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Normal Form Solution of Reduced

Order Oscillating Systems

A. Sedaghat!

This paper describes a preliminary investigation into the use of normal form
theory for modelling large non-linear dynamic systems. Limit cycle oscillations
are determined for simple two-degree-of-freedom double pendulum systems.
Such a system is reduced into its centre manifold before computation of normal
forms, which are obtained using a period averaging method applicable to non-
autonomous systems and more advantageous than the classical methods. A
good agreement was observed between the predicted results from the normal
form theory and the numerical simulations of the original system.

NOMENCLATURE
A Jacobian matrix
a;,t=1,...,4 constant parameters, see Eq. 17
a;j,%,7 =20,...,3 constants, see Eq. 30
B Canonical matrix

bij,i,j =0,...,3 constants, see Eq. 30

D dissipation function

D, partial derivative with respect to u

D, partial derivative with respect to v

D;;,1,5 =1,2 elements of the Jacobian matrix, see
Eq. 32

d damping coefficient, see Eq. 14

flz,€) n-vector nonlinear function

200 k" order normal forms

fi,i=1,....,4 non-dimensional quantities, see Eq. 14

Gy, Gy third order functions

gr(¢,t) k' order periodic transformation
function

g(%) nonlinear function of the state variable
/]

g(x) nonlinear function of the transformed
variable x

hi (¢ t) k' order geometrical transformation
function
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hy. (¢, k)
hii=1,2
ki, Ko, ks

i

Zi,i = ]., ...,4
Z

Greeks

derivative with respect to ¢

system coordinates, see Eq. 30
system stiffness coeflicients for linear
springs

Jordan canonical matrix

matrix corresponding to critical mode
of the system

matrix corresponding to remainder

length of the weightless links, see Eqs.
10 and 11
mass, see Eqs. 10 and 14

follower force

characteristic polynomial
generalized force in the i-direction
generalized coordinates in the
i-direction

kinetic energy

critical mode coordinates
coordinates corresponding to remainder
potential energy

state vector

time derivative of x

components of the vector x
vector with n components

time derivative of y

state variables

time derivative of z



152
€ small perturbation parameter
n non-dimensional system indicator, see

Eq. 7
A characteristic variable
At =1,...,4 eigenvalues
i transformed characteristic variable

e critical value of the characteristic
variable

#,65 system configuration coordinates

¢ n-component vector

¢ time derivative of ¢
INTRODUCTION

Vibration behaviour such as Limit Cycle Oscillations
(LCO) can only occur in non-linear systems [1,2].
Consequently, it is not possible to predict LCO using
a purely linear analysis. Moreover, linear analysis is
becoming less feasible. LCO has become an important
research topic over the last few years although such
problems have been encountered long ago.

A periodic solution of a dynamical system is called
a limit cycle if there are no other periodic solutions
sufficiently close to it. In other words, a limit cycle
is an isolated periodic solution and corresponds to an
isolated closed orbit in the state space [3]. Every
trajectory initiated near a stable limit cycle approaches
it as t — 0.

Prediction of limit cycle oscillations (LCO) has
been carried out for a range of simple non-linear
dynamical systems [4-17] using normal form theory
(NFT). Ounly recently, has computation of normal
forms for general M-DOF systems using multiple time
scales been reported [18, 19]. The NFT is used to sim-
plify analytical expressions for non-linear systems [5-6].
In this method, a non-linear co-ordinate transformation
is employed to obtain a simple analytical expression
for the transformed equations such that qualitative
behaviour of the system is evaluated without solving
the system of equations. The classical approach of
Poincare [20] and Brikhoff [21] suffers from evaluating
large matrices to obtain normal forms. Liu [22] and
Grzedzinski [23] have applied center manifold theory
to reduce the number of differential equations before
computing normal forms. Zhang [9] has calculated
normal forms through a period averaging method that
can be used for solving the governing equations of non-
autonomous systems.

In this paper, the method developed by Zhang
[13] was adopted for solving LCOs for a two-degrees-
of-freedom double pendulum system. A non-linear
system is reduced into its critical modes (or center
manifold) which may correspond to one or two single
DOF systems. The reduced system exhibits exactly
the same behaviour as the full system at the corre-
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sponding modes for which higher order normal forms
can be obtained with less computational effort. The
methodology described involves transformation of sys-
tem equations into modal canonical forms, reduction of
these equations into normal forms, and then prediction
of instability behaviour, here LCO. Predictions are ver-
ified through comparisons with numerical simulations.

PERIOD AVERAGING METHOD

It is computationally exhaustive to find coeflicients of
normal forms using the matrix approach [5, 6]. An
alternative faster approach is the averaging method
[7-8] which is equivalent to the NFT method. Thus,
the problem of calculating higher order coefficients
of normal forms is equivalent to the problem of
calculating higher order averaging equations. Since
the averaging method is applied to non-autonomous
systems, a coordinate transformation is adopted such
that an autonomous system is obtained through a time
integrating procedure.

In this approach, we have the following non-linear
ordinary differential equation, where is a perturbation
parameter,

z=Jx+ef(x,€), z€NER (1)

is transformed to a time dependent ordinary differential
equation in y,

j=ce T (e y,e) = egly.t,e) (2)
using the transformation function
r=e"yand & = Jet Ty 4+ ey, (3)

where 0 < |z| << 1, f € C"" and f(0,¢) =0. Here,
J is the Jordan canonical matrix, 2 is a domain which
contains the origin and is invariant under T', Tx € Q if
z € Q. Note that equation (2) explicitly depends on
time while the original equation (1) does not.

The period averaged normal form of equation
(2) can be constructed using the following change of
variable:

Y= C+Zflhl (C»t)a (4)

=1

which transforms equation (2) to a normal form up to
the order m as follows:

(=S RO +0 (e, (5)
k=1

where the geometrical transformations hy (¢, t) in equa-
tion (4) are given by

T
mco =7 [ rlacreo-p dr (©
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The normal forms f? (¢) are given by

T
RO=7 [ s )

and the functions g, (¢, t) is determined by

_Zh

where a prime denotes differentiation with respect to
¢. More details on deriving the above relationships can
be found in [28].

(€.t £ (), (8)

DOUBLE PENDULUM SYSTEM
Double pendulum system shown in Figure 1 consists of
two rigid weightless links of equal length 1, which carry
two concentrated masses 2m and m, respectively.

A follower force P is applied to this system.
Equations of motion can be obtained for this system
using the Lagrange’s equation [24-25]:

d (or oD oT av .
dt (3_%>+(3_%)_(3_qi)+(aql) Qi i=1, (2)

where T is the kinetic energy; D is the dissipation
function; V is the potential function; and @Q; =
O(6W)/0(6¢;) is the ith generalized force with é6W
being the virtual work done by the force Q,;. The
virtual displacement at the exertion point of Q; is é¢;.

P P

~ ¥
N
=7

P

Figure 1. A sketch of a double pendulum system with
follower force.

Considering the above system, the kinetic energy T
becomes [26],

ml?
T —

202
where #; and 62 are generalized coordinates that define
the configuration of the system. The potential energy
associated with three linear springs ki, ko and ks is
given by [26]:

[362 + 92 + 26,65 cos (61 — 92)] ) (10)

V=2 [(k1 + ko + k3l®) 67 + 2 (ks — k2) 0162

DO —

1
+ (k2 + k312> 9%] - 6k3l2 (61 +62) (9? + 9;’) . (11)

Lagrange’s equations introduced in equation (9) lead
to a set of first order differential equations as follows
[26],

le
aw
dz 1 3
d_t’2 =—-z (fl +2fy—n) 21 — §f42’2
1
t3 (2fa —m) 23+ faza
1
5 (Bft +9f2+2fs —4n) 2
1
1 (2f1+9f2 — 2f3 —4n) 2723
1
+t7 (fi+9f2—4n) 2123
1
6(3f2+3f3—277)

+ ng (32’2 - 22’4) (Zl — 2’3)2

— 2224 (21 — 23), (12a)
ng
W = 24,
dz 1 5
d_; = §(f1+4f2—2f3— n) Zl+§f4z2
~3 (4f2 +2f3—n) 23— 2f124
1
BT (6f1 +15f2 —2f3—Tn) 2
1
+ 1 (4fi + 15f2 — f3— ) 2723
1
1 (2fi+15f2 —2f3— Tn) 2123
1
+ 5 (15f5 + 14f3 — Tn) 23
1
— = fa(Bza —4z4) (21 — z3)7, (12b)

e
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where the state variables z; are defined as:

0 =01, =01, z3="0s 2 =0, (13)

and the non-dimensional quantities f; and 7 are given
by:

k102 ko 02 k32
flzﬁv fQZ#v f3: > P
dQ? PQ?
f4—m—12» n= ml (14)

Here f; (i=1, 2, 3, and 4) are introduced according
to physical constraints and 1 is a system indicator
parameter.

The system of equation (12) can be rewritten as:

2= Az +g(2), (15)

where Az is the linear part and g(z) is the non-linear
part. The Jacobian matrix A is evaluated at z=0 as
follows:

0 1 0 0
A= —2(h+2fe—n) —3f L2f-n) fi

0 0 0 1

* %f4 *x —2fy
*:%(f1+4f2—2f3—77)
wx= =1 (2425 ) (16)

from which one may obtain the characteristic polyno-
mial:

P =M+ a1 X + a2)\? + a3 + aq, (17)
with

m= g

i =3 (f3+ fut 6fa+ 2fs =),

w5 =3 Ui+ ot 55 .

ar= 3 hi(fat fi)+ fs 2f2 =), (18)

It can be shown that at the critical point defined by:

1 5 1

f1:§7 fQng f?)zga

3

1
= - e =—=. (19
f4 27 7 2 ( )

the polynomial P()) has a pair of purely imaginary but
distinct negative eigenvalues:

M=ot Ag=—2 (20)

1.
/\172 = :|:—Z, 5 1

2
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Shifting the parameter as:

3

p=n—ne=n-=g, (21)

and transforming the Jacobian matrix A into its modal
canonical form [26-27] using the canonical matrix B, i.e.
z=Bx,

1 7
woxm P
- 40 40 4
B ¢ oo i (22)
1 5
-+ 0 o -5

One may transform the system (15) into the following
system:

z = Jx + g(x), (23)

where the Jacobian canonical matrix J at the origin
x;=0 and at the critical point . = 0 is given by:

0o L 0 0
-0 0o o
_ np-1 _ 2
J=BT'AB=| 2 | BE (24)
5
0o 0 o0 -2

The non-linear part g(x) is given in the Appendix.

REDUCTION TO CENTER MANIFOLD
Substituting the matrix J from equation (24) and the
set of functions g; ; (z) from appendix into equation
(23), and changing the time scale into ¢ = $#', one may
obtain:

71 0 1 0 0 T1
Jfg _ -1 0 0 0 X2
=l 0 0 -1 0 T3
T4 0 0 0 -2 |z
g1 912 0 91,20
+9 g21 Gg22 - g220 X, (25)
g31 g32 - g3,20
941 Gg42 - G420

where the vector X is defined as:

_ (.3 .3 .3 .3 2 2
X= [xl,x2,x3,x4,x1x2,x1x3,

2 2 2 2 2 2 2
T1X4, X591, XoX3, x4, TgT1,XyX2,T3T4,

2 2 2 T
X g1, TyT2,TyT3,L1X2X3, L1X2T4,T1T3L4, Izl’sm] s
(26)

(The coeflicients of the function g(x) denoted by g; ; are
provided in the appendix). The above system can be
decomposed into two systems of equations as follows:

0 1

w=Jiu+ filu,v) = [_1 0

]u+Gu,

v = Jov + folu,v) = [_ 0

5:| U+GU, (27)
0 -3
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where

Gy =2 [91,1 91,2 91,20] X,
g2,1  g2.2 92,20

G, =2 [93,1 gs3.2 93,20] X (28)
94,1 g4,2 94,20

where Here, v = (21, 22) and v = (x3,24) are decom-
posed coordinates and v = (z1,22) is assumed to be
the corresponding critical mode. We are seeking for a
solution near the origin x=(0,0,0,0). If an approximate
function v = h(u) is found near the origin so that the
following relationship holds

v = Dyh(u)t = Dyh(u) [Jiu + fi(u, h(u))]

= JLh(u) + fa(u, h(u)), (29)

the first equation in (27) will only be needed for
investigating the critical mode. In the above relation,
the matrix D,h (u) is the Jacobian of h (u).

NORMAL FORM COEFFICIENTS
The function h(u) can be approximated by a third
order function of the form:

v =
a a T a a a $%
_ |%10 01 1 + 20 11 02 T1T9
bio  bor T2 bao  bi1 boo 2
€T3
af
2
30 21 A12 G403 Tir2
+ b b b 5 (30)
30 21 12 Qo3 125
a3

where a;; and b;; are unknown constants. Moreover,
the Jacobian matrix, D,k (u), can be determined as

follows:
_ |Du1 Di2| a_zl g%
D.h(w) = [Pt D]—l% di (31)

where

D11 =a19+2a20%1 +a11%2+3a3027 + 20912172+ 01273,
D1 =ag1+ 209223 +a11271 +3a0325 + 201221 T2+ a2 27,
_D21 :b10+2b20$1 +b11$2 + 3[)301’%4‘2[)21%’1%’2 + blgxg,

D1s=bg1+2bgaxa+b1171 + 3bo3x3 + 2b1971 72 +b2 77,
(32)

Substituting equations (30)-(32) into (29) results in:

Dll
D21

o K A R P A R
(33)
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where the functions G, and G, are third order poly-
nomials of the state variables. Using (30) and (32) in
(33) and ignoring all terms of O(|x*|), a set of algebraic
equations are obtained for the unknown coeflicients in
(30) by equating the coefficients of similar monomials
in the left and right hand sides of (33). This set
of algebraic equations was solved using an algebraic
processor in Mathematica [28]. Thus, the reduced
system (up to third order terms) becomes:

[1’1] _ { 0 1] [xl] |:C1$i’+62$%$2+03$1$3+04$§

. €

T2 -1 0] |22 chad+chriva ezl +chad|’
(34)

where

[c1, ca, c]—[— 83069 88487 231 931423
1,¢2, 63, C4]= [ 11136000 3712000 128000 11136000

and

[c’ Ao c’]—[— 16811 18753 111 6179 ]
15 ©2> €3> “a]= 7 5568000 1856000 64000 1856000

are constants obtained from the programme in Mathe-
matica.

RESULTS AND DISCUSSIONS
The reduced system (34) is shifted from the origin
based on the system parameter i and is then analysed
for predicting limit cycle oscillations. The computed
centre manifold equation is given as:

jﬁ'l o 0 1 1 %,Uﬂ?l + 12—4,U/J72
=1 + 1 S
2 1 0 x2 145/1“/171 + 145/1/3;2

n [clx‘i’ + Cgl’%l’z + csxlxg + 041’%}

! 23 ! 2 ! 2 ! 3
C1T] + CoT1 T2 + C3T125 + C4 X5

(35)

Taking ¢ = 0.1 and ¢ = 1, and solving down to
the third order normal forms, the following normalized
system of equations is obtained:

7': . 0.012069r — 0.005236083 (36)
gl — |—0.00500178 + 0.031478672
06 T T T T T T T

. 04 | H H H H H H | H

% 02

£,

k]

z 02

T o4

de2/ct (rad/s)

62 (rad)

Figure 2. Comparison of analytical NFT (symbols) with
numerical Runge-Kutta (solid lines) LCO solutions (IC1).

]
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delidt rad/s)

de2/dt (rad/s)

02 (rad)

Figure 3. Comparison of analytical NFT (symbols) with
numerical Runge-Kutta (solid lines) LCO solutions (IC2).

Limit Cycle existence

Initial condition

mck’etsq_'D

3z 40 45

a0
Yelocity (mis)

Figure 4. Example of limit cycle oscillation boundaries for
a simple non-linear aeroelastic system [16].

The steady state solution of (r,8) = (1.51821,0.0676¢)
is obtained from (36). Using the steady state solution
and reversing the coordinate transformations, the solu-
tion of the original system (physical system) for limit
cycle oscillations are obtained as plotted in Figures 2
and 3.

The results are compared with the Runge-Kutta
numerical solution for two sets of initial conditions.
The first initial condition corresponds to a point out-
side LCO as:

ICL: (z1,29,23,24) = (—1.70,0,0,0) or
(21, 29, 23, 24) = (0.085,0.2975, 0.0, 0.425)

and the second initial condition corresponds to a point
inside LCO as:

1C2: (z1,29,23,24) = (—0.5,0,0,0) or
(21, 29, 23, 24) = (0.025,0.0875,0.0, 0.125)

Numerical results are compared with analytical solu-
tions obtained from normal forms in Figures 2 and
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3, for IC1 and IC2 conditions, respectively. For the
initial condition outside LCO, the numerical results
have converged exactly to the same values obtained
by theory as shown in Figure 2. However, there is a
mismatch between numerical simulations and analyti-
cal results as is seen in Figure 3. It may be argued that
numerical simulations corresponding to IC2 require
more iterations to assure convergency. Furthermore,
normal forms have been obtained up to the third order
approximations. In some cases, numerical simulations
may diverge due to the irregular behaviour of the
dynamical system (see Figure 4). An example of
limit cycle oscillation boundaries for a simple non-
linear aeroelastic system in Figure 4 shows the initial
condition dependency of such systems [16]. This may
suggest choosing IC1 as a type of initial condition for
faster numerical convergence.

CONCLUSION

In this study, we have carried out a limit cycle analysis
of a two-degrees-of-freedom nonlinear double pendulum
system. The order of the system is reduced by a center
manifold approach corresponding to the critical mode
of the system. Normal forms were successfully obtained
by a period averaging method for the reduced system.
Normal forms and limit cycle oscillations were obtained
for the reduced system using a symbolic programming
code in Mathematica. The numerical simulations
for the full system using the Runge-Kutta method
were compared with LCO solutions obtained from
the analytical approach. The analytical normal form
estimations are in good agreement with the numerical
results. We have not encountered notable difficulties
while using Mathematica; however, longer run-time
and larger machine memory are required for higher
order dynamic systems. Further research is needed
for developing a general reduction code, preferably in
non symbolic operating environment, for dealing with
higher-order dynamic systems.
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APPENDIX 1.

=[n1 12 g1,20] X
83069 , 931423

= 111360007 T 11136000 2 T 1743
88487 , 23169 , 102613
T 3712000712 T 928001 T 3712000
231 ., 17799 , 125837
1280002 ¥ 9280072 ~ 3712000
+ @xlxg — @xﬂ% + 45871’%1’4 -+

2320 2320 232

305 o 8725, 3213
—T2X —X37 —_—
928274 116 34T 46400

631 , 1318 ,

87 4

12273

3041
185600

3841
TaanX2T3T4,

R T

12224 + m
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g2 = [92,1 g2,2

g2,20) X

_ 16811, 6179 xs_ﬂs_%s
556800071 185600072 87 87
18753 4831 2077
T 18560007172 T 2640071 T 1856000 1
1, 999 13173
~ 64000712 T 264002 T 185600 2"
-l-ﬂxle— %xg 3 637362 4+ > —— x5
116013 7 11607272 T 116731 T 4641
635 , 415 ., 413
— m$2$4 — Exgl’zl — ml’lxgl’g
5911 1443 5751
mﬂh 24 + ml’ﬂfsm 23201’296396’4,
g3 =1[g31 gs2 g3.20] X
123, 2077 . T 4, 35,
= ~7022000"" * 3072000"2 T 1675 T 21"
3787 973 4469
~ 102400012 T 25600717 T 10240071
801 , 35T 2221
T 1024000712 T 2560072 T 1024002
+ §x1x§ — gmx% — Ex%m — Lxlxi
640 640 64 256
151, 123, 119
— ﬁl’gl}l 5&73%’4 — M%’lxgl’g
1407 4 275
ml&l’zm + ﬁﬂh%m ﬁl’zl’sma
g4 =[ga1 Gao ga20] X
16811 , 6179 , 71 221 .
= T1136000°" T 3712000% T 172" t Ta”
18753 4831 22077

* 37120007172

92800173 T 377500717

UL 999, 1373
1280007172 " 92800727 " 371200 2
749, 1273 637 5,

~ 33007175 + 33507245 T 5337374 ~ gag i
635 ., 415 413

T gaa 201 T 11 7a%H  Jagaptivets
5911 1443 5751

t 1856007172 T qea0 1T T gagp TR
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