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Flutter Analysis of a Low Aspect
Ratio Swept-Back Trapezoidal
Wing at Low Subsonic Flow

S. Shokrollahi!, H. Gerami’?, F. Bakhtiari-Nejad?

A linear, aeroelastic analysis of a low aspect ratio swept back trapezoidal
wing modeled as a cantilever plate is presented. An analytical and numerical
formulation for both the aerodynamic forcing and structural response of the
wing was developed. The analytical model uses a three dimensional time domain
vortex lattice aerodynamic method. A Rayleigh-Ritz approach has been used to
transfer equations into a modal domain in order to solve equations of motion.
The theoretical results are consistent with numerical results for low aspect ratio
rectangular wings and erperimental data reported by other investigators for

delta wings.

INTRODUCTION
Mathematical models of wings based on equivalent
plate representation combined with global Ritz analysis
techniques have been used for basic studies in aeroelas-
ticity and aeroelastic optimization for a long time. For
structural analysis, the finite element Analysis (FEA)
is widely used because of its generality, versatility
and reliability. FEA is also the method of choice
in situations where detailed results in the vicinity of
local discontinuities such as holes, abrupt dimension
variations, etc. are needed. This is accomplished
by refinement of the mesh near the zone of interest.
But a wide application of detailed FEA at the late
conceptual design stage or in the early preliminary
design stage still faces some major obstacles. First,
the preparation time for a FEA model data may be
prohibitive, especially when there is little carryover
from design to design. Second, for complex structures
a detailed FEA needs huge amount of CPU time and
computation capacity, which incurs costs soaring. In
view of this situation, equivalent continuum models
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are often used to simulate complex structures for the
purpose of obtaining global solutions in the early design
stages. This idea is reasonable as long as the complex
structure behaves physically in a close manner to the
continuum model used and only global quantities of
the response are of concern. In the area of analyzing
aeronautical wing structures, a number of studies have
been conducted on using equivalent continuum models
to represent simple box wings composed of laminated or
anisotropic materials, and they have yielded accurate
results for the specific problems studied.

Flutter and limit cycle oscillation characteristics
of cantilevered low-aspect ratio, rectangular and delta
wing models in low subsonic flow speeds have recently
been studied. Hopkins and Dowell [1] as well as Weil-
iang and Dowell [2] studied the limit cycle oscillations
of rectangular plates with three free edges while can-
tilevered on the forth side. The panel structure was of
low aspect ratio and subject to quasisteady supersonic
flow over one or both surfaces, a static temperature
differential between the panel and its structural sup-
port, and a static pressure differential between the
upper and lower surfaces of the panel. Their results
provided good physical understanding of the flutter and
limit cycle oscillation characteristics for such plates in
a high-Mach-number supersonic flow. Deman Tang
and Dowell [3,4] investigated limit cycle oscillations
of cantilevered rectangular and delta plates at low
subsonic flows. Their analysis included the vortex
lattice theory in reduced-ordered aerodynamic model
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form that has been successfully applied to determine
the nonlinear limit cycle oscillations of a cantilever
plate model of a wing with a geometric structural
nonlinearity. They also investigated the effect of a
steady angle of attack on both the flutter instability
boundary and the limit cycle oscillations. Bakhtiari-
Nejad and Shokrollahi studied aeroelastic eigenanalysis
of a cantilever plate in low subsonic flow to predict
flutter onset [5]. The effect of local forcing functions on
the response of a rectangular cantilevered plate at low
subsonic flow was also studied by Bakhtiari-Nejad et.al.
[6]. The piezoelectric actuators were used to model the
local forcing functions and the effect of their position on
flutter suppression were investigated. The theoretical
and experimental results have provided good physical
understanding of the relevant phenomena.

In the present paper, a three dimensional time
domain vortex lattice aerodynamic model is used to
investigate the flutter characteristics of low aspect ratio
swept back trapezoidal wings at low subsonic flow.
The effect of wing geometrical characteristics such as
taper ratio, sweep angle and aspect ratio are also
investigated.

Theoretical Development

A plan view schematic of the wing-plate geometry
with a three dimensional vortex lattice model of un-
steady flow is shown in Figure 1. The aeroelastic
structure/fluid state-space equations are described as
follows.

TRAPEZOIDAL WING STRUCTURAL
MODEL

The swept back trapezoidal wing model under consid-
eration is assumed to behave as a thin plate of uniform
mass and stiffness. The following general formulation
allows the treatment of a whole family of rectilinear
wings of arbitrary constant taper and aspect ratios
through the use of transformation to the normalized
beam mode coordinates. With standard aerodynamic
nomenclature, wing taper ratio (TR) is defined as a
ratio of the wing tip chord, ¢; to the root chord ¢,, and
aspect ratio (AR) is defined in terms of root chord,
semi span (L), and taper ratio as,
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Figure 1. Aeroelastic model of a swept back trapezoidal
cantilever plate
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To facilitate the use of clamped-free and free-free beam
functions for approximating mode shapes of the plate
and any wing fittings, the preceding description can be
mapped to a unit square domain referred as the nor-
malized beam coordinates. The transformations given
by Eq. (2), map any point {rom physical coordinates
on the wing to the normalized beam coordinates.

_ x/c, — AE(1+ TR)tan A(y/L)
&= 1-(1-TR)y/L ’

U:y/L» (2)

and a corresponding pair of inverse transformations
given by Eq. (3) map them back,

x/c, = [1—(1—TR)77]£+{TR(1+TR)tan/\n, y/L=n.

(3)

For this study, a swept back trapezoidal wing is
considered, as shown in Figure 1. In accordance with
the Ritz method, Eq. (4) gives the total transverse
displacement at any point on the wing, which can
be expressed as a time-dependent weighted sum of
assumed spatial mode shape functions.

Nm Nn

w(z,y,t) = ZZRmn(xay)QMn(t)~ (4)

1 1

These spatial shape functions as given in Eq. (5) are
in turn products of assumed beam modes in the chord-
wise and spanwise directions.

R (2, 9) = ¥ (£(7,9)) X dn(n(2,9)), ()

where ¥,,(£) given by Eq. (6) are the one-dimensional
free-free beam modes in the chord wise direction of the
plate in the following forms,

P1(€) =1,
¥2(€) = V3(1 = 20),

cos(am, ) — coshiay,)

bm(€) = [cos(am) + cosh{an)] — [sin(a ) — sinh(ay,)

X [sin(a, ) + sinh(apy, )], m >3 (6)

and ¢,(n) given by Eq. (7), are the one-dimensional
clamped-free beam modes in the span wise direction.

sin(3,,) — sinh(8,)

¢n(n) = — [cos(Ban) — cosh(Bnn)] - [cos(ﬂn) + cosh(3,,)

X [sin(B,n) — sinh(8,7)]. (7

These functions are orthonormal over the range 0 <
£,m < 1 and have associated wave numbers given in
Table 1.
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Table 1. Approximate spatial wave numbers for free-free
and clamped —free beam modes

i Q; J B;

3 4.7300407 1 1.8751041
4 7.8532046 2 4.6940911
5 10.995608 3 7.8547574
>6 | /2041 | 21| (/2@ -1

TRANSVERSE EQUATIONS
The transverse equation is formed by substituting the
kinetic and strain energy expressions into Lagrange’s
equation [7]. The nondimensional equation is

Z Z AY (T

where A% and B% are coefficient terms and Q7 is
the nondimensionalized generalized aerodynamic force
which will be discussed in the next section.

)+ B amn(T)] + Q7 =0,  (8)

AERODYNAMIC METHOD: VORTEX
LATTICE MODEL

The flow about the cantilever trapezoidal plate is as-
sumed to be incompressible, inviscid, and irrotational.
Here we use an unsteady vortex lattice method to
model this flow. A typical planar vortex lattice mesh
for the three-dimensional flow is shown in Figure 1.
The plate and wake are divided into a number of
elements. Point vortices are placed on the plate and in
the wake at the quarter chord of the elements. At the
three-quarter chord of each plate element, a collocation
point is placed for the downwash; i.e., we require the
velocity induced by the discrete vortices to equal the
downwash arising from the unsteady motion of the
plate. Thus, the relationship will be

kmm

wit! = Z KT =1, kmm (9)

where w/™! is the downwash at the ith collocation point
at time step t+1, I'; is the strength of the jth vortex,
K ;; is an aerodynamic kernel function that is given in
Reference 9 and kmm is the total number of vortices
on both the plate and wake in x direction.

As described by Bakhtiari-Nejad et al [5], there
are three sets of equations in the wake. Eq. (10) gives
the first vortex in the wake at the step time of t+1.

km
1 1
Tiriy == > (I =T, (10)
J
where km is the number of vortex elements on plate

in x direction. Once the vorticity has been shed into
the wake, it convects in the wake at U speed. From

the second vortex point to the last two vortex points
in the wake for the special case where At = Az /U this
convection is described numerically by Eq.(11).

T =Ti,, di=km+2,...(kmm—1)*kn (11)

where kn is the number of vortex elements on plate in
y direction. At the last vortex point in the wake, Eq.
(12) drives the relationship for the vortex distribution:

[ =T, +all, i=kn (12)

where « is a relaxation factor used for considering the
effect of the omitted part of the wake, usually having
values of 0.95< a<1.0.

Putting together Eqs. (9) to (12) gives an
aerodynamic matrix equation of,

AT 4+ BT = w' Tt (13)

where A and B are aerodynamic coeflicient matrices.
From the fundamental aerodynamic theory, we can
obtain the pressure distribution on the plate at the jth
point in terms of the vortex strength as:

¢ t+1 J
ol o e R BT | NN

i=1

Aﬁj =

Here E(n) is a component of Jacobian matrix and is
defined by:

1

EMm=T—q1—Trm A-TRy

and the aerodynamic generalized force is calculated
from:

pooU cr d&dn

9% = E(n)’

/ Apoi(E)s (1) et

AEROELASTIC STATE SPACE MODEL:
In this stage we can combine structural dynamics
response with aerodynamic equations to obtain the
aeroelastic model. Consider a discrete-time history of
plate motion q(t), with a constant sampling time step
At. The sampled version of q(t) is then described by:

t+1 i
¢ +q)
g= ! Rl (15)
And the velocity of this discrete-time series is defined
by:

¢+ ~¢")
At ’

The structural dynamic, equation (8) can be reconsti-
tuted as a state-space equation in discrete-time form.
It is given by:

g = (16)

D0 + D6 + O, T = 0, (17)
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where the vector 6 is the state of the plate, {#} =
{4, q}, and D; and D5 are matrices describing the plate
structural behavior. Cy and Cs are matrices describing
the vortex element behavior on the plate itself. There
is a linear relationship between the downwash w at the
collocation points and plate response 6. It is defined
by:

w = E#. (18)

Thus, combining Eqs.(13), (17), and (18), we obtain
the aeroelastic state-space model in the matrix form:

AV S Rk
(19)

We refer to Eq.(19) as the complete discrete
time fluid/structure model. The eigenvalue solution
of this discrete time model determines the stability of
the aeroelastic system in terms of eigenvalues, z;. If
any of the eigenvalues have magnitudes greater than
unity, then the system is unstable. In principle, one
could find the eigenvalues of eq.(19) directly. However,
for most aeroelastic calculations, one must compute
the eigenvalues of the system as a function of some
parameters, such as the variation of reduced velocity.

NUMERICAL RESULTS
Various types of swept back trapezoidal cantilever
plate models of varying aspect and taper ratios were
considered. The models are taken to be an aluminum
alloy plate of constant thickness with aspect ratios of
AR =L/c¢ =2.-10 and taper ratios of TR =0.5, 0.75 and
1. The wing root chord cr = 0.365 is fixed. The plate
thickness is h = 0.001 m, and Poisson’s ratio is v =
0.3. For the basic case, the plate was modeled using
50 vortex elements, i.e., km =10 and kn =5. The wake
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Figure 2. Eigenvalue Solution for Aeroelastic model, For
Sweep angle of Leading Edge =30.
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Figure 3. Eigenvalue Solution for Aeroelastic model, For
Sweep angle of Leading Edge=0.

was modeled using 150 vortex elements, i.e., kmm =40.
The total number of vortex elements (or aerodynamic
degrees of freedom) is 200. The vortex relaxation factor
was taken to be a = 0.992.

STABILITY OF THE AEROELASTIC
MODEL

The aeroelastic eigenvalue solutions of linear model
determine the stability of the system. The discrete-
time eigenvalues z; are related to continuous-time
eigenvalues A; by z; = exp(A;Af). When the real part
of any eigenvalue, A becomes positive, the entire system
becomes unstable.

Figure 2 shows a typical graphical representation
of the eigenanalysis in the form of real eigenvalues;
Re(A) vs. the flow velocity for Sweep angle of Leading
Edge =30 degrees. There is an intersection of Re ()
with the velocity axis at Uy = 32.1 m/s, which is the
critical flutter velocity. From Figure 2 it is also found
that in contrast to rectangular wings, for swept back
wings, static instability (divergence) does not occur
while the flutter velocity decreases by increasing the
sweep angle.

Figure 3, in consistency with the results of Ref-
erences 3 and 5, shows graphical representation of the
eigenanalysis in the form of real eigenvalues; Re(A) vs.
the flow velocity for sweep angle of leading edge=0
degrees (rectangular wing). In this case there are two
intersections of Re(\) with the velocity axis. One is
Uy = 42m/s for the critical flutter velocity with the
corresponding flutter oscillatory frequency 76.8 rad/s.
The other is Uy = 54.3m/s for divergent velocity with
zero oscillatory frequency. From Figures 3 and 4 it is
found that the linear flutter motion is dominated by
the coupling between the first two structural modes,
i.e., the spanwise bending mode and rigid plunge and
rotation modes in the chordwise direction.
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The variation of flutter velocity vs. sweep angle,
for various taper and aspect ratios is given in Figures
4 to 7. These figures show that, at all cases there is
a minimum critical flutter velocity. For example, for
AR =4.0 and TR = 0.5 minimum flutter velocity is
nearly 33.8 m/s. Figures 4 to 7 also show that by
increasing the TR from 0.5 to 1.0 for a given aspect
ratio and sweep angle, the flutter velocity decreases.
For example, with AR =4.0 and A=30 deg the flutter
velocity decreases from 34 to 17.35 m/s.

CONCLUDING REMARKS
A trapezoidal cantilever plate with 3 dimensional
vortex lattice aerodynamic theory has been used to
investigate the aeroelastic characteristics of a swept
back trapezoidal wing in low subsonic flow. There
are several parameters including sweep angle, taper
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Figure 4. Flutter velocity.vs. Sweep Angle for AR=2,
(O: TR= 0.5, &: TR=0.75, A: 1.0).
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Figure 5. Flutter velocity.vs. Sweep Angle for AR=4,
(O: TR= 0.5, &: TR=0.75, A: 1.0).

70
B0 &
[+]
. o o o ©
=
£ a0 | o
3 & g U
[=]
3¢ e
£ s & 8
E 4 a
<ol &
10 t
0
0 10 20 30 40 50

Sweep Angle{deg)

Figure 6. Flutter velocity.vs. Sweep Angle for AR=3,
(O: TR= 0.5, ¢: TR=0.75, A: 1.0).
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Figure 7. Flutter velocity.vs. Sweep Angle for AR=5,
(O: TR= 0.5, &: TR=0.75, A: 1.0).

ratio and aspect ratio that have considerable effects
on aeroelastic behavior and characteristics of these
wings. It is found that in contrast to rectangular wings,
for swept back wings, static instability (divergence)
does not occur while the flutter velocity decreases by
increasing the sweep angle.

The results presented in this work are exactly
consistent with numerical results for low aspect ratio
rectangular wings and experimental data for delta
wings reported by other investigators [3, 4,5,6,8]. This
analysis can be used adequately for aircraft design
procedures and estimation of the optimum aspect ratio,
taper ratio, and sweep angle of an aircraft wing espe-
cially on conceptual design stages. The results of this
paper are consistent with those of other investigators
such as References 3 to 5, of which two cases are given
here as Figures 2 and 10 for rectangular wings with
sweep angle of 0 degrees and taper ratio of 1.
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Figure 8. Flutter velocity.vs. Aspect Ratio for Sweep
Angle of Leading Edge =30 and TR=0.5.
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Figure 9. Flutter velocity.vs. Aspect Ratio for Sweep
Angle of Leading Edge and TR =0.75.
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Figure 10. Flutter velocity.vs. Aspect Ratio for Sweep
Angle of Leading Edge =0 and TR=1.
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