0 1+ #A} [En+1 - Eﬂ (23)
Z (Bn-{—l)
Spi1 = PE" (24)
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where subscripts ,, and ,41 are associated with times
t, and t,y1, respectively. Updating the internal
parameter 3 is performed using a backward Euler
integration:

ﬁn+1 = Bn +A (25)

Linearization of the stress tensor has to be derived for
the finite element formulation. After some algebraic
manipulations, the consistent tangent matrix can be
derived:

— PN (PN)"
D=P-5rpy+ (26)
!
1-\Z
Z'=—p (28)

HOFFMANN MATERIAL MODEL
The behaviour of the composite material is assumed
to follow the anisotropic Hoffmann model. It requires
six normal tensile o7 and compressive g strengths in
three orthogonal directions and three shear strengths
os. The imminence of material failure by the or-
thotropic Hoffman criterion is defined by [10]

1
¢ = iaTPU +oTp — 7% (k) (29)
where the projection vector p and the projection matrix
P are defined based on nine material yield strengths, a
normalized yield strength &, and a softening/hardening
parameter K

p=[on1 ax azx 0 0 0] (30)
* —Q12  —Q31 0 0 0
—Q19 )k — Q23 0 0 0
. —Q3]  —Qp3 K kX 0 0 0
P=2 0 0 0 344 0 0 ’
0 0 0 0 3ass 0
0 0 0 0 0 36

* = Q31+ 2, *k = Qogt+Qio, ¥ xx = agi+azs  (31)

with
o (Tiic —Our
Qi =0 —_ = | >
04iC 04T

i=4,j=2,k=3
; i=5,7=3k=1 (33)
i=6,j=1k=2

i=1,2,3 (32)
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a“_32< 1 1 1 >

h 2 \GiicTir 0jjc0i1  OkkcOkkT )
i=1,j=2 k=3
i=2,j=3k=1 (34)
1=3,7=1,k=2

In order to account for release of energy and redistribu-
tion of forces which caused the formation of a crack, a
bilinear local softening model is adopted. It is proved as
an efficient way of avoiding the mesh dependency of the
results [11]. The additivity postulate of computational
plasticity is used to formulate the rate form of the stress
return algorithm. The integration of the flow rule in a
finite step is then performed by the backward Euler
method coupled with the Newton-Raphson iterative
scheme, resulting in the following consistent tangent
matrix Doy [11]

o; =Deré; (35)
. aal Q

Der =Q [I - B—i—aTQa} (36)

where

Q =D(I+ A);DP)~* (37)

and a is the stress derivative of the yield function

9¢
a0, o; +p (38)
and
96 95 Ok
= — 39
07 Ok OAN; (39)
||1IT,II§‘?";<I:.-'|1| O
v=15.5m/s ¥
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Figure 4. Geometry of composite impact problem.

i
i

(b) time=0.6 ms

Figure 5. Delamination propagation (black region) on the
deformed shape of the plate at times 0.1lms and 0.6 ms,
respectively.



Multi Fracture/Delamination Analysis of Composites Subjected to Impact Loadings 199

"N | |
05 . -
<+ om-: Prasent approach
o = Livear [12]
a— Monlngar [12]

Cermrad Deflection frmm|
",

0 o1 02 03 04 s 0E
Time jms)

Figure 6. Displacement history of central point of the
plate in comparison to [12].
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Figure 7. Geometry of an axially loaded composite panel
with an initial interlaminar crack.

Using the consistent tangent matrix Deor ensures
the quadratic convergence rate for the stress update
procedure at the Gauss point level and the overall
solution.

The numerical procedure can be summarized as:

1. An explicit time integration scheme is adopted to
determine displacements, velocities and accelera-
tions for each time step. It will be followed by
evaluation of strains at element levels.

2. The Hoffman elastoplastic material model is used
to evaluate stress states.

3. Interlaminar stresses are determined using fric-
tional contact algorithms (combined finite/discrete
element method).

4. Hashin interlaminar criterion is adopted to check

for occurrence of delamination and necessary stress
updates.

Global and element matrices are updated.

6. Next impact load increment is applied and the
procedure is repeated from step 1.

NUMERICAL SIMULATIONS
Delamination in a Composite Plate Subjectred
to an Impact
A clamped [06/904/06] composite beam, subjected to
an impact by a cylindrical rigid object along its central

Table 1. Composite material properties.

Ei11= 156 GPa

v12=0.228

EQQZ 9.09 GPa

V23:0.4

Gic=147 J/m?

p= 1540 kg/m?

Grrc=>526 J/m?

Zo = 4MPa

Ry = 2MPa

line is considered (Figure 4). Composite material
properties are defined in Table 1. Because of the
symmetry, only half of the problem is modelled and
only the delamination failure is investigated.

Geubelle et al. [12] performed a full fracture
analysis of the beam with matrix cracking by using
33180 LST and 23773 cohesive triangular elements.
The present simulation is performed with the com-
bined finite/discrete element method, showing more
efficiency and reduction in computational efforts. Each
layer is considered as a discrete body and is discretized
by a finite element mesh. Interactions among discrete
bodies (i.e. layers) are governed by fully nonlinear
normal and frictional contact algorithms. Deformation
and delamination patterns of the plate are shown in
Figure 5 at times 0.1ms, 0.6 ms, respectively.

Displacement history of the central point of the
plate has been shown in Figure 6, showing good
agreement with the reference results obtained from
nonlinear analysis [12].

Buckling of a Delaminated Composite Panel
This example is dedicated to the buckling behaviour
of delaminated composite layers, previously studied by
Progini et al.[13]. A panel, composed of [049] composite
layers with an initial crack between the 04/01¢ layers, is
subjected to incrementally increasing axial compressive
loading until local and global buckling modes are
generated in 0, and 014 layers, respectively. (Figure
7 and Table 2).

Normal and frictional contact interaction laws
have been considered for delaminated layers, while
mixed mode criteria have been adopted for calculation
of delamination propagation. An initial local deforma-
tion of the finite element model is depicted in Figure
8.

Figure 9 shows the predicted local and global
buckling modes, while Figure 10 illustrates the load-
displacement diagrams for two points A and B on [04]

Prmt B
FE e T Ty O
HEHH A ]
Poant A&

[
e e e

Figure 8. Initial local deformation of the finite element
model of the composite panel.
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(a) Local buckling mode

(b) Global buckling mode
Figure 9. Deformed finite element mesh showing local and
global buckling modes.
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Figure 10. Load-displacement curves for points A and B,

showing local and global buckling loads at 1410 and 7130
Ibf, respectively.
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Figure 11. Geometry of the circular plate.

and [016] layers, respectively. According to Figure 10,
local buckling commenced at load 6.3 kN and global
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Table 2. Material properties of composite panel [13].
(Original data were in lb-in units).

E11 = 139.2 GPa via = 0.29
E22=9.72 GPa via2 = 0.29
E33 =9.72 GPa via = 0.29

G12 =5.58 GPa

Go3 = 3.76 GPa

o117 =1510 MPa

c11c = 1590 MPa

Gaar =45 MPa

Taac = 250 MPa

F1ag = 107 MPa
Grc = 88 N/m
Zo = AM Pa

Grre = 88 N/m
Ry =2MPa

Table 3. Material properties.

Isotropic Plate Projectile
E = 152400 MPa E = 210000 MPa
v =0.35 v =0.29

G = 4226 MPa
p = 1550kg/m?
Zo =4 MPa
Ry =4MPa

G = 133000 MPa
p = 7860/6_9/777,3

buckling occurred at load 31.7 kN, comparable to the
results reported by Progini [13] at 5.8 kN and 34.8 kN,
respectively.

High Velocity Impact on a Circular Multi
Layer Plate

This test is performed to illustrate the effects of various
contact related parameters on the quality of the results
for a 3D simulation of high velocity impact on a
multi layer model. Similar numerical studies have
to be performed for each independent simulation in
order to properly set the associated contact interaction
parameters.

A two layer circular composite plate subjected to
an impact by a high velocity long rod is analyzed in
different conditions (see Figure 11 and Table 3). The
finite element model is depicted in Figure 12.

At first, the effect of hourglass control on the
quality of the solution is investigated. The initial stable
time step is At = 0.1e — 6. Figure 13a illustrates an
unstable solution that can be developed if no hourglass
control is adopted.

In the next test, the penalty term is taken as
a = 2el10. According to Figure 13b, the rod quickly
passes through the plate, and although it generates
some internal stresses within the plate, the results are
not reliable. Increasing the penalty term to a = 2el2
leads to greatly improved results.

In another case, normal and tangential penalty
parameters are set to different values of «, =
2el12,2el14 and a; = 2e10,2e12,2e14. The two layers
perform together and resist against the penetrating
rod. The main source of error in this simulation is
that the top layer deforms drastically (Figure 13c) and
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causes the solution to be fatally terminated due to
extensive hourglass instability (Figure 13d).

Finally, the best result is achieved by setting
a, = 2eld, ay = 2el4 and At = 0.1e — 7. The
solution is acceptable for successive time steps until
t = 0.0004s (Figure 14) where the solution fails to
converge due to very large deformation and distortion
of the elements. It is not always an easy task to
perform a full 3D contact delamination analysis due
to several potential instability modes resulting from
a large number of causes including layer separation,
excessive penetration, spurious modes, distortion and
hourglassing

Impact On a Concrete Beam Strengthened by
CFRP
An impact experiment, performed by Jerome et al.
(1997) [14] on a 3x3x30 in (7.62x7.62x76.2 cm)
concrete beam (without internal steel reinforcement)
and strengthened by a 3x30 inch three-ply CFRP
panel, was analyzed to study the effects of debonding
of the composite layer (FRP) from a different material.
The measured dynamic drop loading curve versus time
is shown in Table 4. Properties of concrete and CFRP
panels are also given in Table 5.

Analysis was conducted in a plane stress state
with adaptive triangular plane stress elements for both

Figure 13. Instability modes; a) Layer separation and hourglass instability mode due to spurious modes. b) Large
penetration of the rod has not created reasonable deformation in the circular plate. c) Large deformation of the top layer
whilst acceptable deformation is generated for the bottom layer. d) Hourglassing and extensive distortion of the model.
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Figure 14. Deformed shape of the rod and plate at times a) 0.00005, b) 0.00015, c) 0.00025 and d) 0.00035 sec.
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Figure 16. Unrealistic fracture (a) and delamination (b)
predictions due to improper contact (interface) modelling.

the concrete beam and CFRP sheet. The size of these
elements varied due to their distance from CFRP sheet;
0.01, 0.001 and 0.00025 m for elements adjacent to
top of the beam, adjacent to CFRP, and CFRP itself,
respectively. Because of the symmetry of loading and
geometry only one half of the beam was modelled as
depicted in Figure 15.

Unrealistic deformation and fracture modes may
be triggered if any of several parameters affecting
the results such as contact related parameters, bond-
ing/interface variables, size of the timestep, fracture
properties and material related data are improperly
set (Figure 16).  Jerome [14] reported that flexural
cracks started to occurr between 400-500 ps and, ran
to the upper surface of the beam by 600 s, which
is in a close agreement with results of the performed
simulation (Figure 17).

Test indicated occurrence of a crack initiation on
the bottom centre of the beam at about 430 us. The
results show that flexural cracks were propagated at

Table 4. Load (kN)-time(ms) curve [14].

time load time load time Load
0.0 0.0 0.8 1.1 2.1 15.8
0.2 31.1 1.0 1.8 2.4 13.3
0.3 35.6 1.2 8.9 2.6 13.3
0.4 31.1 1.4 14.2 2.9 18.2
0.5 28.9 1.6 8.9 3.0 17.8
0.6 4.4 1.8 11.1 3.2 11.6
0.7 0.0 2.0 15.1 3.4 6.7
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Table 5. Concrete and CFRP material properties.

Concrete CFRP
Eq 24000 MPa ToT 2206.9 MPa
v 0.2 90T 137.9 GPa
s 4.35 MPa fibre volume 60 %
fe 46.4 MPa 3-ply 0.4953
o 39.5 MPa thick. mm
p 1892.7 kg/m?> p 1577.2 kg/m?
Gy 0.5 N/mm
Zo 4 MPa Ro 4 MPa

the bottom part of mid span at 460us. These flexural
cracks started to propagate from two distinct origins
very close to mid span. Later, these cracks started to
develop, and reach the upper surface of the beam in
time interval of 460 s to 750 ps[14].

On the other hand, the present numerical ap-
proach predicts distinct cracks to attach to each
other at 0.00113s. Later, at 0.00127s some signs
of delamination are observed at the bottom of the
beam, developing gradually at 0.00132s. At 0.00165s
microcracks start to develop from about mid height of
the beam toward the left side. They reach the bottom
of the beam, creating a complete flexural cracking
beside microcracks at 0.00171s. It is notable that
these cracks stop exactly at the same location where
delamination of CFRP stops.

1200 and 630 8-noded cubic elements were used
for 3D modelling of the FRP sheet and concrete beam,
respectively. Similar to 2D simulation, the size of
elements were gradually increased for the concrete
beam by their distance from the bottom of the beam

! i
(a)

{

. 1
(b)

7

7§
(¢)

7

{
(d)

Figure 17. Cracking Pattern at time steps (a).00046s,
(b).00075s, (c).000165s and (d).00174s.

by an increasing ratio of 0.77!. A node to face contact
approach was adopted for modelling the adhesive layer
and the contact of the adjacent elements. Again,
improper setting of the interface contact related pa-
rameters produces unrealistic delamination patterns as
depicted in Figure 18. Figure 19 shows the debonded
region of CFRP sheet from mid span at 470 ps and 750
US.

Delamination of CFRP sheet from the concrete
beam was approximately started at 470 ps in the mid-
dle of the beam and propagated toward the support.
At 750 ps about one fifth of the total length of FRP
sheet was debonded from the bottom of the beam as
illustrated in Figures 19.

Various displacement history curves at mid span
of the beam, computed in different 2D and 3D sim-
ulations, were compared to the displacement history
resulting from the experimental tests as depicted in
Figure 20. The existing large differences of no fracture
results can be attributed to the fact that the simulated
beam has more stiffness than the experimental beam,
which is a consequence of elastic behavior of concrete
in tensile regime without any tensile fracture.

CONCLUSIONS
A contact based delamination control has been de-
veloped and implemented within a combined fi-
nite/discrete element method. It has resulted in a
reliable and efficient approach to delamination and

=

(a) time=0.00047 s

I

(b) time=0.00075 s
Figure 18. Unrealistic 3D interface debonding patterns.

(b) time=0.00075 s

Figure 19. Delamination growth at different time steps.
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Figure 20. Comparison of mid point displacement vs.
time for different solutions.

fracture analysis of composites subjected to high ve-
locity projectiles. Initiation and propagation of cracks
have been considered using a bilinear strain-softening
model. The penalty method has been employed to
impose impenetrability and post-debonding behaviors
of plies as well as post-cracking of individual layers.
Numerical tests have demonstrated the power of the
algorithm for numerical simulation of impact loading
on composite structures. The method has performed
well for similar applications such as dynamic behavior
of concrete structures strengthened by FRP compos-
ites.

REFERENCES
1. Rowlands, R.E., “Strength (Failure) Theories and
Their Experimental Correlation”, Handbook of Com-

posites, Failure Mechanics of Composites, Elsevier, 3,
PP 71-125(1985).

2. Chen, W.H. and Yang, S.H., “Multilayer Hybrid-Stress
Finite Element Analysis of Composite Laminates
with Delamination Cracks Origination from Transverse
Cracking”, Engineering Fracture Mechanics, 54(5),
PP 713-729(1996).

3. Kwon, Y.H. and Aygunes, H., “Dynamic Finite Ele-
ment Analysis of Laminated Beams with Delamination

10.

11.

12.

13.

14.

S. Mohammadi, A.A. Moosavi Khandan

Cracks Using Contact-Impact Conditions”, Computers

& Structures, 58(6), PP 1161-1169(1996).

Mohammadi, S. and Owen, D.R.J. and Peric, D.; “A
Combined Finite/Discrete Element Algorithm for De-
lamination Analysis of Composites”, Finite Elements
in Analysis and Design, 28, PP 321-336(1998).

Hashagen, F. and de Borst, R., “Numerical Assessment
of Delamination in Fibre Metal Laminates”, Computer
Methods in Applied Mechanics and Engineering, 185,
PP 141-159(2000).

Sprenger, W. and Gruttmann, F. and Wagner, W.,
“Delamination Growth Analysis in Laminated Struc-
tures with Continuum-Based 3D-Shell Elements and
a Viscoplastic Softening Model”, Computer Methods
i Applied Mechanics and Engineering, 185, PP 123-
139(2000).

Mohammadi, S., Discontinuum Mechanics Using Fi-
nite and Discrete Elements, WIT Press, (2003).

Mohammadi, S. and Forouzan-sepehr, S. and Asadol-
lahi, A., “Contact Based Delamination and Fracture
Analysis of Composites”, Thin-Walled Structures, 40,
PP 595-609(2002).

Schellekens, J.C.J., “Computational Strategies for
Composite Structures”, Ph.D. Thesis, Delft University
of Technology(1992).

Mohammadi, S. and Forouzan-sepehr, S.; “3D Adap-
tive Multi Fracture Analysis of Composites Materials
Science Forum”, PP 440-441, 145-152(2003).

Mohammadi, S. and Mousavi-Khandan, A.A., “Simu-
lation of Bond Failure in RC Beams Strengthened with
FRP Sheets Subjected to Dynamic/Impact Loadings”,
Proceedings of International Symposium on Bond Be-
haviour of FRP in Structures, (2005).

Geubelle, P.H. and Baylor, J.S., “Impact-Induced
Delamination of Composites: a 2D Simulation”, Com-
posites Part B 29B, PP 589-602(1998).

Progini, P. and Riccio, A. and Scaramuzzino, F.,
“Influence of Delamination Growth and Contact Phe-
nomena on the Compressive Behavior of Composite
Panels”, Journal of Composite Materials, 33(15), PP
1433-1465(1999).

Jerome, D.M. and Ross, C.A. , “Simulation of the
Dynamic Response of Concrete Beams Externally Re-
inforced with Carbon-Fiber Reinforced Plastic”, Com-
puters and structures, 64(5/6), PP 1129-53(1997).



