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LES Numerical Study of Reynolds
Number Effects on Flow over a

Wall-Mounted Cube in a Channel

M. Farhadi', K. Sedighi®

Turbulent flow over wall-mounted cube in a channel was investigated
numerically using Large Eddy Simulation. The Selective Structure Function
model was used to determine eddy viscosity that appeared in the subgrid scale
stress terms in momentum equations. Studies were carried out for the flows with
Reynolds number ranging from 1000 to 40000. To evaluate the computational
results, data was compared with experimental results at Re=40000, showing
a good correspondence. In this study the effect of Reymolds numbers on
flow characteristics such as time-averaged streamlines, turbulent intensity and
Reynolds stresses were investigated. Results of computations show that the
flow with higher Reynolds number has a shorter reattachment length and by
increasing the Reynolds number, the number of horseshoe vortex in the upstream
decreases. The vorter structures were similar in the upstream of the cube for
time-averaged and instantaneous flow field. While on the downstream, the
vortex structure does not show any similarity and had a complex flow field
structure. Reynolds stress became stronger at the sides of the cube where
the horseshoe vorteres were built, and gained more importance at the higher
Reynolds number.

NOMENCLATURE T; Cartesian coordinate, X1, Xo, X3
Cy, Kolmogorov constant T Position vector
E(K) Kinetic energy spectrum Greek Symbols
Gaz(z;)  Filter function
H Square cylinder height “ A1.1g.1e . .
K, Cut-off wavenumber A Ml.mmum.grld Spaciie
p Pressure Az, Grid Sp.acmg
Re Reynolds number based on the height 200 Indicating function, equation (8)
of the square cylinder, U,,ean H/v vt Turbulent eddy-viscosity obtained
t Time step fr(.)m SF. . )
U. Convective mean velocity v Kinematic viscosity
Uu; Instantaneous velocity components Tij Subgrid scale (SGS) stress tensor
U Velocity vector
Uiean Mean Velocity at the entrance INTRODUCTION
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Turbulent flow around bluff bodies has attracted in-
creasing attention not only for its academic aspects
but also for its practical importance. Flow passing
a wall-mounted cube has a wide range of engineer-
ing applications, such as air-cooling of the electronic
boards and the study of flow around tall buildings. In
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practice there is a great need to predict such flows
and the loading imposed on the bodies. However,
this is a difficult task even for relatively simple ge-
ometries. Flow separation and reattachment, unsteady
vortex shedding and large-scale turbulence structures
are among the important phenomena observed in such
flow configurations.

There is vast literature concerning experiments
done on this geometry [1-6]. The majority of works are
by Martinuzzi and Tropea [5], and Hussein and Mart-
inuzzi [6] for Reynolds number of 40000. They investi-
gated a three-dimensional flow around surface-mounted
cubes in a channel experimentally for Reynolds number
of 40000. Their flow patterns show the very complex
flow nature in spite of its simple geometry. To predict
turbulent flow behavior over a wall-mounted cube in
a channel, various numerical approaches have been
proposed. One of them is Large Eddy Simulation
(LES) which tries to simulate the largest scales of
motion while treating the small scales by model. Tt
would be appropriate for the flow over a cube to be
treated by LES, as there are large vortices generated
in such a flow. Many researchers have studied this flow
filed with different LES models. Shah and Ferziger [7]
were among the pioneers in doing LES of flow over
a surface mounted cube at Reynolds number 40000,
in good correspondence with the experiment. This
geometry was investigated in the Rottach-Egren [§]
workshop, and recently by Krajnovic and Davidson
[9, 10], Rahnama and Farhadi [11] and Farhadi and
Rahnama [12] at Reynolds number 40000 with different
LES models. Their results showed that LES models
are capable of this flow field with acceptable accuracy
even for coarse grid points (Ref. [10, 12]). It must
be mentioned that the computational cost of LES
approach is higher than the other methods like RANS.
Recently, Hwang and Yang [13] studied the vortical
structures of flow around a wall-mounted cube in a
channel at low to moderate Reynolds numbers up to
3500 using Direct Numerical simulation (DNS). Their
results showed that as the Reynolds number increases,
the structure of the horseshoe vortex system becomes

Inlet Velocity Profile

Figure 1. Geometry of problem
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more complex, and the number of vortices increases
in pairs. In the case of a turbulent wake, however, it
was observed that the flow becomes less coherent in the
near-wall region downstream of the obstacle. Instead,
coherent structures such as lateral and hairpin vortices
are found present in the vicinity of the two lateral
faces of the cube and in the turbulent near-wake region,
respectively.

In this study, the flow over a wall-mounted cube
in a channel was investigated by Selective Structure
Function (SSF) model from LES models. The Effects of
Reynolds number on flow over wall-mounted cubes were
investigated at moderate to high Reynolds numbers,
hence forth has not been studied yet. Characteristics
of flow field including time-averaged and instantaneous
streamlines, contours of vorticity and turbulent prop-
erties were evaluated.

MATHEMATICAL MODEL

In LES approaches, larger scale three-dimensional
unsteady turbulent motions are directly presented,
whereas the effect of small scales of motion is modeled.
To do this, a filtering operation is introduced to
decompose the velocity vector (u;) into the sum of
a filtered (or resolved) component, @ and a residual
(or subgrid-scale) component (u'). This operation
can be represented with a filter of width Ax such
that convolution of any quantity f(z,,t) by the filter
function Ga.(x;) is in the form:
flant) = [ fon0Gasaimyddy  f'= =F (1)
The equations for evolution of the filtered velocity filed,
are derived from the Navier-Stokes equations. These
equations are of the standard form, with the momen-
tum equation containing the residual stress tensor.
Application of the filtering operation to the continuity
and Navier-Stokes equations gives the resolved Navier-
Stokes equations, which, in non-dimensional incom-
pressible from, are:
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where P is the pressure, 4;, %, and us are the
streamwise, cross-stream and spanwise component of
velocity, respectively. These govern the dynamics of
the large, energy-carrying scales of motion. Reynolds
number is defined as Upean H/v, where Upean and H
are the average velocity of entrance profile and cube
height respectively. The effect of small scales upon the
resolved part of turbulence appears in the subgrid scale
(SGS) stress term, 7;; = w;u; — 4;0;, which must be
modeled.
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Figure 2. Time-averaged streamwise, cross stream velocity and turbulent kinetic energy profiles compared with experiment

at the plane z=0 at Reynolds number 40000.

The main effect of the subgrid-scale stresses is an eddy-viscosity:
dissipative around the cut-off spectrum, i.e., withdraw- i Ol 1
ing energy from the part of the spectrum that can be Tij = V(75— + =) + =Tkkbij-

resolved. Omne model for subgrid-scale stress term 7;; o,

8@-

3

(4)

is based on its dependence on filter strain rate through In this study, the eddy viscosity (v:) was evaluated
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using subgrid-scale (SGS) model of Structure Function
(SF) and Selective Structure Function (SSF) models.
In the Structure Function model, the eddy viscosity is
evaluated according to [14]:

vFF (2, Ac, t) = 0.105C, */? Acy/Fy(x, Ac, 1), (5)

where Ac = (Azy X Azy X AIg)% is the geometric
mean of the meshes in the three spatial directions. Cy
is Kolmogrov constant and F, is the local structure
function constructed with the filtered velocity field
u(x,t):

Fy(2, Ac,t) = % > ([ 1) — ol + A, 1))
+Ja(e, t) — a(x — Ay, t)]2> (AA;JQ/S .

(6)

Fy was calculated with a local statistical average of
square (filtered) velocity differences between x and the
six closest points surrounding x on the computational
grid. In some cases, the average may be taken over four
points parallel to a given plane.

In the Selective version of the Structure Function
model, the eddy viscosity was switched off in the
regions where the flow is not three-dimensional enough.
The three-dimensional criterion was as the following:
one measures the angle () between the vorticity at a
given grid point and the average vorticity at the six
closest neighboring points (or the four closest points
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in the four-point formulation). If this angle was
less than 20°, the most probable value according to
simulations of isotropic turbulence at the resolution of
323-64%, the eddy viscosity would be cancelled and only
molecular dissipation acts. In this situation the flow is
locally close to a two-dimensional state. As compared
to the original SF model, this subgrid-scale model
dissipates the resolved scale energy at fewer points of
the computational domain and the model constant of
0.105 (see equation (5)) has then to be increased to
satisfy energy conservation. To correspond the model
constant with the SF model, it was calculated by eddy
viscosity requirement that has given by SSF model and
averaged over the entire computational domain. The
calculated model constant then multiplied by 1.56 [15].

v (2, Ac,t) = 0.1638® 00 (z,1)C o> Ac[Fo(x, Ac, 1)]?,
(7)

where @500 (7,1) is the indicating function based on the
value of a):

1 if a>20°
0 if a<20°

Do (2,1) = { (8)

Farhadi and Rahnama [12] showed a smooth varying
function rather than an abrupt cut-off. This can predict
the distribution of energy between small and large eddies
better than the standard form of this function, so ®5. (z, 1)
used instead of ®ag0 (7,1) which is defined as:

0 for a < 10°
for 20° > a > 10° and da = |a — 20°|
1 for a > 20°

Dhge (2,1) = )

Figure 3. Time-averaged streamlines at the floor of the channel ((a) Reference [5] and (b) present study) and centerline of
the cube ((c) Reference [5] and (d) present study) at Reynolds number 40000.
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NUMERICAL METHOD AND

COMPUTATIONAL DOMAIN
The governing equations presented in the preceding section
were discretized using a finite volume method with a
staggered grid. The convective terms were discretized using
the QUICK scheme. The convective and diffusive fluxes ap-
pearing in the momentum equations were treated explicitly
in the present computations. A third order Runge-Kutta
algorithm was used for the time integration in conjunction
with the classical correction method at each sub-step. The
continuity equation (1) and the pressure gradient term in
the momentum equation (2) were treated implicitly, while
the convective and diffusive terms are treated explicitly.
This method, called semi-implicit fractional step method,
provides an approach that does not use pressure in the
predictor step as in the pressure corrector method (such
as the well-known SIMPLE family of algorithms). The
linear system of pressure is solved by an efficient conjugate
gradient method with preconditioning. The computational
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domain consists of a plane channel with a cubic obstacle of

dimension (H) mounted on one of its walls (Figure 1).
Channel height was selected as 2H and the spanwise

width of the channel was selected as TH such that the

Figure 5. Time-averaged streamlines at the floor of the
channel at Reynolds number 3200.

Figure 4. Time-averaged streamlines at the floor and centerline of the channel at Reynolds number (a) 1000, (b) 3200 and

(c) 10000.
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cube is located in the middle with equal distance from
the spanwise boundaries of 3H. The upstream distance
from the front side of the cube to the inlet boundary was
selected as 3H and the downstream distance was 6H. The
inlet boundary condition was selected as a fully developed
turbulent velocity distribution (one-seventh power law).
The outlet boundary condition is of convective type with
U, equalling to mean velocity as follows:

6U1 811.1 _

Obviously, such convective boundary condition is capable
of predicting unsteady flow behavior at the exit with good
accuracy [8]. The spanwise boundary condition was selected
as periodic. The minimum grid spacing used in the present
computations is 0.03 in all directions adjacent to the cube
surface with a grid expansion ratio of 1.05, and the no-
slip boundary condition was used at the wall of cube and
channel. The number of grid points used in the present
computation, was 113x51x 100 in the x-, y- and z-direction,
respectively. The CFL (Courant-Friedrichs-Lewy) number
is less than one for all computations with a maximum
value of 0.95. The average time in the simulation was
200H/Usnear, where H is the cube height and Upean is
the bulk velocity at the inlet. In this study the Reynolds
number was selected ranging from 1000 to 40000.
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RESULTS

Results are represented in two parts: In the first part,
the accuracy of the solution method was investigated by
comparing the results of the computational data with the
measurements of Martinuzzi and Tropea [5] and Hussein
and Martinuzzi [6] at Reynolds number 40000. In the
second part, the effect of Reynolds number on the flow over
a wall-mounted cube in the channel was evaluated.

Validation
Results of LES computations for flow over a wall-mounted
cube can be represented in the form of time-averaged
quantities for which experimental data is available. Figure
2 shows the time-averaged streamwise, cross stream velocity
and turbulent kinetic energy profiles in different positions
at the plane z=0 compared with the experiment. It is
observed that the results of the computational data show
good accuracy especially for streamwise and cross steam
velocity profiles. It should be mentioned that although
some discrepancies exist at the turbulent kinetic energy
profiles, the numerical data follow the trend of experiment.
Probability is due to the use of the coarse grid resolution
near the wall. In this area, energy is transfered from
large to small scale eddies that capable of using fine grid
resolution in this region.  Furthermore, the difference
between numerical and experimental data in the length
and form of the recirculation zones may have created such
discrepancies.

The turbulent flow over a wall-mounted cube in
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(a) Re=1000

-

(b) Re=3200

(c) Re=10000

(d) Re=40000

Figure 6. Time-averaged contours of turbulent kinetic energy at the centerline of the cube for different Reynolds numbers.
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Figure 7. Time-averaged streamwise velocity fluctuation
at the center line of the channel at different Reynolds
numbers.

a channel has a very complex structure, such as hours
shoe vortex and recirculation zones. Figure 3(a) and
3(c) show the oil visualization of flow field over the cube
and streamlines at the floor and centerline of the channel
respectively which was reported by Martinuzzi and Tropea
[6]. The numerical results follow the trend of experiment
with some discrepancy. The reattachment lengths were
predicted well (0.9 and 1.601) compared to measurement
(1.04 and 1.61 Reference [5]) in the upstream and down-
stream of the cube respectively. It should be mentioned
that the computational data could not show the converging
—diverging form of flow field in the floor of the channel which
was observed from oil visualization by Ref. [5 and 6]. It is
observed that the second saddle point was predicted at the
downstream of the cube which was shown by arrow in the
Figure 3(b).

Flow field

Figure 4 shows time-averaged streamlines at the floor and
centerline of the channel for different Reynolds number
(1000, 3200 and 10000). It is observed that there are several
recirculation regions in the upstream, downstream and top
of the cube for all Reynolds numbers. In the upstream
of the cube, three recirculation regions are seen clearly
for Reynolds number 1000 and 3200. The fourth small
vortex region is cleaved to the wall toward the entrance
of the channel, which is only observed at Reynolds number
1000. It should be mentioned that those vortex regions
were reported by Hwang and Yang [13]. By increasing the
Reynolds number, the structure and number of vortexes
were changed. The second vortex was omitted and the first
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Figure 8. Time-averaged cross stream velocity fluctuation
at the center line of the channel at different Reynolds
numbers.

and third vortex changed to the vortex which was observed
at Reynolds number 10000 and higher.

There are two recirculation regions in the downstream
of the cube. The primary recirculation zone begins from the
leading edge of the cube. The wake circulates over a larger
area in the downstream. The secondary is very small and is
situated at the rear side of the cube, below the primary
vortex core (point A). The length of these recirculation
regions decreases by increasing the Reynolds number and
shifts the center of vortex core to the leading edge of the
cube. In the lateral sides of the cube, there are two saddle
points, observed in experiment in Reference [5] (Figure 3(a),
points S1 and Sy) which are separated by a distance. The
results of the computational data show these saddle points
for all Reynolds numbers. Another recirculation region
appeared downstream of the cube attached to the upper
wall of the channel (point B), as observed in Figure 4(b)
at Reynolds number 3200. It should be mentioned that
the existence of these small recirculation zones was also
reported by authors in [8] and [16].

Figure 5 shows instantaneous streamlines at the floor
of the channel for Reynolds number 3200. It is shown that
the flow field in the upstream is the same as time-averaged
results, while the structure of the flow field is very complex
and different in the downstream. Figure 6 shows variation
of time-averaged contours of turbulent kinetic energy for
different Reynolds number at the centerline of the cube
(plane z=0). It is observed that the maximum turbulent
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Figure 9. Time-averaged contours of magnitude of Reynolds stress (u'v') at the center line of the channel at different
Reynolds numbers.

Table 1. Reattachment lengths in the upstream and downstream of the cube for different Reynolds numbers.

Reynolds number Recirculation length (upstream) Recirculation length (downstream)

1000 1.071 3.83

3200 1.17 2.12

10000 1.15 1.9

40000 0.9 1.601

40000, Experimental [5] 1.04 1.61

40000, Experimental [6] 1.04-0.95 1.67
intensity was at the center of the recirculation zone in the which the flow has of higher upward acceleration. This can
downstream of the cube. This caused maximum velocity at be observed clearly in Figures 7 and 8. It can also be seen as
the center of the vortex core. By increasing the Reynolds the Reynolds number increases, with the maximum values
number, the recirculation center move towards the rear of of the u’ and v' moving toward the cube. This is because

the cube so that the maximum intensity of the turbulence of the movement of the vortex core toward the obstacle.

shifts to the wall of the cube. It should be mentioned Stresses fluctuated between negative and positive
that the maximum quantity of the turbulent kinetic energy values depending on the vortex structure around the wall-
increases with increasing the Reynolds number. mounted obstacle. Figure 9 shows time-averaged contours
Time-averaged streamwise and cross stream fluctua- of magnitude of Reynolds stress (u'v') at the centerline
tions (u' and v') were shown in Figures 7 and 8 at the of the channel for different Reynolds numbers. Hence,
centerline of the channel for different Reynolds numbers. there was a small positive value immediately behind the
The maximum velocity fluctuations occur in the vortex obstacle due to the small corner vortex. Values became
region. The maximum value of u’ occurs in the center of strongly negative within the recirculation region and more
vortex due to the highest streamwise velocity in this point. strongly positive as the flow reattached and recovered. This
On the other hand, the maximum value of cross stream phenomenon has been observed in other studies of flow

velocity (v') occurs in the lower level of vortex core position, over wall-mounted obstacle [17].The LES was able to detect
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(d)

Figure 10. Time-averaged contours of magnitude of Reynolds stress (u'v') at the floor of the channel at different Reynolds

numbers.

the presence of favorable and adverse pressure gradients
at the wall as the flow expanded and contracted over
the obstacle. A steady-state numerical method would not
resolve these aspects of the flow, leading to inaccuracies in
the estimation of recirculation zone statistics and the effect
of the bed-mounted obstacle on downstream flow mixing
and instantaneous bed forces [17].

Figure 10 shows the time-averaged Reynolds stress
contours at the floor of the channel for different Reynolds
numbers. It is observed that the blockage effect of the
obstacle creates an adverse pressure gradient which causes
the flow to separate and trail off along the obstacle, forming
a horseshoe vortex. We can identify a horseshoe-shaped
region of strong shear stress around the obstacle, whose
magnitude is approximately several times larger than its
surrounding.  As the Reynolds number increases, the
number of horseshoe vortex decreases. Thus, it can be
observed that the maximum value of u'v' only occurs at
the sides of the cube.

Table 1 shows characteristics of flow over a wall-
mounted cube in a channel for different Reynolds numbers.
It is observed that the results of the present work at
Reynolds number 40000 shows good accuracy compared

with the experimental data of Martinuzzi and Tropea [5]
and Hussein and Martinuzzi [6]. It should be mentioned
that the variation of the reattachment lengths in the up-
stream and downstream of the cube is not very significant,
except for Reynolds number 1000. These results show that
the overall behavior of flow field is nearly constant for
Reynolds number 3200 to 40000.

CONCLUSION
Turbulent flow over a wall-mounted cube was investigated
for different Reynolds numbers by Large Eddy Simulation.
Studies were carried out for the flows with Reynolds number
ranging from 1000 to 40000. To evaluate the computation
results, data was compared with measurement data at
Re=40000, showing a good correspondence. The results of
the computations show that the flow with higher Reynolds
number has a shorter reattachment length. By increasing
the Reynolds number, the number of horseshoe vortex in
the upstream decreases. The flow field structure in the
upstream was almost similar for both the time-averaged
and the instantaneous. But on the downstream, it did not
show any similarity and had a complex flow field structure.
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Stresses fluctuated and became strongly negative within

the recirculation region and more strongly positive at the

reattachment points.

As the Reynolds number increases,

the number of horseshoe vortex decreases. Therefore, it can
be concluded that the maximum value of u'v’ only occurs
at the sides of the cube.
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