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Trajectory Optimization of a Multi Stage
Launch Vehicle Using Nonlinear Programming

S. Serpooshan!, A. Naghash®

This work is an example for application of nonlinear programming for the
problem of three- dimensional trajectory optimization of multi-stage launch
vehicles for geostationary orbit missions. The main objective is to minimize
fuel consumption or equivalently to mazimize the payload. The launch vehicle
studied here, Europa- II, consists of 5 thrust phases and 2 coast phases. The
major parameters of the coast arcs such as inclination, eccentricity and true
anomaly of attachment points are not prespecified and should be found in the
optimization problem. The fairing should be jettisoned whenever aerothermal
fluz falls below a certain value. A mazimum aerodynamic heating constraint
for the atmospheric part of the flight is also considered. The problem is solved
with the direct collocation method and results are compared with those in Ref.
1 (W.Duffek, G.C.Shaw), where an indirect multiple shooting method with an
inner loop for parameter optimization is used. Advantages of present work with
respect to methods used in specified references are then discussed.

NOMENCLATURE iT inclination of transfer orbit (T.0.)
A aerodynamic force Isp specific impulse
a major semi-axis of an orbit J performance index
ar major semi-axis of transfer orbit Jo flattening coefficient of the Earth
C defect constraints potential
Cp drag coefficient m mass
c aerodynamic heating index mp vehicle mass in primary orbit
Cs maximum permissible value for heat mr vehicle mass in transfer orbit
rate q dynamic pressure
e eccentricity Q kinetic energy of the inflow per unit
f state equation area
g Earth’s gravitational acceleration r distance from the Earth center
h height (geocentric altitude), r-Rpg R ro’gation matrix (rotation o about x
har apogee height of transfer orbit axis) ) ) .
hpr perigee height of transfer orbit Rg e.quatorlal r.adl}ls 0 .the Earth
hy time step size for discretization t tlm? OI_A beg.lnnlng time
: inclination ta,3.4 beginning time of stages 2, 3 or 4
1o inclination of coast orbit (C.O.) te beginning time of coast phase
ty final time or time of burnout
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V velocity

Var vehicle velocity at apogee of transfer
orbit

Vap velocity required at apogee of primary
orbit

o angle of attack

8 side slip angle

v flight path angle

o geocentric latitude angle

or launching point latitude

Aa perturbation in major semi-axis

Ae perturbation in eccentricity

At phase duration

AV velocity increment

€ thrust direction angle, horizontal
(Figure 2)

v true anomaly

6 longitude angle with respect to the
launching meridian

04 6 at the beginning of the 4’ stage

B, geographical longitude

LE the gravitation number of the Earth

o thrust direction angle, vertical
(Figure 2)

X azimuth angle (clockwise from the
North)

Xo launching azimuth angle

X6 optimal value for launching azimuth

WEg angular velocity of the Earth

Subscripts

C coast phase orbit (first coast arc)

b body coordinate system (vehicle-fixed)

f due to final time

G geostationary orbit

h local horizontal coordinate system

i inertial coordinate system

1.9 index of state equations

P primary orbit

T transfer orbit

w velocity (wind) coordinate system

Superscripts

k time index

T,Y, 2 force components in x, y or z direction

INTRODUCTION
The present work is an investigation on the problem
of optimizing the ascent trajectory of a 4-stage launch
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vehicle including operational constraints. The launch
vehicle under consideration, Europa-II, was developed
and constructed by European Launcher Development
Organization (ELDO) for the purpose of bringing
communication satellites into the Geostationary Earth
Orbit (GEO).

The launch vehicle performance, which is usually
the percentage of the total mass that can be used as
payload, depends first on staging mass ratios and then
on how to guide the vehicle to minimize fuel consump-
tion or, equivalently, to attain maximum payload in the
desired orbit. Here, the performance index is defined as
delivered mass into a target orbit. This mass is made
up of a satellite and a residual quantity of fuel that can
be used to maintain the satellite in that orbit (about 4
kg/year). The target orbit can be chosen as a primary
orbit that is attached to the geostationary one. So, the
main objective of this work is to maximize the final
mass in the primary orbit (P.O.) without any technical
change of the vehicle and with all given constraints.

The ascent trajectory consists of 5 thrust phases
and 2 coast phases. The first coast phase is next to
the third stage, and the other, called transfer orbit,
is followed by the fourth stage. Figure 1 shows the
plan of the trajectory. The thrust propelled phases are
shown by numbers 1 to 5, and the trajectory path is
shown in dark. As it is shown, attachment point to the
transfer orbit (i.e. burnout of stage 4) is not necessarily
at perigee point.

The vehicle is launched from Kourou in French
Guiana space center. This site offers an equatorial lati-
tude (Table 3) to maximize launch velocities and a wide
azimuth of over ocean launch trajectories preventing
overfly of population centers. The first three stages
lead the vehicle into the first coast phase orbit (C.O.)
where it follows a free flight as far as the equator. The
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Figure 1. The Schematic Plan of Trajectory
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Table 1. Nominal mass-time balance of the vehicle

11

jettisoned

Phase t(s) At(s) Mototal | Megructure m gy, et {kg) el (kg/s) Isp(s) Thrust(kN)
(ke) (ke)
0 0 10 112099.0 - 8402.9 5401641 247.779 1334.315
1 10 150.9772 106607.36| 6175.3 82011.3 Isp = f(h) T = f(h)
160.9772 o
2a 1 2.9745 102.8490 17520.8 1330 (fairing) 9853.6 95.8065 280.889 263.880
2b t.=Optimal f(t.) 2409.1
3 266.8007 354.8456 4928.1 0 2773.1 + 43.7 7.9381 300.230 23.370
+ 2.6014
C.0. | 624.2477 Atc=Free 2111.3 937 - - 0
4 |ta=t3+Atc 45 1174.3 101.9 685.4 15.2311 275.498 41.147
T.O. ty + 45 Free 387.0 - - - 0
5 Impulse-Like 387.0 f(AVs) = Min. 302.121

Xb Vehicle’s
forward axis

@) Local horizontal plane  Xp

Figure 2. Main Coordinate Systems and Angles

47 stage then shoots it into the transfer orbit (T.O.)
which is the second free flight phase, transfering the
vehicle from its low altitudes (usually below 500 km)
to the apogee height of primary orbit (37000 km). At
the end of this phase, i.e. in the apogee area of the
transfer orbit, the apogee engine shoots the vehicle
into the primary orbit. This is called the fifth thrust
phase. The apogee system eliminates the inclination
and eccentricity of the transfer orbit, and corrects the
satellite positions above the equator. As is shown in
Figure 1, the primary orbit is attached to the transfer
orbit at its apogee, and attains the GEO height at its
perigee with zero inclination.

THE LAUNCH VEHICLE SPECIFICATIONS
EUROQPA-II space vehicle specifications are described
here. This vehicle is regarded as a point-mass. The
control parameters to be found as optimal are thrust
direction angles o, € defined in the velocity axis system.
As shown in Figure 2, the thrust vector lies along
the longitudinal axis of the vehicle. Therefore, control
angles are the same as the angle of attack and side-slip
(wind effects are not taken into consideration). The
main events and nominal properties of the stages are
listed in Table 1. There are small delay times between
the burnout of each stage and the ignition of the next
stage (2.9745 sec. alter stage 1 and 2.6014 sec. after
stage 3), which should be taken into consideration.

During the first stage, the specific impulse of
engines depends on the flight height due to variation
of the back pressure at different altitudes. The flight
of the first stage proceeds along an Earth-fixed great
plane, which passes through the launching point. The
reserve propellant of third stage (43.7 kg), which serves
to correct the expected dispersions of the trajectory
and permit a tolerance in the payload is assumed to be
consumed.

Control and guidance of the vehicle is applied
through an internal guidance system, which consists of
an inertial platform, a guidance and control computer,
and a thrust direction setting and adjusting system.
The guidance computer uses the prespecified guidance
law and measured values of the inertial platform to
produce a closed-loop control system that makes it pos-
sible to implement arbitrary attitude angle programs.
In the first stage, the vehicle uses gravity turn guidance
pitch program to minimize aerodynamic heat loads
(as it causes a zero angle of attack trajectory). All
engines have a constant fuel mass flow rate, and can
be ignited only once. For the purpose of calculating
the specified performance index, it can be assumed
that the apogee engine which is infact the fifth stage,
provides an impulse-like thrust at the apogee point of
the transfer orbit.

The payload is protected from high temperatures
by the sheathing located in the head of the wvehicle
called payload fairing. This fairing is jettisoned at an
optimal time during the 2"? stage.

CONSTRAINTS
Aerodynamic Heating
The stagnation point heat rate is a measure for the
amount of energy that the ambient medium will dissi-
pate to the vehicle at any unit of time. From Ref. (7),
it is given by:

. 1
Q=CpV™ = 3pV? 1
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where the substituted values for parameters (C=1/2,
n=1, and m=3) are for free stream enthalpy assump-
tions. The large amount of aerodynamic heating
produced in the atmospheric part of the ascent flight,
causes a high temperature rise in the outer surfaces and
critical points of the vehicle. It is too difficult to predict
the generated temperature distribution and variable
temperature stresses in the structure of the vehicle. So,
aerodynamic heating is usually taken into account by
the help of other parameters, e.g. dynamic pressure,
(see [3]), and are easy to calculate. In the present work,
the constraint due to aerodynamic heating is defined as
below:

Q(t) = /0 Odt < Quras (2)

i
1
/0 oVt < Gy (2b)

For the current vehicle, the maximum permissible
value of the constant C; (for trajectories with a zero
angle of attack) is given as 140 kJ/cm? [1]. This
constant is referred to as the heating index. Most
of this energy will be radiated into the ambient,
only a small fraction is actually conducted through
the insulation. To each value of the heating index
C1, there correspond particular temperature rises at
critical points of the vehicle structure, which must not
exceed certain limits. According to the calculations
made by ELDO [1], the following correlation exists
between the heating index and the temperature rise
of the critical points: Another constraint due to
the aerodynamic heating is the maximum heat rate.
The fairing should be jettisoned during the 2"¢ stage

Table 2. Effect of Heating Index on Temperature

C1 (kJ/em?) 130 | 140 | 160 | 180
Temperature rise (°C) | 213 | 232 | 269 | 305

Table 3. Geographical Locations

6, deg 04, deg h, m
+5.2366 (N) -52.7753 (W) 0.0
-4.191 (S) +15.250 (E) +40.0

Launch site (Kourou)

Brazzaville station

fc Stage 1 Stage2a 2b Stage 3 Coast Phase
01 2% 4 3 Co 4
- LI*R / F=-———
(Table 4) Grids
(a)

Stage 4

T.O.
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whenever the aerothermal flux (heat rate) falls below a
certain value (Cs), and the heat rate should not exceed
this value afterwards:

1

§pV3:C'2, t=t, (3a)
1 3

5PV b2t (3b)

Here, the permissible value of Cy is 0.1 W/cm? [1].
If the fairing separates soon, the remaining portion of
the trajectory should be such that the heat rate is kept
below a specific value, which acts as a new limitation
that decreases the performance. On the other hand, if
this separation occurs too late, the vehicle should carry
the weight of sheathing for a long time, which again
decreases the performance. Thus, there is an optimal
separation time (t,) that should be found. Because
the air density is too low at altitudes higher than 150
km, Eq. (3b) may be stated in other words: The
vehicle must not dip below the specified height when
the fairing has been jettisoned. This latter condition
is called “minimum dip-in height” and is used in [1].
However, because this condition is not always true and
depends on the velocity, Eq. (3b) is preferred and used
here.

Launching Azimuth Limitation

Due to safety considerations, the trajectory of the
launch vehicle in the first stage should occurr within
a great plane that passes from the launching point
and forms an angle of 91.6° with the local North there
(C.W. direction) i.e.

X)) = Xo = 91.6°, te¢ [O,tfl] 4

EQUATIONS OF MOTION
The launch vehicle is modeled as a 3DOF point-mass
model. From [4], the state equations of motion in the

-y 3
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-
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(b)

Figure 3. (a)Discretization, (b)Defects
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velocity coordinate system are:

0 =V, sinx/ cosd (5a)
b=V, cosx (5b)
7= Vsiny (5¢)

V =ugwg(cosésiny —sin é cosycos x) — gsin~y

+ (T'/m)cosocose + AL /m (5d)
x = Vi sin ytané + 2wg(sin é — cos x cos b tan=y)

+ [ugsin xsinéd — (T'/m) cososine

— AL fm]/(V cos7) (5e)
4=V, + 2wgsinx cosd

+ (ugwe/V)(cosé cos v + sin é sin vy cos x)

—[gcosy + (T/m)sino + A7 /m]/V (51)
where A, terms are components of aerodynamic forces

(described in the next section) in the velocity axis
system and V, and ug are defined as:

V., = (V/r).cosy (6)

UEg = Twg CoS 6. (7)

The thrust is given by:
T = g.ISP.mFuel. (8)

All fuel mass flow rates and specific impulses (except
for the first stage) are constant values as given in Table
1. The height dependency of the specific impulse in the
first stage is given by:

ISP(l) = ki — ky.exp(—ks.h). (9)

As the trajectories under consideration lie in the
vicinity of the equator plane (]6] < 5.5°), for geometri-
cal purposes such as geometric height and geographic
latitude, the Earth is regarded as a sphere. However,
the polar flattening of the Earth is taken into account
for gravity:

g(r) = (ne/r*)[1 + (3/2)J2(Rp /r)’]. (10)

AERODYNAMIC AND ATMOSPHERIC
DATA
The aerodynamic forces exist only in the atmospheric
part of the ascent i.e. at the first stage. The roll angle
always remains zero during the flight in the Earth-fixed

Table 4. Coeflicients of Eq.(9)

ki(s) | ka(s) | ks(s)
284.359 | 36.58 | 1.44E-4
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Figure 4. Ascent to transfer orbit (Free Attachment, B)
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Figure 5. Time histories of altitudes
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Figure 6. Time histories of velocities

great plane of the first stage. These forces depend on
the Mach number, angle of attack and the side-slip
angle. The aerodynamic coefficients are given in the
tabular form in [1]. Although, approximations in the
form of exponential and polynomial functions are given
in [1], the cubic-spline method is used here.

The atmospheric data such as air density and



14

sound speed are approximated by appropriate ana-
lytical functions of the U.S. standard atmosphere [5].
Wind effects are not considered in the mathematical
model.

PROBLEM STATEMENT
This section formulates the problem. State and control
vectors are defined as:

X =00,67V,x,7Qm" (11)
U=1o¢€" (12)
Differential equations of states are given by Eqgs. (5a)
to (5f), (1) and (13):

M= — 1. (13)

The mass has jumps at the stages separation and also
at the jettisoning of the fairing.

The right hand boundary of the optimization
problem is at the burnout of the 4" stage i.e. when
the vehicle enters the transfer orbit. To specify the
necessary conditions for T.O. entrance, it is necessary
to find the inertial values of V, x and v from the states
in the velocity coordinate system which are relative to
the Earth. The inertial parameters are given by:
V2 =V?+auf +2upVy (14a)
siny; = (Vy +ug)/(V?cos® vy +ug + QuEVX)l/2

(14b)

siny; = Vsiny/V; (14¢)
where ug is defined by Eq. (7) and V, is defined as:
Vy =V cosysin x. (15)

Performance Index

As already stated, it is interesting to maximize the
vehicle mass in the primary orbit. Transferring this
into a minimization problem yields the cost function
as:

J= —mp/mref, (16)

Here, m,; is a constant to scale the J. Since the 5™
thrust phase in the apogee area of T.0. is assumed to
be impulse-like, we can write:

mp = mr.exp(—AVs/(g.Isps)). (17

where AVj is the velocity increment required for entry
into the primary orbit and is found from:

AV5 = |‘7AP_‘7AT| = \/VXT + Vjp - QVATVAP COS(iT)
(18)
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During the flight in transfer orbit, the potential
by non-spherical Earth i.e. effect of Jo term in Earth
gravity disturbs the keplerian elements of the orbit.
The parameters a, e of T.O. (and therefore of P.O.) are
corrected at the apogee point by simplified equations
of gravitational perturbations given by Kozai [6]. For
the flight from the perigee to the apogee we can write

[1]:

0—m
Aa = Jo(Ry/a)[(1+€)™* — (1 —e)77] (19a)
Ae = 1/2.(Ad Ja).(1)e —¢) (19h)

The change in other parameters such as w and i are not
necessary. Here, these corrections reduce error in the
true value of h a7 from about 0.5% to nearly 0.005%.

For any given trajectory, the transfer orbit pa-
rameters are obtainable from the final states of the 4th
stage (Egs. 20). Consequently, V4, i7, and therefore
J can be calculated. Eqs. (17, 18) mean that to have
the maximum mass in the primary orbit, we desire to
have a trajectory with the best combination of:

o Maximum mass in T.O. (i.e. minimum fuel con-
sumption up to a burnout of the 4" stage)

e Maximum perigee height for T.O. (to increase V 47)

e Minimum inclination for T.O.

Initial Conditions

The control during the first stage is the gravity turn
program and so the thrust vector is parallel to the
velocity vector (i.e. zero thrust angles). After the lift-
off, the vehicle is vertically flown for 10 s to leave the
launch site. The vehicle then pitches slowly to differ
from the vertical state. Gravity turn trajectories of
a given launching vehicle belong to a family of ascent
trajectories that all start from the vertical flight (v =
90°) and at a subsequent point of time t = tg has a
specific flight path angle v(t¢). At t = tg, there is only
one and only one value of v(t¢) for each trajectory in
the family. At this moment of time, the flight path
angle determines the further trajectory of the vehicle
and so v(t¢) acts as a boundary condition to specify
the trajectory. In the case of Europa-II, it is useful to
choose:

tg =tg+20s, (20)

Therefore, the only parameter to be optimized at the
first stage can be chosen as:

b = ¢(tc) = 90° —y(ta). (21)

As described in [1], it is possible to determine the
family of trajectories for the carrier as a function of ¢¢
in the time interval [to, t@]. So, the left hand boundary
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Table 5. Initial Conditions at t=tg

Oo{deg) | 6o{deg) ro{m) Vo(m/s)

xo(deg)

yo(deg) | Qo(J/cm?) mg(kg)

0 5.2366 | Rp+512.84 | Eq.(22)

91.6 90°-¢¢ 44.7186 101115.718

for integration of state equations is t¢, while the initial
conditions are dependent on the parameter ¢c. The
range of interest for ¢¢ is 0.1° to 1.5°. Because of the
short period of the motion up to tg, it is expected that
most initial conditions have a mean value that does not
change for different values of ¢¢. In fact, calculations
show that this is true except for V (and of curse for 7).
Initial conditions are listed in Table(4). The velocity
can be very well approximated by:

V((b(;) =by+ b2¢%; + b4¢é~ + bﬁ(bg
oG : (deg),V : (m/s).

(22)

Final Conditions
The necessary conditions for entry to the transfer orbit
are:

V2 = p(2/r = 1/ar) = P = 1/ar = 2/r =V /p

(23a)
rar =ar(l+er) = Po=er=Pirar —1 (23b)
r=ar(l—e3)/(1+ercosvr) —

Py=cosvr = [(rar/r)(1 — P) — 1]/ P (23¢)
tany; = (ersinvr)/(1+er cosvr) —
1 —P] =tan®v(1/ P2 + P3)* (23d)

Since the perigee of the transfer orbit should be in the
equatorial plane, another condition is required:

—sinvr.sinir = sind
’ ! } — (1=P%)(1—cos® §sin” y;) = sin® 6

cos i = cos §sin X

(23e)

In these equations, Py, P2 and P3 are new parameters
to define transfer orbit entrance conditions efficiently

Table 6. Coefficients of Eq.(22)

in the nonlinear programming (NLP) representation of
the problem. It is a good idea to use some auxiliary
parameters to break down the relations between a set
ol equations (conditions) to simplify the calculation
of derivatives. These parameters are appropriately
bounded for better convergence.

In the case of attachment at perigee point, these
conditions are simplified by putting v=0. It is clear
that this leads to 6=~ =0.

Other Conditions

During the ascent, internal conditions specified by Eqs.
(2b), (3a) and path constraints specified by Eqgs. (3b),
(4) should also be satisfied by the vehicle.

SOLUTION
This control and parameter optimization problem is
solved by means of a direct collocation method and
nonlinear programming. The internal NLP solver used
here is TPOPT [7], an interior point algorithm for
large-scale nonlinear optimization. The inequality con-
straints should be reformulated as equality constraints
by means of slack variables. Since some of the state
parameters such as r have very large values while others
such as attitude angles have very small values, states
and controls are all scaled to the similar intervals near
[-0.5,0.5] to improve solution efficiency and numerical
considerations described in [8]. Differential equations
of the motion are reformulated as equality constraints
(defects) and constitute the main part of the con-
straints. The first derivative information required by
the NLP solver is determined analytically except when
it was not possible or was too difficult. In those cases,
a 2" order finite difference method is used. Defect
equations for trapezoidal collocation scheme are:
Cr =X - IXEH2f + DR =00 (29
where subscripts are due to the states (and controls) at
each grid point and superscripts specify the grid indices
in the time domain. For detailed information about
direct collocation method see [8,11]. To determine

by(m/s) | by(m/s.deg?) | ba(m/sdea’) | be(m/s.deg®) sparsity pattern of the Jacobean matrix, derivatives of
55.931147 | 3.63618187E-3 | -0.98226111E-7 | 2.33384110E-7 state equations with respect to the states (91/0x) are
Table 7. Results for Different Conditions
Case Condition ¢J'(*G)(deg) t gals) te (s) ic (deg) i (deg) vr(deg) | h pr(km) mp(kg)
A Attach to Perigee of T.O. 1.1985 1508.1 234.6 4.995 3.570 0 324.6 237.149
B Free Attachment to T.O. 1.1985 1882.2 237.2 4.997 3.591 7.169 440.7 238.088
B’ Ref. [1], (Traj. # 21) 1.1984 1885.9 | 237.3 | 4.998 3.604 N/A 441.8 238.092
C Heating Index C; = 160 kJ/CIn2 1.2597 1890.1 255.2 4.994 3.593 7.418 454.6 238.201
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analytically determined and inserted into the program
code. The second derivatives (Hessian information) are
not treated in this manner and IPOPT is asked to use
its numerical approximation methods for them.

The problem is discretized as shown in Figure (3a)
up to burnout of the 4" stage. The defects which
link the values of states between each two grid points
through Eq. (24) are shown in Figure (3b). There are
special grid nodes at boundaries of stages to introduce
connect conditions between the different phases such
as the mass-drops and the effect of the short free flight
delay before ignition of a new stage. For a detailed
discussion on the formulation of multi-phase problems
see [9].

Since the control vector at the first stage is zero,
and the coast phase does not have any thrust (i.e.
no control is defined), the trajectory for these phases
can be integrated as an ODE initial value problem.
However, to reduce the sensitivity of the solution to
the initial guess and also to apply the path constraint
specified by Eq. (3b) during the free flight phase, these
parts of trajectory are also discretized (collocated). It
is also possible to add only a few grid points that are
related to each other from the ODE integration of state
equations as in multiple shooting methods [10,11].

Nevertheless, it is important to have a grid at the
end of the 4** stage such that T.0. entrance conditions
and their derivatives can be calculated efficiently.

The problem is discretized by 2000 grids for all
conditions with a proper concentration at each phase.
Due to the existence of aerodynamic forces, the first
stage contains a relatively high number of grids with
respect to its duration. Numerical solutions show that
this amount of nodes is completely enough, and results
do not change by increasing the nodes.

For an initial guess, a very simple linear approxi-
mation of states and zero (constant) values for controls
are completely enough as shown in Table 6. The
program converges quickly in all conditions (depending
on the condition, about 60 to 80 iterations).

Results and Discussion

Table 7 lists important parameters from the results for
3 different conditions. In case A, it is assumed that the
trajectory is attached to the T.O. at its perigee. As
already stated, the necessary final conditions are too
simple for this condition.

The optimal attachment point is determined in
case B. It can be seen from Table 7 that it is about 7 deg
after the perigee point and This condition improves the
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performance index (mp) by nearly 0.94 kg. It should
be noted that this amount of fuel saving increases the
life-time of the satellite for about 2.86 months. For
this condition, the results are compared with available
values from [1] specified by B’ which are obtained by an
indirect multiple shooting method with an inner loop
for parameter optimization. Conditions used for case
B’ from [1] are same as conditions used for case B of
this work.

The effect of increasing the heating index is
presented in C (see also Figs. 11, 12). TFor this
condition, a free attachment point is also assumed. The
gain in the payload is about 0.1 kg, which is not great
with respect to the temperature rise of critical points
of the vehicle, i.e, 37°C (Table 2). This shows that the
current heating index is high enough.

Figure 4 shows the ascent trajectory up to the
entry of the T.O. for case B (free attachment). The
ground projection and vertical projection of the trajec-
tory is also drawn. By comparing ground projections
of T.O. and C.O. with respect to the equatorial line
(latitude=0), it is possible to determine the inclination
angles of these orbits. From Table 7, it can be seen that
the optimal inclination of coast arcs are approximately
the same for different conditions (ic=5° and ir~3.6°).

Figure 5 shows the altitudes of trajectories vs the
relative longitude. All trajectories are inserted into the
C.0. before perigee point (y<0) and as such, have a
slight descent during the coast phase next to the third
stage. For case A, the final part of the trajectory is
turned to the horizontal direction as it attempts to
attach to the perigee of transfer orbit (i.e. v=0). This
change of velocity vector direction requires an amount
of energy, which why the performance is decreased in
this case.

The velocities are relatively near each other up to
the end of the third stage (Figure 6). The maximum
final velocity is V= 9662.0 m/s for case A and
the minimum is Vya= 95246 m/s for case C. It
should be noted that a small change in the wvehicle
velocity requires a relatively large amount of energy
(proportional by V?).

Figure 7 shows the azimuth angles. The launch
azimuth is limited to 91.6° in the first stage. It can
be seen that the thrust force in the 4! stage tries
to decrease the azimuth angle as much as possible
(i.e.x—90°). It changes the vehicle trajectory direction
from i¢ to ir. As already stated, the smaller values for
ir are desirable (Eq. 18). From Figure 8, the flight
path angle decreases rapidly from 90° to about 17° at
the end of the first stage. Since attachment to both

Table 8. Initial Guess for States and Controls
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C.0. and T.O. should occurr near the perigee points
of these orbits, the flight path angle is approximately
constant from the burnout of the 37 stage (i.e. entry
to C.0.) to the burnout of the 4" stage (i.e. entry to
the transfer orbit). The value of v at insertion to C.O.
is -0.35° for case A and -0.18° for case C. Its value at
its insertion into T.0O. is 0 for case A and 3.18° for case
C.

The optimal thrust direction angles (o, €) are
shown in Figs. 9 and 10. At the first stage, ¢ is 0
while € is required to have very small values to keep
the vehicle in the specified Earth-fixed plane.

CONCLUSION

This work shows that by using direct collocation
and non- linear programming method, we can find
good solution of this optimal control and parameter
optimization problem without the difficulties usually
arising from indirect methods such as definition of
switching structures for constrained arcs or generation
ol a good initial guess (specially for adjoint variables
which do not have any physical meaning) for conver-
gence. However, in the present work, the solution
converges using a very simple initial guess (zero for
controls and piecewise-linear or linear estimation for
states).

In addition, It is easy to force states and controls
to remain in prescribed bounds which may help the
program to avoid nonphysical values.

Another advantage of the present work over that
of [1] is the following: It can find optimal values
for all parameters, whereas the method of [1] could
not find the optimal value of ip (due to convergence
difficulties arising from the complicated coupling of
the parameters on the performance index), and so
the program should find optimal trajectories based
on different values of i for each condition, and then
choose the best values.
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