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Time Optimal Closed-Loop Fuzzy-Control
Strategy for Nonlinear Lunar Lander Mission
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In this paper a closed-loop time-optimal control strateqy for the non-linear lunar
lander mission is developed. Generally, determination of closed-loop feedback-
control law is not usually feasible for many non-linear dynamic systems. In
addition, there exist certain difficulties associated with the numerical determi-
nation of open-loop optimal control solution for non-linear systems, such as
slow convergence rate and high sensitivity to initial guesstimates. Besides, if
one manages to overcome these inherent difficulties, the determined optimal
control strateqy will be in an open-loop form, and thus, fully dependent on
the initial condition. Obuviously, in this way perturbations and noise processes
will make the optimal trajectory deviate from its ideal predicted values in any
actual operating environment. Our study focuses on the planar trajectory and
control optimization of a lunar lander spacecraft as a viable example of non-
linear dynamic system. A fuzzy algorithm is augmented to our variational
formulation of the problem in an attempt to create a closed-loop fuzzy guidance
logic. The training process of the fuzzy system is greatly reduced through the
introduction of a set of states related non-dimensional variables. Simulation
results indicate that the developed methodology can be successfully utilized in
other flight scenarios with good robustness to the actuator and measurment

system noise.

INTRODUCTION
Optimal control solutions of dynamic systems can
be classified into two main categories of open-loop
and closed-loop. Open-loop optimal controls are only
functions of time and once the system starts from
a known initial condition, the predetermined optimal
controls activate to take the trajectory toward the
final hypersurface with no feedback of states along
the way. A task which performs the job well if there
is no unmodeled disturbances and/or noise processes.
On the other hand closed-loop optimal controls are
functions of time and states and in essence posses a sort
of inherent robustness against noise and/or undesirable
disturbances present in any actual operating environ-
ment. Of course, closed-loop optimal control solutions
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are seldom possible for non-linear dynamic systems,
even though they are highly desirable for their robust
characteristics. Open-loop optimal control solutions of
non-linear dynamic system can be determined either by
a dynamic programming approach or through a varia-
tional formulation of the optimal control problem [1],
[2]. Regardless of the techniques used, both approaches
render open-loop solutions. Due to some inherenet
difficulties with non-linear dynamic systems, a few
attempts have been made toward finding closed-loop
optimal feedback control solutions for these systems.
Rahbar investigated the possibility of determining a
guidance stratrgy for the pursuit problem using neural
networks [3]. Dabbous presented a closed-loop optimal
control strategy for non-linear regulator problems with
the final time specified [4]. Kunisch also presented
his approach to non-linear optimal feedback control
through numerical solutions of the Hamilton-Bellman-
Jacobi equation. In addition, there exist other studies
by Naidu on the closed-loop optimal control using
singular perturbation methods [3], [6], [7], [8]. Also,
Shamma has been able to utilize the algebraic Ricati
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equation to come up with closed-loop control laws for
non-linear systems with linear control variables [9].
More recently, Palma has worked on optimal predictive
control by discretizing non-linear dynamic systems [10].
Near optimal closed-loop control of reduced non-linear
systems is obtained by Lewis using Jacobi equation and
neural networks [11]. While with clagsical methods
of control design, complete system information and
knowledge of uncertainties are required, fuzzy logic
controllers have shown to be more insensitive to these
factors and have attracted some attention over the past
decade. In fact, it has been shown that these factors
have little influence on the performance of the fuzzy
control [12]. Steinbauer has utilized fuzzy logic to
obtain an open-loop optimal control for a linearized
system [13]. Li has also employed fuzzy logic on non-
linear systems by first linearizing them in order to
come up with optimal controls [14]. Mitsuishi has also
researched on the idea of optimal fuzzy control for non-
linear system in which the control variable is linearized
[15]. Suzuki has fuzzified the performance function
and in turn, developed a decision making fuzzy logic
to determine the optimal control [16]. Additionally
some research on the determination of minimum fuel
closed-loop guidance law for a lunar lander has been
performed by Ueno and Souza [17], [18], [19].

The present study focuses on a methodology for
the determination of an optimal closed-loop control
solution for non-linear system using fuzzy logic. The
landing mission design of a lunar lander is investigated
as an appropriate non-linear system. The time optimal
landing mission is to be performed with a thrust limited
system with one degree of gimbaled freedom. A set of
state dependent non-dimensional variables have been
introduced which expedite the fuzzy training process
and have proven effective in developing the proposed
(FGL). The solution robustness of this time optimal
fuzzy closed-loop system is demonstrated against actu-
ation and process noise.

OPTIMAL CONTROL IN DYNAMICAL
SYSTEMS
Optimal control problems of dynamic systems can be
formulated using calculus of variations [1]. In this
regard, one usually assumes a mathematical repre-
sentation of the system under study as a first order
differential equation.

T =a(Z(t),q(t),t), to<t<t; (1)

Where #(t) denotes the n-states and @(t) is the vector
of m-control components. The second step in the
formulation of optimal control problem is to introduce
an appropriate performance function. A conventional
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form can be expressed as:

W =n@en+ [ gEoannae

Where h (Z(ty), ts) is the penalty function for the final
states at the final time. Additionally there could exist
terminal constraints in functional form for final time
unspecified situations, presented as:

m(Z(ts),ty) =0 (3)

Having officially formulated the problem, the first step
toward a variational solution is to determine the system
Hamiltonian.

H = g (&(t),a(t),t) + p" a (&(t), a(t), ) (4)

Based on the Hamiltonian, the necessary conditions for
an optimal solution are:

i. the state equations,

F=a (@), d(t),0) (5)
ii. the costate equations,
: o0H
P— ——— 6
=== (6)
iii. and the optimality condition,
OH
0=— 7
57 (M

The above equations need to be simultane-
ously satisfied, considering an appropriate set of
initial and boundary conditions given below [2];

iv. initial conditions,

Zi(to) = (is known), Ag(to) =0. (8)
v. terminal condition,
k
oh . am;
%_pltf_izzldl%’ (9)
oh " om,
H+ — = i—— 10
"o )tf 2 diy, 10
m (#(ty) = 0. (11)

The optimality condition (7) usually allows for
optimal determination of the m-control components as
functions of states and the costates. The solution of the
2n differential equations (5), (6) are to be considered
with the aid of 2n+1+q boundary conditions specified
in (8) through (11). Since in most practical applica-
tions, the governing equations are non-linear, one does
not usually expect to obtain an analytical closed-loop
solution. Thus, open loop optimal control solution is
sought through numerical techniques [1].
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Figure 1. Geometry of the lunar landing problem

ANALYTICAL OPEN-LOOP SOLUTION TO
THE LUNAR LANDING PROBLEM
Consider an idealized spacecraft at the orbital of
inertial frame (z,v) at t = 0, moving under the action
of a constant propulsive force making a control angle 3
with the horizon. Obviously the position and velocity
vector of the vehicle will change due to the action of
forces acting on it. The objective is to determine the
time-optimal control policy of this system for lunar
landing from a final target orbit. Based on Figure 1,

the governing equations are:

( du
i —acosf

Ccll—q::asinﬂ—g (12)

dy _
\ dt

with the appropriate boundary conditions:

v

w(t=0)=Us, v(t=0)=0, yt=0)=h, (13)

wt=1t;)=0, v(t=t;)=0, ylt=t;)=0. (14)
For a better physical understanding and reaching an
analytical explicit solution, the governing equations
and the associated boundary conditions are non-
dimensionalized using a set of assumed reference pa-

rameters (u*, v*,y*):

Y !

_Y -t 16
= T (16)
d 1d
TS 17

For time optimal problems, where t; is free, one
usually utilizes the final time as a referencing condition
for non-dimensionalizing. Nevertheless, in this study
another approach is followed in order to avoid FGL
computational difficulties.

L (18)

U =U,, o

y =h,
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Using the above non-dimensional variable equations
(15-17), the transformed equations become:

( du
= —wy cos 3
05
& wy sin B — wo (19)
dr
dy _
—= =w3 T
\ dr 3
where:
at* g U*t*
- e = 20
w1 U*v w2 a) w3 y* 9 ( )

Gr=0)=0, gr=0)=1, (21)

=

(r=71)=0, 9(r=7)=0, Flr=717)=0. (22)
Since the problem is to determine the control action
B = B(r) required for time optimal lunar landing
maneuver to a specified orbit, the performance measure

is simply:

5
J = / dr (23)
0
and the corresponding Hamiltonian will be:
H=1-\w; COSﬂ-’-/\z (w1 sinﬂ—w2)+/\3w3@ (24)

Using the costate equation (6) and the optimality
relation (7), one can find an implicit reaction for the
optimal control:

tan 3 = tan By +c T, (25)
where:

C C
tan By = C’_j’ c:—c—j. (26)

The constants are to be determined using boundary
conditions.  With veiw of equation (25) and the
existing relation between @ and 7, the time derivatives
appearing in the governing equation can be written
with respect to 4. This way, 8 now becomes the
independent variable.

/ @ _ w1
dg ~ ccosf3
At wq sinf8 — ws
Rl o) 27
dp ccos? 3 (27)
@ o ws U

l dB  ccos? 3
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with initial condition;

w(Bo) =1, 0(Bo) =0, 7(Bo)=1 (28)
Due to the simpler from of equation (27), it is inte-
grated to yield the results as a function of the control
angle, 3.

wy secf +tan g

_ wasin(B — Fo) + wi(cos By — cos )

w(B) = ccos (3 cos By ' (30)
B wiwaws | 1 sec 3 + tan 3
g(p) = 22 |y M sec B+ tan o
1 1 2 1 1 1
Yr s " wonme) T oo By o p)
_2 tan B (tan By — tan 3) +L tan 3o !
w1 wa cos fy
(31)

Obviously for explicit results, it is necessary to specify
the values of ¢, 8y and 79. This can be accomplished
through using the known terminal condition and solv-
ing a set of non-linear algebraic equations.

w(Br) =0, (Bf) =0, F(Br)=0,
B = tan™!(tan By + eTy). (32)

Thus, for a set of assumed values of the parame-
teres (Up, h,a,q) the required unknown parameteres
(Bo,By.7r,c) can be determined from equation (32).
for example, if Up = h = a = 1 and g = %, the
optimal control and state trajectories are computed
and depicted in Figure 2.

ty = 2.2113, (33)
By = —1.2748, (34)
c = —4.5, (35)
By = 1.422, (36)
#(B) = —0.2222 1In (sec 8 + tan 3) + 0.5770, (37)
3 —sin g — 13.57 cos
U = 0.07408 38
o) - , (38)

7(B) = 0.02469 tan Bsec? B + 0.02469 In (sec 3 + tan 3)

— 0.008231 sec® § — 0.2233 tan 8 + 0.6890,  (39)

~0.5595 4 0.5595 cos 23
B cos28+ 1

z(8)

0.02469 sin 23 1n (M)

cos 20+1
cos2/+1
0.09878 cos 3 4 0.1282 sin 23
+ )
cos25+1

B =tan™! (6.671 —4.57). (41)
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Note that the results are identical with the analytical
results of reference [20] and that the solution parame-
ters @, ¥, ¥ and T have been expressed in terms of 3,
where 3 is related to 7. This control law is of course in
the open-loop form.

FUZZY GUIDANCE LAW

A fuzzy system consists of four main units which
include a rule bases unit, a fuzzifier unit, an inference
unit and a defuzzification unit. In the fuzzifier unit, the
input signals are transformed into linguistic variables or
so called fuzzy variables. Subsequently, the fuzzy vari-
ables enter the decision making unit that utilizes the
assigned bases to generate a fuzzy output. The fuzzy
output is next converted to a regular output in the
defuzzification unit. The following steps are followed in
determining the fuzzy guidance law. First the input-
output quantities (non-dimensionalized variables and
control action) are specified, either through analytical
solution techniques or numerical methods. For this
purpose £, 7 are taken as the input variables and 3 is
considered as the output variable of our fuzzy system.
Second, the types of membership function presenting
the input-output fuzzy sets are selected. In this
regard, the gauss function has been used for the orbital
problem. Next the decision making rule bases relating
the system input to the output are chosen and saved in
the appropriate form (usually tabulated). These rules
are usually qualitative expressions, such as: very large,
very small etc. The value of the membership functions
for conditional parts of the rule bases are subsequently
determined in a sequential manner discussed below.
The fuzzy output of the system is next passed through
a defuzzifier unit making it in a non-fuzzy form. Even
though various methods of defuzzification exist, the
area center techniques is more conventionally used for
this purpose and is utilized in this study. Figure 3
shows a schematic diagram of the fuzzy system. The
utilized fuzzy system follows the TSK (Takagi-Sugeno-
Kang) approach in order to come up with the fuzzy
guidance law [12]. In this system the fuzzy rules are
simply defined as:

if &4 =A and m =B then z=f(&,m) (42)
where A,B are antecedents of the fuzzy law and f is
an explicit function in an obverse of the fyzzy law. In
this study, f is a first order polynomial and, therefore,
the resulting fuzzy system is a first order TSK model.
Accordingly, the final output of the fuzzy system is
determined using the following relation:

. ZNzl w;%;
Final OQutput = ==%=%—— (43)
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Figure 5. Behavior of the membership function with respect to &, and 7.

Figure 6. 3-D plot of the generated FGL output

where w,; are the explicit output weighting functions
determined from an "AND” rule among the input
membership functions.

APPLICATION OF FGL

For fuzzy application, one can generate the required
non-dimensional variables through grouping the state
variables. Keep in mind that the number of the non-
dimensional variables will be at most n-1 due to PI-
Bukinkham theorem. For the lunar landing from the
orbit problem with (@, 7,¥) as the state variables, the
corresponding non-dimensionalized variables will be:

u¥  l—ur’

£

(45)

It is worth nothing that having a minimum number
of non-dimensional variables will expedite the training
process of the fuzzy system and increase the accuracy
of the FGL as well. For the problem at hand, the

closed-loop FGL with states as (@, 7, %) is constructed
with 343 fuzzy laws and 734 nodes for a deviation of
V62U + 62h = 0.42 from the base condition (Up, h) =
(1,1), while for the same condition, the closed-loop
FGL for the non-dimensional variables (£, ) is realized
for only 25 fuzzy laws and 75 nodes. Variation of
the control variable (3) with non-dimensional time
parameter (7) is depicted in Figure 4 for both cases,
ie. When FL is constructed using the regular states
(u,v,y) and when FGL is constructed using the non-
dimensional state variables. Both results have been
compared with the available exact solution. It is
interesting to see that the control history behaves much
better, and more closely follows the exact solution re-
sult for the non-dimensional states based FGL than for
the regular states based FGL. This observation verifies
the previous statements made regarding a considerable
reduction in the fuzzy laws when utilizing the non-
dimensional variables for training purposes. Obviously,
this fact will also save a great deal of time in coming up
with a more accurate FGL. Another effective utilization
of this approach can be realized with training around
several scenarios. This approach will subsequently
allow the resulting FGL to produce more accurate,
close-to-exact results in a wider flight spectrum. As
a demonstration, the non-dimensional fuzzy system is
considered for four terminal flight scenarios tabulated
below. Obviously, the goal is to generate an optimal

Table 1: Fore Starting Flight Scenarios

scenarios

h|l1]o7] 1 |07
Ug [ 1]07]07] 1

FGL utilizing a minimum number of flight scenarios for
training purposes. Figure 5 shows the typical behavior
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of the membership function with respect to the two
selected non-dimensional parameters £,7. Also a 3-
D graph of the resulting FGL output is plotted in
Figure 6. In addition , it is known that the fuzzy
training error decreases with the increasing number
of membership function toward a fixed constant in an
asymptotic fashion. This behavior is shown in Figure 7
for the system under study. Based on this observation,
nine membership functions are considered appropriate
for this lunar landing from the orbit problem. The
developed FGL is next applied to an out-of trained
flight scenario, namely for (Up, h) = (0.95,0.85). The
optimal fuzzy results of this case are compared with
corresponding exact solutions in Figure 8. Also as can
be seen in Table 2, there exists an excellent agreement
between the exact optimal control solution (OCS) and
fuzzy optimal control (FOC) solution for the terminal
parameters.

0.5

Open Loop Solution
- Closed Loop Solution With Noise
Open Loop Solution With Noise

Figure 9. Variation of the control variable (3) with non-
dimensional time using sinusoidal noise on the actuation
system

PERFORMANCE OF FGL IN NOISY
ENVIROMENTS

There are several sources of disturbances in the oper-
ating environment which could downgrade the perfor-
mance of our optimal FGL. To investigate robustness
potentials of the proposed FGL, the system at a
non-trained flight scenario considered in the previous
section (Up = 0.95,h = 0.85) is analyzed under the
influence of state feedback (measurement) and the
actuator noise. The actuator noise is simulated using
the following relations [21]:

n%(t) = e sin(wit) + €2 cos(wa t), (46)
ﬂn = 6(5777) + na(t)’

The noise parameters are chosen as w; = 200, ws =
215, ¢ = 0.03 and e = 0.035 and the problem is

wy,we >>1 (47)
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Table 2: Different scenarios

Scenario Inputs | Solution Method ty ‘ Uy ‘ h vy Ty
Uy=1 FOCT 2.21130 0 0 1.08¢ — 4 0.89260
h=1 ocs't 2.211364 0 0 0 0.89264
Uy =0.7 FocC 1.84280 0.001 —0.0005 3.2e — 5 0.84630
h=038 ocCs 1.842321 0 0 0 0.84627
Uy =09 FOC 2.0571 0.003 —0.0114 0.0141 0.6312
h=0.7 ocCs 2.05327 0 0 0 0.6281
t FOC: Fuzzy Optimal Control
" ocs: Optimal Control Solution
] 1F
e | 0.5k
'2 B ol
-0.5F
] Open Loop Selution
_: -1 | ry Closed Loop Solution With Noise
1 1 1
0 0.5 1 1.5

Figure 10. Variation of the trajectory (Z,7) with non-
dimensional time using sinusoidal noise on the actuation
system
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Figure 11. Variation of the trajectory (@,7) with non-
dimensional time using sinusoidal noise on the actuation
system

solved using the previously trained FGL. The lander
states trajectory and control history are depicted in
Figures 9, 10 and 11. One can easily verify from the
results that the modeled actuation noise has no effect
on the performance of FGL, while the system behaves
in an oscillatory fashion when it not closed with FGL.

T

Figure 12. Variation of the control variable (3) with non-
dimensional time using sinusoidal noise on the measurement
system
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Figure 13. Variation of the trajectory (Z,7) with non-
dimensional time using sinusoidal noise on the measurement
system

The state (measurement) noise modeled similar to the
control actuation noise is taken as:

n°(t) = €1 sin{wy t) + €2 cos(ws 1), (48)

Up=U+n°(t), Tn=0+n(t), (49)
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with the following set of parameters w; = 200, wy =
150, €; = 0.01 and €3 = 0.015. The results pertinent to
this case are shown in Figures 12, 13 and 14 for open
optimal and closed FGL solutions. Again it is observed
that the performance of the open-loop optimal control
is deteriorated as compared with the result of the closed
FGL. Furthermore, the closed optimal FGL is analyzed
with assumed asymmetric random noise on the control
actuation taken as:

n(t) = ,[RANDOM + €],

ﬂn = ﬂn + na(t)’

(50)
(51)

where RANDOM denotes a random number from a
normal distribution with 4 = 0, 0 = 1. The results of
this case are shown in Figures 15, 16 and 17, where the
noise parameters of relation (50) are taken as e; = 55,
€2 = 0. It is observed that the closed FGL performance

1.
"~ ., [ - Closed Loop Solution With Noise -—10.4
. u Open Loop Solution
W/ ]
0.75F . 0.2
3 L A 0
. \ i v
Uos|, \ A P,
N Y My T J-04
o2sF Mg, b
| WL 1|06
ok S y N 4 CTreekal 408
TRz, 1 1
0 0.5 1 1.5

Figure 14. Variation of the trajectory (@,%) with non-
dimensional time using sinusoidal noise on the measurement
system.
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Figure 15. Variation of the control variable (3) with
non-dimensional time using random noise on the actuation
system.
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Figure 16. Variation of the trajectory (Z,7) with non-
dimensional time using random noise on the actuation

system.
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Figure 17. Variation of the trajectory (@, %) with non-
dimensional time using random noise on the actuation
system.

is superior to the open-loop optimal solution and in
close agreement with the exact solution.

CONCLUSION

This study is focused on the determination of an
optimal feedback control strategy for the non-linear
problem of lunar lander mission. Due to inherent com-
plexities associated with its variational formulation, a
closed-loop time optimal solution is not feasible. How-
ever, the desired task is achieved using a fuzzy system
in an attempt to generate a closed-loop optimal fuzzy
guidance law (FGL). The fuzzy training process is per-
formed on a series of numerically determined open-loop
time optimal solutions that utilize non-dimensional
state variables as opposed to regular states. This
approach is proven to increase the accuracy as well as
the performance of the fuzzy training process. The
potential of the FGL is demonstrated by producing
optimal missions for the non-trained scenarios polluted
with stochastic actuator and process noise.
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