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Linear stability analysis of the three dimensional plane wake flow is performed
using a mapped finite difference scheme in a domain which is doubly infinite in
the cross—stream direction of wake flow. The physical domain in cross—stream
direction is mapped to the computational domain using a cotangent mapping of
the form y = —Bcot(n(). The Squire transformation [2], proposed by Squire,
15 also used to relate the three—dimensional disturbances to the equivalent two—
dimensional disturbances. The compact finite difference scheme of Lele [3]
and the chain rule of differentiation are used to solve the Orr Sommerfeld
equation. The results of linear stability analysis indicates that streamuwise
and the spanwise component of velocity eigenmodes are antisymmetric and the
cross stream velocity eigenmode is symmetric. This is consistent with the DNS

requirement of plane wake flow pertaining to solvability conditions [5].

INTRODUCTION

Linear stability theory determines the amplification,
or decay, of small velocity disturbances superimposed
on the mean velocity of a fluid flow. This provides a
valid solution in the linear flow regime. Classical linear
stability analysis predicts a solution to the linearized
Navier Stokes equations for a fluid which satisfies the
parallel flow assumptions (the mean components of
velocity are zero except for the mean streamwise ve-
locity which is assumed to be a y—dependent function).
Therefore, it can be used as a verification tool to
determine the accuracy of the numerical simulation,
provided that the assumption of parallel flow is satisfied
and very small amplitude forcing perturbations are
used. Since the wake flow develops linearly at the
early stages of its evolution (Sato & Kuriki [8], the
inlet boundary conditions of the computational domain
are specified using the solution of linear stability
calculations. This is performed by solving the Orr—
Sommerfeld equation which is an eigenvalue problem.
In the what follows the governing equation of the
eigenvalue problem is derived. The solution procedure
is presented and the solutions are compared with
reference to published results.
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DERIVATION OF THREE-DIMENSIONAL
LINEARIZED DISTURBANCE AND
ORR-SOMMERFELD EQUATIONS

The theory of linear stability analysis is based on
linearized equations of motion (Linearized form of the
Navier Stokes equations). It is worth mentioning that
the Navier Stokes equation is assumed to be normalized
by appropriate length and velocity scales through the
use of the next three assumptions.

1. Decomposing the pressure and velocity components
into mean parts (U(y)i and P(z,y,z)) and fluctu-
ating parts (v'(z,y, z,t) and p'(x,y, z,t)). In other

words:

Q(%%%ﬂ :U(y)Z+U_I($7yazat)7 (1)
pl,y,2,t) = P(x,y,2) + (2,9, 2,1), (2)
where 7 is the unit vector in the streamwise direc-
tion.

2. The perturbation components are assumed to be
small such that all quadratic terms in the fluctu-
ating components can be neglected with respect to
the linear terms.

3. The mean parts are the solutions of the Navier
Stokes equations.
the linearized equation of motion Eq. (3)
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Va' =0. (4)

can be derived by simplifying the Navier Stokes equa-
tions.

Note that a ¢ dependent mean part is assumed for
the streamwise velocity while zero value is taken for the
mean component of velocity in the spanwise and cross—
stream directions. In other words, the flow is assumed
to be parallel. The fluctuating parts are assumed to be
in the form of travelling wave:

w(x,y, z,t) = a(y). exp(i(az + Bz — wt)), (3)

p(z,t) = ply). exp(i(ax + Sz — wt)). (6)

[ and the real part of o determine the wavelength
in spanwise (2) and streamwise (z) directions, respec-
tively. w and the imaginary part of o are the circular
frequency and the spatial linear growth rate of the
perturbation, respectively. The relationship between
w, a and complex wave speed (c) is given by ¢ = w/a.
The real part of ¢ denotes the wave speed in the
streamwise direction for a temporally evolving flow,
while the ratio of w/a, represents the wave speed in
the streamwise direction of a spatially evolving flow. It
can be easily verified by defining the wave speed (vy,que)
as the velocity of a wave which travels one streamwise
wavelength over a time period that:

Vywave = A /T = 21 /0,) /(27 Jw) = w/a,. (M

The wave speed can be used as a good estimate for the
convection velocity at the outlet boundary [6]. The
physical meaning in Eqs. (5) and (6) is attached to
their real parts and the use of complex notation is only
for the sake of simplicity and convenience. Substituting
Eqgs. (5) and (6) into the linearized equation of motion,
forms Eqgs. (8) through (11) for the velocity and
pressure eigenmodes (@(y) and p(y)), respectively.

io(U — )i+ U'D = —iap + %[a” — (o + B%)a), (8)

ia(U — ¢)5 = —Dp + %[UN' ~ (o + %)), 9)
ia(U — c)w = —ifp + %[w" — (@ + )], (10)
i(at + i) + Do = 0. (11)

D is the first derivative operator in the cross —stream
(y) direction of the flow.

Squire transformations, which relate the three—
dimensional disturbances to the equivalent two—
dimensional disturbances by Eqs. (12, 13, 14) [2]:

a*=a?+ 32, (12)

&l = ad + B, (13)
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p=(a/a)p, (14)

the spanwise component of the velocity eigenmode (@)
is eliminated from Egs. (8) through (11). This forms:

1
ia(U — &) + U'ts = —iap + —[a" — a2, (15)
Re
c~ A~ ~ 1 ~1t ~2~
ia(U — &)5 = —Dp+ —= [0 — &°1], (16)
Re
idi + Do = 0. (17)

Where
§=7 &=¢ Re=Re(2).
(8%

By introducing a streamfunction as indicated by
Eq. (18)

¥(x,y,t) = p(y) exp(ia(z — ), (18)

which is related to the two—dimensional velocity com-
ponents by Eqgs. (19) and (20)

u(z,y,t) = i(y) expic(x — ¢t)) = %’ (19)
v(z,y,t) = v(y) exp(ic(x — ¢t)) = —g—f, (20)

relationships between the eigenfunction (¢) and the
velocity and pressure eigenmodes are:

U= g—z, (21)
¥ = —idg, (22)
F=Ulp— (U= )¢ — —— (4" — &%), (23)

aRe

The choice of streamfunction is not arbitrary. It
must exactly satisfy the continuity equation and be
introduced in the form of a travelling wave. Now,
the eigenvalue problem, known as the Orr—Sommerfeld
equation, can be easily derived by substituting the
velocity and pressure eigenfunctions Eqgs. (22) and (23)
in Eq. (16).

—1
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(24)

Note that aRe = &@Re. A prime denotes the D =
% operator. Since the Orr—Sommerfeld equation
is a fourth order differential equation, it needs four
boundary conditions. They are specified according to
the conditions at the free—stream boundaries which
suggest no perturbation (25) and no perturbation gra-

dients at (£o00). Hence, Dirichlet boundary conditions
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Eq. (25) and Neumann boundary conditions Eq. (26)
are specified for the Orr—Sommerfeld equation.

¢(+00) = p(—00) = 0. (25)

#/(+00) = ¢/ (—0) = 0. (26)
The matrix representation of the discretized Orr—

Sommerfeld equation clearly shows the eigenvalue
problem, that is:

Ap = ép (27)
where
A= (D*- &) YAy(D? - &*I)
i
—Apn + ——(D? - &%I 28
v+ aRe( a~T)] (28)

I is an identity matrix of order N. N is the number
of grid points used for discretization of the cross—
stream direction. Ay and Ay» are diagonal matrices
containing the values of U and U” at discrete y
coordinates on the diagonal, respectively.

The spatial wavenumbers have to be specified
for solving the eigenvalue problem. In other words,
Eq. (27) offers a temporal eigenvalue problem rather
than the spatial one. For solving the spatial Orr—
Sommerfeld equation we cast it into a general temporal
form with complex wavenumbers.

SOLUTION OF THE EIGENVALUE
PROBLEM
Prior to evaluation of the matrix A in Eq. (27), which is
a requirement of solving the Orr—Sommerfeld equation,
we need to specify an oblique angle which is related to
the wave speed in spatial directions x and z.

6 = tan™* (v, /v,) (29)

v, and v, in Eq. (29) are wavespeeds in the streamwise
and spanwise directions of the flow, respectively. The
oblique angle is also related to the spatial wavenumbers
as follow.

9 = tan— (i; g) ! (221//%)

= tan™"' (B/ar)

—oi

Figure 1. Mapping between complex planes of o and w.
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Figure 2. Comparison between spatial solution of Orr-

Sommerfeld equation and results of Michalke [7] for U(y) =

0.5 (1 + tanh (y)).

As indicated in the previous section, there is
no direct solution for the spatial eigenvalue problem
because the matrix A of Eq. (27) cannot be evaluated.
However, a complex mapping approach can be used
to find the spatial solution. It can be performed
by solving the temporal Orr—Sommerfeld equation for
different complex wavenumbers, and computing the
circular frequency (w) where w = aC and C contains N
different eigenvalues. Among the eigenvalues, the most
amplified one, which grows the fastest is chosen. It
relates to the solution with maximum of w;. Therefore,
we can establish a mapping between a region in the
complex space of a [pairs of (a,, ;)] and a region in
the complex space of w [pairs of (w,,w;)]. A schematic
presentation of the mapping between these two regions
is illustrated in Figure 1.

Corresponding to each « there is a most amplified
temporal solution of the Orr-Sommerfeld equation
for w where both a and w are complex numbers.
The spatial solutions of the Orr—Sommerfeld equa-
tion (eigenvalues) are the spatial wavenumbers cor-
responding to the frequencies (w’s) with zero imag-
inary parts. This mutual correspondence between
different o’s (Al,Bl,Cl,Dl,El,Fl and Gl) and w’s
(A,B,C,D,E.F and G) are also shown in Figure 1. For
a given combination of U(y), Re and oblique angle
relationships between each components of the spatial
eigenvalues with the circular frequency (o, = Fi{w,)
and a; = Fa(w,)) can be established. The established
relationships (F1{w,) and Fa(w,)) can be immediately
used to specify the spatial eigenvalues and eigenvectors
for any frequency. To generate the relationships curve
fitting methods were used for the pairs of data [(w,, o)
and (wr,o;)].  The data is collected by changing
the real and imaginary part of « in two successive
loops. The inner and outer loops change the real part
and imaginary part of «, respectively. The following
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considerations are taken into account to specify the
range of the loops.

1. To obtain a positive amplification rate, the imag-
inary part has to be negative which can be easily
checked by examining Eq. (3). This indicates that
the maximum value of «; is zero. Corresponding to
this line there is a curve in space of w which crosses
the line of w; = 0. They are point A and G of
Figure 1.

2. To obtain enough spatial solution distributed over
whole range of w,, we need to adjust the minimum
value and the increment of a;. «; smaller than
the minimum value will never return any spatial
solution. It corresponds to the lowest curve shown
in Figure 1, which does not cross the axis of w; = 0.

3. Minima of «, corresponds to the maximum for the
wavelength. Hence, the minimum value for «, is
ZETro.

4. To obtain two spatial solutions in space of w by
any line of ¢;, the maximum range and increment
for a, are specified. Computations for a, which are
larger than those of the maximum are not useful.
This is because the curves will not cross the axis of
w; = 0 any more. Therefore, the three—dimensional
spatial eigenvalue problem is solved according to
the following steps.

e MIN(a;) <a; <0
- 0<a, < MAX(a;)
* calculate 5 = o, tan(§)
calculate &% = o? + 32
compute A of Eq. (27)

*
*
* solve the eigenvalue problem

* take the most amplified eigenvalue (corre-
sponds to the one whose w; is smallest)

* compute and store the spatial solutions (it
happens, if there is a sign change between
the current w; and that of the preceding)

e Fit a function to the collected pairs which are
smoothly distributed over the entire range of w
(e.g. 0 < w < Wpas), and check to ensure that
the function well represents the data set. Note
that any smooth curve fitting which represents
the pair of data can be used. We use polynomials
of order ten, which give a very smooth approxi-
mation to the pair of values.

Therefore, upon specifying U(y), Re, 6 and fre-
quency, one can compute spatial wavenumbers simply
by a function evaluation. Computation of eigenvectors
corresponding to the spatial eigenvalue is easily deter-
mined. The solution to the two—dimensional equivalent
of the three—dimensional Orr—Sommerfeld equation is
now complete. The solution of eigenvalue problem is

M. J. Maghrebi

Figure 3. Comparison between real part of 2D Rayleigh
eigenfunction solution and results of Michalke [7] for U(y)
= 0.5 (1 + tanh (y)): (a) solution from Orr-Sommerfeld
equation, (b) Michalke’s results.

followed by determining the three—dimensional velocity
eigenvectors which are used to generate perturbations
for the numerical simulation of spatially—developing
wake flow.

SOLUTION OF THE VELOCITY
EIGENVECTORS
The three—dimensional linearized Navier Stokes Equa-
tion has been reduced to an equivalent two—dimensional
eigenvalue problem (known as Orr-Sommerfeld equa-
tion) by the use of parallel flow assumption, travelling
wave representation for the fluctuating parts of the
pressure, velocity components (Egs. (5) and (6)) and
Squire’s transformation (Eqs. (12), (13) and (14)).
The eigenvector calculation in the previous section
corresponds to the two—dimensional equivalents of the
three—dimensional disturbances. Velocity and pressure
eigenvectors of the equivalent two—dimensional distur-
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Figure 4. Comparison between imaginary part of 2D
Rayleigh eigenfunction solution and results of Michalke [7]
for U(y) = 0.5 (1 + tanh (y)), (a) solution from DNS, (b)
Michalke’s results.

bances can be directly determined by evaluating the
right-hand side of Eqs. (21), (22) and (23) respectively.
The three-dimensional disturbances can be recovered
upon using ¢ = ¢, W = W, p = p% and solving Egs. (8)
and (10). Extracting 4 and @ from Eqs. (8) and (10) re-
quires the solution of a complex matrix equation which
is easily implemented. Linear stability calculations
have been performed in the physical space of y with
stretched grid discretization, using the compact finite
difference scheme of Lele [3].
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Figure 5. Orthogonality relationship between lines of «;,
and «; in space of w (Five parallel curves, from top to the
bottom, correspond to a; = - 0.026, a; = - 0.078, a; = -
0.13, a; = - 0.18 and a; = - 0.234).

DERIVATIVE OPERATOR IN THE
CROSS-STREAM DIRECTION USING
COMPACT FINITE DIFFERENCE
SCHEMES
In order to solve the Orr—Sommerfeld equation the sec-
ond derivative operator in the cross—stream direction
needs to be specified. A cotangent mapping given by:

y = —fcot(n¢) (30)

is used to map the doubly infinite domain (—oo <y <
o0) into a unit interval domain (0 < ¢ < 1). Fin
Eq. (30) is the mapping parameter. The grid spacing
in the unit interval are equally spaced. Thus, we can
directly apply the compact finite difference scheme of
Lele [3] to compute the derivative in the unit interval
domain. However, we must use the chain rule of
differentiation to find the derivative or the derivative
operator in the physical domain of y. Application of
the chain rule for the first and second derivatives results
in Egs. (31) and (32).

4 _ df ¢ _ sin*(w) df

dy dCdy w3 dC (31)
df  sin*(w() ,d?f  2sin®(x() cos(n() df
A G

Padé finite difference schemes, which is also used
for approximation of derivatives in the streamwise
direction in the full DNS code [5] are employed here
to compute the derivatives in the unit interval domain.

e.g.

' 1 i 1 + %
fioit afj + fi = m(fj—&-l — fi-1)
_ 1
+ ﬁ(fjw — fi—2) (33)
and
1 ]_ 1 1 4(% - 1)
fioit afj + fir1 = W(fj—l —2f; + fisv1)
10-1
+ m(fj—z = 2fi+ fi—2) (34)

for the first and second derivative approximations. For
the sake of brevity, the Padé finite difference scheme
for the first and second derivative are written in the
matrix form:

df

Ald_C = Blf (35)
and

2
A2ﬂ = B,f (36)

acz
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where, the elements of matrix A1, By, A2 and By are
given by Eqgs. (34) and (35), respectively. It is now
straight forward to derive the first and second deriva-
tive operators in the cross—stream direction. They
are given in the matrix form by Eqs. (37) and (38),
respectively.

D= MAT'B, (37)

D? = Ay AT By + A3AT' By (38)

where, Aj,As and Az are diagonal matrices with values
of %, (73 sin?(7¢))? and #sins(wf) cos(m¢) on
the diagonal. Note that the boundary conditions are
satisfied by default because the first and last terms
of the diagonal matrices (A;,A2 and As) are zero.
The second derivative operator (Eq. (38)) is used for
evaluating the matrix A in (Eq. (27)) which is required
for solving the Orr—Sommerfeld equation. The third
derivative approximation (in Eq. (23)) is determined
upon successive application of Egs. (31) and (32).

COMPARISON BETWEEN THE
SOLUTIONS OF THE ORR-SOMMERFELD
EQUATION AND PREVIOUSLY
PUBLISHED RESULTS
The results of Orr—Sommerfeld equation solution have
been compared with the two—dimensional spatially—
developing inviscid shear layer calculation of Michalke
[7]. He used a numerical integration approach to
solve the Rayleigh (inviscid Orr—Sommerfeld) equation.
The comparison of the present results with Michalke’s
result is shown in Figure 2 which indicates excellent

agreement.

The results of the most amplified eigenvector have
also been compared with the results in [7], where
the complex normalization factor, (1/[¢,(0) + ip;(0)])

Re=200
cve. R=400

——- Re=800
—-— Re=1500
«—— Re=5000
Inviscid

0.5

0.0 1 L L L
0.0 02 04 0.6 0.8 1.0

(a)
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has been taken into account. Figure 3 and Figure 4
show the real and imaginary part of the eigenfunctions
of the Rayleigh equation for the shear layer profile
of U(y) = 0.5(1 + tanh(y)) at different frequencies.
Excellent agreement can be observed between the
solutions obtained here and the results of Michalke [7].

The accuracy of the numerical technique, used
for solving the Orr—Sommerfeld equation, can also
be checked by investigating the relationship between
the lines of a, and «; in the coordinate system of
(wr,w;). They are expected to be orthogonal except
at some singular points [1]. The orthogonality rela-
tionship is clearly indicated by Figure 5 for a wake
flow with the mean velocity profile of U(y) = 1 —
0.692 exp(—0.69315y%) and Re = 500. The five curves
in Figure 5 from top to the bottom, which are almost
parallel, correspond to a; = —0.026, a; = —0.078,
a; = —0.13, a; = —0.18 and «a; = —0.234.

The effects of Reynolds number on the most
unstable spatial wavenumber are shown in Figure 6.
It indicates that the maximum spatial growth rate
corresponds to the inviscid wake flow and that the effect
of Reynolds number is not significant in determining
the most unstable spatial wavenumber.

Figure 7 shows the spatial growth rate and
the wavelength for a two-dimensional and three—
dimensional mean wake profiles of U(y) = 1 —
0.692 exp(—0.69315y2) at Re = 500 and § = 60°.
The figure indicates that the frequency corresponding
to the maximum growth rate of three—dimensional
disturbance is half of the two—dimensional one.

Figure 8 shows the eigenvectors for the most
unstable solution for the two-dimensional and three—
dimensional eigenvalue problems. These results show
that the solutions are symmetric which offers an an-
tisymmetric profile for the streamwise velocity eigen-

-022

=018 |

=014 |

.
—010 | g - Re= )
o - Re= '
&—=o Re=Inviscid :

-006 /

-002

0.0 02 0.4 08 08 1.0
(O]

(b)

Figure 6. Effect of Reynolds number on «, in (a) and a; in (b) (by solving the 2D Orr-Sommerfeld equation for U(y) =

1-0.692 exp(-0.69315 y?)).



Orr Sommerfeld Solver Using Mapped Finite Difference Scheme for Plane Wake Flow

26 1
—— 3D oblique wave (8=60)
2D wave
18 1
L
3
=
N
[l
<
10 | —
2 . L L
0.1 03 05 07

(O]

(a)

Figure 7. 2D and 3D streamwise wavelength in (a) and growth rate in (b) (By solving Orr-Sommerfeld equation using

09

U(y) = 1-0.692 exp(-0.69315 y*), Re = 500 and §=60°).
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Figure 8. Eigenfunctions corresponding to the most amplified eigenvalue of 2D (a) and 3D (b) Orr—Sommerfeld equation

using U(y) =1-0.692 exp(—0.69315y2), Re = 500 and 6 = 60°
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Figure 9. 2D velocity eigenfunction components (By solving Orr-Sommerfeld equation using U(y) = 1-0.692 exp(-0.6931
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y?) and Re=500) for (a) streamwise, (b) cross—stream components.
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Figure 10. 3D velocity eigenfunction components (By
solving Orr-Sommerfeld equation using U(y) = 1-0.692
exp(-0.6931y?), Re=500 and §=60°) for (a) streamwise, (b)
cross-stream and (c) spanwise components.

vector (Figure 9(a)), and in the case of the three-
dimensional problem, asymmetric profiles for stream-
wise and spanwise velocity eigenvectors (Figure 10
(a) and (c)). A requirement of the DNS simulation
code refers to solvability condition by Maghrebi [5]

M. J. Maghrebi

which leads to selection of an antisymmetric profile for
streamwise and spanwise velocity eigenvectors. These
indicate that the eigenfunction of the Orr—Sommerfeld
equation must be symmetric rather than antisymmet-
ric. However, the use of an antisymmetric solution
for a wake profile when the inflow boundary condition
is perturbed by the cross—stream velocity component
does not violate the solvability condition. This fact
has been taken into account in the two—dimensional
simulation of Maekawa et al. [4]. In fact, for any spatial
simulation with random forcings at the inlet boundary,
it is important to specify the cross—stream velocity as
the inlet boundary condition. This is because the only
requirement for the cross—stream velocity is to be zero
at the free—stream boundaries (£o0). Therelore, any
kind of forcings obtained from the Orr—Sommerfeld
equation can be used to specify the inlet boundary
of the computational domain using the cross—stream
velocity of the forcing. In other words v at the
inflow boundary condition can be either symmetric,
antisymmetric or any combinations of these two, while
w and w at the inflow boundary must be presented by
an antisymmetric profile in order to satisfy all of the
solvability conditions. Figures 9 and 10 also indicate
that all of the velocity eigenfunction profiles are zero
at the free—stream boundaries and that the maximum
variations of the velocity components occur at the wake
center.

CONCLUSION
Linear stability analysis is performed to superimpose
some perturbations on mean velocity profile at the
inlet boundary of computational domain of full three—
dimensional plane wake flow. The Physical domain
of wake flow in cross—stream direction is mapped to
a unit interval domain by the use of a cotangent
mapping. The chain rule of differentiation and the
compact finite difference scheme are used to generate
the eigenvalue problem. Squire transformation and
application of parallel flow assumption are employed to
generate the eigenvalue problem obtained by linearizing
the equation of motions for the full three—dimensional
incompressible plane wake flow. Since The direct
Orr—Sommerfeld equation offers a temporal eigenvalue
problem, hence an indirect Orr—Sommerfeld equation
is worked out for spatial eigenvalue problem. The
numerical modeling of Orr—Sommerfeld equation is
discussed and full verification is performed to make
sure that the inflow boundary conditions of are set
as we expect. The velocity eigenfunctions obtained
from Orr—Sommerfeld equation indicates that they are
consistent with DNS requirement of plane wake flow

[3]-
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