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Robust Optimal Control of Flexible
Spacecraft During Slewing Maneuvers
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In this paper, slewing maneuwver of a flexible spacecraft with a large angle
of rotation is considered and, assuming structural frequency uncertainties, o
robust minimum-time optimal control law is developed. Considering typical
bang-bang control commands with multiple symmetrical switches, a parameter
optimization procedure is introduced to find the control forces/torques. The
constrained minimization problem is augmented with the robustness constraints,
which in turn increases the number of switches in the bang-bang control input to
match the total number of the constraint equations. The steps of the solution
algorithm to obtain the time optimal control input are discussed next. The
developed control law is applied to a given satellite during a slewing maneuver.
The simulation results show that the robust control input with just few switching
times can significantly lessen the vibrating motion of the flexible appendage in
the presence of structural frequency uncertainties, which reveals the merits of

the developed control law.

INTRODUTION

Space robotic systems are expected to play an impor-
tant role in future, e. g. in the servicing, construction,
and maintenance of space structures in orbit. Be-
fore long, coordinated teams of robots might deploy,
transport, and assemble structural modules for a large
space structure [1]. In order to control such systems,
it is essential to develop a proper kinematics/dynamics
model for the system. This has been studied under the
assumption of rigid elements [2-4], and elastic elements
[5-8]. There also have been various studies on the
control problem of such systems with both rigid and
flexible elements [9-13].

Due to maneuver time limitations in space, the
optimal control with a time minimization constraint is
of main concern. It should be noted that high speeds,
in turn, may stimulate the system flexible modes which
may drastically affect the control system performance.
Space projects involving large structures and satellites
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with antennas or solar panels in general, and robotic
manipulators are examples where one should consider
achieving rapid maneuvers without stimulating flexible
modes [14]. Therefore, the minimum-time optimal
control for the rigid mode and n flexible modes has
become the focus of several articles [15-19]. Robust
time-optimal control problems for slewing spacecraft
have recently received attention [20-24]. In all of
these published works, the time-optimal controller is
obtained by solving the state and co-state equations,
considering the Ponteryagins minimum principle.
Spacecraft and satellites in orbit usually operate
in the presence of various disturbances, including
gravitational torque, aerodynamic torque, radiation
torque, and other environmental and nonenvironmental
torques. The problem of disturbance rejection is of
main concern particularly in the case of Low-Earth-
Orbiting satellites that operate in the altitude ranges
where their dynamics are substantially affected by
most of the preceding disturbances. In addition,
as some dynamic parameters of spacecraft are not
exactly known, the controller design should take these
parametric uncertainties into account. In this paper, a
robust minimum-time optimal control law for slewing
maneuver of a flexible spacecraft with large angle of
rotation is developed. A linear model for a flexible
spacecraft with one rigid-body mode and n flexible
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modes is considered. The time-optimal control law
for this model is developed, this control law is a
typical bang-bang control commands with multiple
symmetrical switches. A new approach is expanded
for generating robust time-optimal control inputs for
the single-axis, rest-to-rest maneuvering problem of
flexible spacecraft in the presence of structural fre-
quency uncertainty. A parameter optimization prob-
lem, where the objective function to be minimized is
the maneuvering time, is formulated with additional
constraints for robustness with respect to structural
frequency uncertainty. The resulting robustified, time-
optimal solution is a multiswitch bang-bang control.
The developed control law is applied on a given satellite
equipped with on-off reaction jets during a slewing
maneuver.

PROBLEM FORMULATION
Considering a linear model of a flexible spacecraft with
one rigid-body mode and n flexible modes during a
slewing maneuver, the system can be represented as:

Mi+ Kq = Gu, (1)

where M and K are the so-called mass and stiffness
matrices, respectively, and G is the control input
distribution. The system described by Eq. (1) can
be transformed into the decoupled modal equations
using the eigenvalue and eigenvector information of the
system (for more details see [25] ):

Qz+W¢2% = (}iua 1= 1,...n (2)
where q;(t) is the i-th modal coordinate, w; is the i-th
modal frequency (i-th diagonal element of eigenvalues
matrix), and scalars ®; are defined by:

[ & & 3,7 =AG, (3)

where A is an n X n matrix whose columns are the
corresponding eigenvectors, and n is the number of
modes considered in control design. The control input
u(t) is a single bounded one:

—Umax S U(t) S Umax (4)

where U,,4, 18 the maximum value of the control input.
It is desirable to convey the system described by Egs.
(2) from the initial conditions ¢(0) = [000---0]%, to
final conditions ¢(t, ) = [#00---0]7 subjected to the
control constraints (4) in minimum time. Therefore,
the performance index can be defined as:

tf
J:/ dt =ty, (5)
0

where the initial time t, is set to zero and ty is the final
time of the maneuver.
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TIME OPTIMAL CONTROL DESIGN
From the optimal control the ory and Ponteryagins
minimum principle, [26], it is known that the solution
of the above time optimal control problem is in the
form of bang-bang control input with (2n-1) switches.
The switching times are distributed symmetrically with
respect to t = t;/2. A bang- bang input with (2n-1)
switches can be represented as:

u(t) = Umax ¥ b1(t = t;), (6)
=0

where b; defines the magnitude coeflicient at t;, 1(t)
defines unit step function, and te, =ty .

To obtain the switching times t;, one should
obtain the constraints of the problem. Considering the
rigid body mode equation with w; = 0, yields:

@1 = Q1u, (a)
with the following initial conditions:

71(0) =0,

qi(ty) = 0.

Substituting Eq. (6) into Eq. (7-a) and integrating
with respect to tit to time twice, using initial condi-
tions, yields to:

@ umax
Oy =~ N0ty —t5)%, (8)
0

which describes the constraint for the rigid body
motion mode. Next the flexible modes should be
considered

4 +wiq = ®u, 1=2,..,n (9)

where all related initial conditions are set to zero.
Substituting Eq. (6) into Eq. (9) and following a
similar procedure yields to:

(Piumax

2n
ij cosw;(t — t;5), 1>2 (10)

=0

q(t) = —

7

Substituting (t — t;) = (t —
can be rewritten as:

tn) = (t; — ta), Eq. (10)

2n
q:(t) = —‘1)—52& cosw;(t —tn) D by cosw;(t; —tn)
: =

2n
+sinw;(t —t,) D bisinw(t; — )| -
Jj=0

(11)

Note that the sine function is an odd one and t; is
symmetric about t,, which is equal to t; /2, hence the
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Figure 1. Optimal input (a) uy(t), (b) uz(t), and (c) us(t).
second term vanishes, and the following holds for any
bang-bang input:

2n
Z bj sinwi(tj - tn) =0. (12)
7=0

Therefore, to have ¢;(t) = 0 for ¢ > t;, ie. no
residual structural vibration, the following flexible
mode constraints are obtained:

2n
Z bjcosw;(t; —t,) =0, 1>2 (13)
=0

To solve the minimum-time optimal control problem,
we have to determine (2n-1) unknown switching times
such that the final time t; be minimized. This can

be formulated as a constrained parameter optimization
problem, i.e. minimization of the performance index of
Eq. (5) subjected to the following constraints:

fl(tlathH 7tj7’“ 7t2n) =
du 2n
1 %max
R L T TS
7=0
fi(t17t27”’ 7tj7“’ ,th) =

2n
ijCOS(Ui(tj—tn) :0, i:2,...,n
Jj=0

(14b)

To satisfy the necessary and sufficient condition for
optimality, the Hamiltonian can be introduced as:
H:tf-i-/\l'fi, 1=1,...,n (15)
where A; are defined as Lagrange multipliers. Setting
up the following equations, a set of 3n equations can be
solved to determine 3n unknowns, i.e. (2n-1) switching
times, one final time t; , and n Lagrange multipliers:

OH
=220, j=1,2,-,2
gj at] 9 J 9 Sy , 21
OH
gkzg/\i:O, k=2n+1,---,3n (16)

This set of equations are often coupled and nonlinear,
and can be solved using numerical methods, [27].

ROBUST TIME OPTIMAL CONTROL
DESIGN
Constraint equations (13) can be represented as:

f(T,Py=0, (1n

where T represents a set of switching times and P
consists of flexible mode frequencies that are considered
uncertain. Expanding {{T,P) about its nominal value
P? the following can be obtained:

PPy = ST, P + 95 |po(P— P 4 (19)

Then, the set of switching times T can be redesigned
to satisfy the following two sets of constraints:

AT, P%) =0, (19a)
af
'l =0, 19b
oP (T, P) (19D)

where the second constraint is called the first-order
robustness constraint because it limits the amplitude of
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(a) Central rigid body responses to inputs uy(t) , u2(t ) and input uz(t); (b) Flexible appendage response due

to uy(t); (c) Flexible appendage response due to uz(t); (d) The second flexible mode response due to uz(t); (e) The second

flexible mode response due to robust input us(t).

residual structural vibrations caused by uncertainties of
P. By taking the derivative of Eq. (10-b) with respect
to wy, for each flexible mode it can be understood that:

dgi(t) _
dwi
Umax P ty . — t t
7’"”;; * cosw;(t — Ef);:% (tj — Ef)bj sinw;(t; — Ef)
(20)

Letting dg,(t)/dw; = 0 for all ¢ > t; yields to:

2n
t t
Z(tj—gf)bjsinwi(tj—gf):o, 1=2,---,n
=0
(21)

which describes the first-order robustness constraints.
If these robustness constraints are in the con-
strained minimization problem formulation described
by Eqs.(14), the number of switches in the bang-bang
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control input must be increased to match the number
of the constraint equations. Adding one robustness
constraint will require two more switches. Then robust
time optimal control problem can be formulated as
a constrained parameter optimization problem, i.e.
minimization of the performance index of Eq. (3)
subjected to the constraints set (14) and the new
additional set of constraints (21), i.e., the previous ones
plus robustness constraints.

THE SOLUTION ALGORITHM
Collecting g; functions defined by Eq. (16) in a (3n x 1)
vector as:

9=0192"" G2n " g3n]", (22)

the steps of the solution procedure and numerical
algorithm to obtain the time optimal control and
robust time optimal control inputs are given below:

1. Determine the numbers of flexible modes (n).
2. Define the bang-bang input with (2n-1) switches.

3. Apply this control input function for rigid body
mode and flexible modes to obtain constraints of
problem with performance index, J=ty. At this
stage, the time optimal control problem is converted
into a parameter optimization problem. Parameters
of this problem can be reduced by consideration of
time symmetry property of the bang- bang input
function.

Form vector g, using Eqgs. (14)- (22).

Form a (3n x 1) vector h for unknowns:

h:[tlvu’7t2n7A17H’7A7L]T (23)

Assume some starting values for h as hyg.
Calculate the 3n x 3n Jacobian matrix:

g=%
991 ... Om g 9q
J t1 3 toy RN A
292 ... 9Og2 0 92 d g2
i1 O toy RN W
9g3n ... 94g3n QOd3m ., Od3n
dty O toy RN W

(24)

where J;;=0g;/0h; are calculated using the current
values of h.

8. Calculate the step direction as:

A=J14 (25)
9. Update the unknown variables:

h=h.—A (26)

where h, denotes the current value of h.

10. Repeat steps 7-9 until:
lgll < e (27)

where refers to ||--- || Euclidean norm, and ¢ is a
chosen accuracy threshold.

11. The unknown variables are obtained as:
h=h (28)

Next, to illustrate the developed optimal control law
and described numerical procedure, the slewing ma-
neuver of a given satellite is simulated.

SIMULATIONS

The system parameters and maneuver specifications
are listed in Table 1. To see the inherent behavior
of the system, the first five modes are retained in the
developed model in the simulation routine prepared
in MATLAB environment, in which a single torque
actuator is located on the rigid central body to control
the maneuver. The task is to control the satellite
orientation during a rest-to-rest maneuver in minimum
time. Table 2 shows the natural frequencies w;, in
radian per second, and the components of ¢; in Eq.
(2), for the first five modes.

For the first trial, only the rigid body mode is
considered, i.e. n=1, and so there exists just one
switching time. The control torque will be defined as:

ur(t) = mae {10t) — 2[1(t — t1) + 1t —te)]}.  (29)

By applying the presented algorithm, the middle and
final time, t; and t; , are obtained as shown in Table
3. The input amplitude is given as U, =20N.m as
shown in Figure (1a), and the attitude of the central
rigid body due to this input torque varies according
to curve (1) in Figure (2a). To find the vibration of
the end point of appendages (solar panels), due to this
input torque, if we solve the equation:

o + w3 yo = Bo us, (30)

and transform the solution back to the physical coor-
dinates, the end point vibration will be obtained as
Figure (2b). As seen, the amplitude is considerably
large and may cause significant damage to the space-
craft. Therefore, at least the first flexible mode, i.e.
n=2, should be considered.

To consider the first flexible mode (n=2) in order
to apply the control input us(t), three switching times
will be introduced as:

U/Q(t) = umax{i(t) - 2[1(t - tl)]
+ 2[1(t — t2)] — 2[1(t — t3)] + 1(t — t5)}. (31)

According to the presented algorithm, the switching
and final times are obtained as shown in Table 3,
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Table 1. System Parameters and Maneuver Specifications

Iy 132 Kgm?
Central body inertia Iy 77 Kgmz
I3 135 Kgn12
Solar panels Length L 4m
Solar panels Thickness t 0.02 m
Solar panels width w 0.50 m
Solar panels material stiffeness EI 20.10 Nm?
Solar panels material density P 0.81 Kg/m2
Maximum torque avilable u 20 N.m
Total mass of spacecraft M 800 Kg
Total slewing angle 20 deg

and the control input is illustrated in Figure (1b).

The response of the central rigid body and the
flexible appendage are shown as Curve (2) in Figure
(2a), and Tigure (2c), respectively. As shown in
Figure (2¢), by applying uo(t), the vibration of the
appendage in its first flexible mode does completely
vanish, however it seems that the second flexible (n=3)
mode is excited. Therefore, to investigate this, the
amplitude of vibrations for the second flexible mode
is shown in Figure (2d). As seen in the figure, the

Table 2. Flexible Modes Specifications

wi P,

0 0.0628
1.2355 -0.0328
6.9311 0.0092
19.3320 0.0043
38.2100 | -0.0026

(20 I VN [ VR L

Table 3. Switching and final maneuver times (sec.)

Times for uy(t) Times for ug(t) Times for ug(t)
t1=2.104 t1=1.498 t1=1.012
tr=4.208 t2=2.755 to= 2.235

t5=4.012 t3=3.851
t;=5.509 t4=5.467
t5=6.690
t;=7.702
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amplitude is about 0.5 mm which is reasonably small.
This will be substantially reduced by considering the
robust control input us (t).

The robust control input uz (t) can be defined by
adding first-order robustness criterion described in Eq.
(21), as follows:

US(t) = umax{i(t) - 2[1(t - tl)] + 2[1(t - t2)]

—2[1(t — t3)] + 2[1(t — ta)] — 2[1(t — t5)] + 1(t —tg)}
(32)

Following the presented algorithms, switching and final
times for this case will be obtained as shown in table 3.
The control profile us(t), and obtained responses are
illustrated in Figure 1-2.

Finally, the end point motion of the appendage is
compared for the three cases in Figure 3. It should be
noted that the vibration amplitude has been decreased
by 99% due to ug (t), compared to that of uy(t),
whereas the maneuver time has increased by 83%.

CONCLUSIONS

Focusing on the slewing maneuver of a flexible space-
craft with large angle of rotation, and assuming
structural frequency uncertainties a robust minimum-
time optimal control law was developed in this paper.
Employing the assumed modes method for the flexible
appendage, and the Euler-Bernoulli beam assumption,
the system dynamics were modeled. Considering typ-
ical bang-bang control commands with multiple sym-
metrical switches, a parameter optimization procedure
was introduced to find the control forces/torques. Aug-
menting the constrained minimization problem with
the robustness constraints, the number of switches in
the bang-bang control input was increased to match the
total number of the constraint equations. The steps
of the solution algorithm to obtain the time optimal
control input were then discussed. The developed
control law was applied to a given satellite during
a slewing maneuver, where the first five modes were
considered in the simulated model of the system. The
simulation results accentuated that the robust control
input, exerted by a single torque actuator located on
the rigid central body, with just few switching times
significantly diminishes the vibrating motion of the
flexible appendage.
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