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Numerical Investigation of
Vortex Interaction in Pipe Flow

Prapat Suntivarakorn', Kazuo Matsuuchi’

To discover the nonlinear characteristics of pipe flow, we simulated the flow
as a sum of many vortex rings. As a first step, we investigated the nonlinear
interaction among a mazimum. of three vortex rings. The pipe wall was replaced
by many bound vortices. A free vortex ring moves right or left according to the
radius, and that of a particular radius keeps the inilial position. The energy
of a free vortex ring, except when it is close to a wall, coincides with that
without boundaries. Two vorter rings of equal radii always show a repeated
overtaking process. In the case of three vortex rings, they show o wide variety of
behavior. For certain combinations of radii and the axial spaces among them,
the motion, which seems to be very complez, is limited on a curved surface
in three-dimensional space whose axes correspond to the three radii. It was
found that this simplicity comes from the momentum conservation law, and
also that its direction depends on the energy contribution calculated from free
vortex rings. Our results elucidate the nonlinear behavior among many vortices.
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NOMENCLATURE L Length of pipe
English symbols P Total momentum
. . Py Momentum due to free vortex rings

a Radius of cross-section i

Core radi P, Momentum due to all bound vortices
3)0 D? e ra 1qu ) on pipe wall
5 Tlarrlleter ot pipe r Radial position
R otal energy r1 Distance of the nearest point on the
E Energy in a free space with no vortex ring from the point (z, r)

boundary . . ro Distance of the farthest point on the
Ey Energy obtained directly from free vortex ring from the point (z, r)
E ;ortex rlng:; 1t ) re Cut-off radius

w p;;eer%"yaﬁva uated from properties on R Radius of vortex ring

Fow Energy evaluated from all vortices on Ry Radius of the first vortex ring

pipe wall R, Radius of the second vortex ring
E(E?) Complete elliptic integral of the first Rs Radius of yhe third vortex ring

kind R, Critical radius for direction of motion
fir) Cut-off factor R. Equal radius of two vortex rings
K(k?) Complete elliptic integral of the second R, Radius of pipe

kind t Time
1. Graduate School of Engineering, University of Tsukuba, At Time step

Tsukuba, 305-8573, Japan. U Axial velocity component

2. Institute of Engineering Mechanics and Systems, Uni- ws Axial induced velocity from all bound

versity of Tsukuba, Tsukuba, 305-8573, Japan.

vortices on pipe wall
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Us Self-induced velocity

Uy Axial induced velocity from other
vortex

U Axial velocity component on pipe wall

U Total induced velocity

v Radial velocity component

Uy Radial induced velocity from other
vortex

X Position of vortex ring

z Axial position

21 Axial position of the first vortex ring

) Axial position of the second vortex
ring

Z Axial position of vortex ring

Az Axial interval

Az, Distance between the vortex ring of R,
and Rs

Azg Distance between the vortex ring of Rs
and Rg

Greek symbols

5 Circulation of bound vortex on pipe
wall

r Circulation of vortex ring

p Density

Subscripts

i The i-th of free vortex ring

j The j-th of bound vortex on pipe wall

INTRODUCTION

Since the famous experiment done by Reynolds in 1883,
many studies on pipe flow have been done: neverthe-
less, many unsloved problems remain. In particular,
the mechanism of transition from laminar to turbulent
flow is not yet clear although many investigations have
been made. For example, the necessary condition
for the generation of puff in pipe flow is still not
clear, despite the fact that the structure of pufl was
already clarified by many researchers. Matsuuchi et
al. [1] studied the mechanism of puff in the initial
stage of transition in pipe flow and found that the
energy spectrum of the turbulence has the same slope,
-3.3, in every condition for the generation of puff
when a periodic disturbance was introduced by a
loud speaker at a fixed Reynolds number of 2,200.
Suntivarakorn and Matsuuchi [2] did an experiment to
investigate the necessary condition for pufl generation
and confirmed that the energy spectrum of the tur-
bulence has the universal slope of —3.3. However, the
physical meaning of the universal slope of the energy
spectrum 1is still unknown. The main reason for this
is that strong nonlinearity takes place in the flow. To
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clarify the nonlinear characteristics, a discrete vortex
method is applied. Many axisymmetric vortex rings
are introduced to investigate vortex interaction. To
understand the flow characteristics, interactions among
many vortex rings have to be observed.

So far, most studies using the discrete vortex
method have been devoted to unsteady jet flow. Morfey
and Edwards [3] assumed an unsteady jet as a sum of
many vortex rings. Furthermore, Acton [4] attemped
to determine the numerical model for studying turbu-
lent jet flow. The model they used was axisymmetric,
invisicid and restricted to large-scale motions. By using
this model, many features observed in real jet flow on
the mixing region were demonstrated. This method
was also applied to the axisymmetric jet issuing from
a nozzle with a collar [5], and the flow around an
axisymmetrical wing [6].

Many interesting applications have been nsed to
observe several types of flows, but most of them were
done from a practical point of view [7-10]. Only a
few examples were applied to understand the unsteady
behavior of pipe flow. Fineman and Chase [11] were the
first to estimate numerically the energy of a vortex ring.
Laulicht et al. [12] did an experiment to investigate
the motion of a vortex ring in a tube. They found
that the convection speed of the ring decreases as the
diameter of the confining tube decreases. In recent
years, Suntivarakorn and Matsuuchi [13] studied the
mechanism of nonlinear interaction in pipe flow and
tried to explain the meaning of the universal slope, —
3.3. However, the problem of nonlinear characteristics
in pipe flow is still unsolved.

Investigation of vortex interaction can lead us to
an understanding of the nonlinear characteristics in
pipe flow. The discrete vortex method is then applied.
The statistical properties of velocity fluctuations, i.e.,
mean velocity and energy spectrum are estimated using
this method. In particular, the energy spectrum
can help us understand the mechanism of turbulence
structure because it indicates the distribution of energy
over different length scales.

The objective of this study was thus to under-
stand the structure of pipe flow by considering it as
a sum of many vortex rings. To clarify the unsteady
features of pipe flow, the investigation of vortex inter-
actions is important. As a first step, we investigated
the nonlinear interaction among a maximum of three
vortex rings and the interaction among vortex rings of
equal circulation. Momentum and energy conservation
in the present vortex ring system are also discussed to
give a better understanding of the flow structure.

It was expected that the results would give a
clear insight into the nonlinear behavior among many
vortices in pipe flow. In a further study, many free
vortex rings will be introduced in pipe flow which will
imitate the disturbances in the laboratory experiment.
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The flow in pipe is simulated using vortices and sources,
and the velocity fluctuations and nonlinear vortex
interaction are investigated at various downstream dis-
tances. The analysis of the energy spectrum will help
us understand both the mechanism of the turbulence
structure and the physical meaning of the universal
slope, —3.3, in the spectrum.

METHOD OF CALCULATION

We assumed that flow is axisymmetric and used co-
ordinates (z,r) in expressing the flow. The z-axis
coincides with the axis of the pipe and r denotes the
radial coordinate measured outwards from the axis.
The pipe wall is replaced by 120 bound vortices which
are placed at equal intervals (Az = 0.05). The
diameter of pipe D = 1 and its length . = 6. Free
vortex rings with a constant circulation, I' = 1, were
introduced in pipe to investigate their interaction (See
Figure 1). We calculated the velocity induced from the
free vortex rings and bound vortices on the pipe wall,
and determined the distribution of the circulation of
the bound vortices on the pipe wall in such a way that
the normal velocity component on the wall was zero.
In discrete vortex representations of flows, unrealistic
velocity fields are produced near the vortex elements.
In particular, this causes undesired problems when
two vortices come close together. The need for some
smoothing of the discrete-vortex velocity field was first
pointed out by Chorin and Bernard [14]; they proposed
a cut-off for the velocity induced by each vortex. Then,
Morfey and Edwards [3] introduced an appropriate cut-
off to avoid unrealistic vortex configurations. They
applied the cut-off, and showed that the momentum
and energy conservations are maintained during the
cut-off process. The same cut-off was also adopted
in the present stundy.we will return to this point
later. For later convenience, all quantities are made
non-dimensional in terms of mean velocity and pipe
diameter.

Induced Velocities
Self-Induced Velocity
The motion of a free vortex ring of small cross-section
is considered in an ideal fluid. The velocity of the ring
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normal to its plane, us, is given by
r S8R 1
s=——=(In— —-). 1
= r ) M

Here R is the radius of the ring, and a is the radius of
the cross-section [15, 16]. The radius a is governed by
the relation aZD/2 = a*R, where qaq is the core radius
of the ring. This core radius was chosen to be 0.05D
in view of the values of similar parameter employed by
previous investigators [17, 18].

Induced Velocity from Other Vortices

Associated with each vortex ring, there occurs a veloc-
ity field whose axial and radial components at a point
(z,r) are given by [19]

uy, = TR(RJ —rG), (2)
vy, = 'R(2 — z,)G. (3)

Here I' is the circulation of the vortex ring and z, is
the axial position of vortex ring. The quantities J and
G are defined by

_ 1 E(®)
iy ®)
G= —@ {21{(1&) - %E(iﬁ)} . (5)

Here K(k?), E(k*) are complete elliptic integrals of
the first and second kind, respectively. The parameter
k is defined as k2 = 1 — (r;/r2)?, where (ry,rs) are
the distances of the nearest and farthest points on the
vortex ring from the point (z.r) (see Figure 2).

Velocity Cut-off

An unwanted consequence of vortex interaction is the
appearance of unrealistic induced velocities when they
are close to each other. To ensure smoothing of the
velocity field, without the strong mutual repulsions
otherwise associated with close encounters, we followed
Morfey and Edwards [3] in applying a cut-off factor
expressed as

J(m) = {’”%/ e T ST (©)

1', 1 ZTC

120 bound voruces
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D=1

)

Equal interval Az = 0.05

Free vortex rings, I’ =1.0
|« L=6
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Figure 1. Vortex ring model.
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Figure 2. Sketch of velocity induced from a vortex ring.

to both the axial and radial indnced velocity compo-
nents, Eqs. (2) and (3). Here, r. is a cut-off radius
chosen as r. = 0.05 [19].

Movement of Vortex Rings

Fach vortex ring moves under the influence of all the
other rings, and the subsequent position of each ring is
calculated from the total induced velocity, U(t). This
velocity is the sum of the self-induced velocity (Eq. (1)),
and the total induced velocities by all other vortices
calculated from Eqgs. (2) and (3). The new position of
each vortex ring is given approximately by

SU() — Ut — At)

X(t+ A =X(1)+ 5

CAt (7)

where X (t) is the position of the vortex ring at time
t, and At is the time step for computation, which is
chosen as At = 0.001. Eq. (7) is an explicit formula for
X(t+ At) in terms of U(t) and U(¢t — At) and it has a
local truncation error proportional to (At)3.

Momentum of the Vortex Ring System

We restricted our attention to an axisymmetric flow
field in an inviscid fluid of constant density. The i-th
vortex ring has radius R; and circulation I';. The flow
field resulting from free vortex rings and bound vortices
has a total momentum P, given by

P=nY TR} +7Y R, (8)

where the summation extends over all the vortex rings,
R, is the radius of the pipe, and v; (j = 1,2, 3,...,120)
is the distribution of circulation of bound vortices on
the pipe wall. This momentum corresponds to the z-
component of the real momentum. The total momen-
tum in pipe flow consists of two kinds of momentum
denoted in the first and second terms on the right-
hand side of Eq. (8). The former is the momentum
due to free vortex rings, Py [15], and the latter is the
momentum due to all the bound vortices on the pipe
wall, Py .

From a physical consideration, it is clear that the
pipe flow has momentum conservation. When the pipe
is long enough, vortex rings do not have any effects at
either end of the pipe, and hence there is no influence
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of pressure at the ends. Since there is no external force
and no axial pressure gradient on the pipe wall, the rate
of change of momentum, &P/Ot, must be zero. The
momentum P is expected to be equal to zero because
there was no initial impulsive force in the present
calculation. It is also expected that the momentum
P; and P, are independently conserved [13].

Energy of the Vortex Ring System
The total kinetic energy £ of the present vortex ring
system has two types of contributions as follows,

E=FE;+ E, (9)

where Iy is obtained directly from free vortex rings,
which is given by [15]

Ey=2x ZFiRi(RiUi — Ziv;) (10)

while F,, is the energy contribution evaluated from
the properties on the pipe wall. In the above, ¥
expresses the summation of all the free vortex rings and
Zi, Ui, v; are axial positions, axial and radial velocity
components of the ¢-th vortex ring, respectively.

Assuming that there is no flow at either end of
the pipe, we have for F,,

1 5
E, = 5/2%R;71/fydz + Eow (11)

where u,, is the axial velocity component on the pipe
wall. The integration is carried out over the whole
pipe length. The second term I, on the right-hand
side corresponds to the direct contribution from all the
vortices on the pipe wall. We calculated it by replacing
R; by R, and setting v; = 0 in Eq. (10).

RESULTS AND DISCUSSION
In this section, we investigate the vortex interaction
when a maximum of three vortex rings exist in the pipe.
We discuss the results of our calculations as three cases,
cases A, B, and C corresponding to one, two and three
vortex rings in the pipe.

Case A: One Vortex Ring

We assume that the circulation of clockwise-rotating
vortices is mnegative and that of countericlockwise-
rotating ones is positive. It is easy to see that circu-
lation of the bound vortices on the pipe wall becomes
negative for positive circulation of a free vortex ring.
A free vortex ring has two types of induced velocities.
One is a self-induced velocity, u,, and the other one
is the induced velocity from all bound vortices on the
pipe wall, up. A Vortex ring of small radius moves
right because ws > |up|. The vortex ring of a particular
radius keeps the initial position, i.e, the vortex ring
does not move when us = |up|. This particular radius,
R, is determined as 0.38 from the relation between two
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functions u, and |us| of radius R [13]. A Vortex ring
moves left when the radius is larger than R,.

The obtained result shows that the velocity of a
vortex ring moving in the forward direction decreases as
its radius increases. This is similar to the experimental
result of Laulicht et al. [12], who stated that the
velocity of a vortex ring decreases with decreasing
the diameter of the tube. Although Laulicht et al.
investigated the velocity of a vortex ring by varying the
diameter of the tube, their result is in good agreement
with that of our calculated result by changing the
radius of a vortex ring. We estimated the total energy
F of the present vortex ring system in pipe flow and the
energy Ein a free space with no boundary. Both E and
E can be calcnlated from Eq. (9), but the contribntion
for E,, must be zero for E . Figure 3 illustrates the
total energy F together with E as functions of radius
R. The energy Iy and E,, are also shown separately
in the same figure. When the radius of a vortex ring
is smaller than 0.15, the total energy in pipe is only
due to a free vortex ring (E = Ey), because there is no
influence of vortices on the pipe wall (E,, = 0). The
vortex ring moves like the one in a free space without a
boundary, since E; is equal to E . Tt should be noted
that the total energy F must be the sum of the energy
Ey and E,,. When the radius of the vortex ring is
larger than 0.15, E; tends to be in negative and I,
increases from zero. Hence, F as a summation of Fy
and I, is always positive and agrees with E. However,
our calcnlation gives an incorrect estimate for F when
R > 0.45 because the vortex ring is close to the wall,
when the distance between the free vortex ring and
the wall is smaller than the cut-off radius r. (= 0.05),
it gives an incorrect energy value. More noteworthy
is that the vortex ring of a particular radius, which
is at rest, is in agreement with the case when Ej is
just zero. When Ey is positive, a vortex ring has a
small radius and moves forwards. On the other hand,
a vortex ring with large radius moves backwards for
E¢ < 0. The direction of motion depends on the sign
of ;. However, the total energy E is always positive
whether the vortex ring moves forwards or backwards.

23

oozt E
Lﬁm- LN

1.

0aF
E
05k ]
Al el
R=R

A5t \c‘

B 0 0z 05 03 085 04 06 05
B

Figure 3. The energy of the vortex ring system.

13

Case B:Two Vortex Rings

When two vortex rings of equal radii R, are located
at z; = 2.95 and z; = 3.0, the direction of motion
depends on their radii like case A. There are forward
and backward motions. The rings always reveal an
overtaking process. For example, when R. is small,
the axial induced velocity of the vortex ring at the rear
is increased due to the front ring, while the front one
is decreased by the induced velocity due to the ring
behind it, and thus the ring passes through the front
one. The overtaking process is repeated continously
and both of the rings move forwards. When R, =
0.3775, they also exhibit an overtaking process, but
each ring can move only a limited distance. Figure 4
shows the trajectory of motion of two vortex rings.
The abscissa and ordinate denote the position of the
rear vortex ring, z;, and that of the front one, 2z,
respectively. At ¢ = 0, the front vortex ring begins
to move backwards from the initial position (25 = 3.0)
and begins to turn back at zs = 2.95 to the original
position. The motion is repeated with time. On the
other hand, the vortex ring in the rear moves from
2z = 2.95 and vice versa. The trajectory illustrates a
closed orbit of the order (1) — (2) — (3) — (4) like
a figure 8. Thus, two vortex rings move around only
in a limited axial range whose length is 0.05. When
the radii are larger than 0.3775, an overtaking process
occurs as in the case of R, < 0.3775, but both rings
move backwards due to a strong velocity induced by
wall vortices because of their large radii.

In general, the overtaking process of vortex rings
can be seen from the ring smoke blowed from mouth
of a smoker or chimney of a steam boat. However, the
process is repeated only 2-3 times, and then the vortices
disappear due to the influence of viscosity [20]. This
is different from onr inviscid result, in which the over-
taking process was repeated continuously. Moreover,
in free space with no boundary, the vortex rings move
only in the forward direction [21], while the vortices
in our calculation moved both forward and backward
depending on their radii.
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Figure 4. The trajectory of two vortex rings when

Re = 0.3775.
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Case C: Three Vortex Rings

Three vortex rings of radii Ry, Rs and Rj3 are placed
from left to right in this order. The distance between
the vortex rings R; and R is denoted by Az, and that
between the vortex rings Rs and R3 is Azg. Varying
the radii and the distances, we have a wide variety
of interactions. For example, when R; = Ry = 04,
R; = 0.3 and Azp = Azg = 0.1, the motion has an
overtaking process continuosly with time in a complex
manner (see Figure 5). The circulation of three vortex
rings is assumed to be constant as I'; = I’ = 1. The
momentum resulting directly from the three vortex
rings, Py, is proportional to the squared radii of the
vortex rings. We calculated the momentum P for
0 <t <25, and obtained 0.41004=+3.882107° for Py /7.
This result means that the momentum P; is conserved
independently. The cut-off factor (see Eq. (6)) does not
break the momentum conservation [3]. In Fignre 6, we
draw the variation of their radii in three-dimensional
space (Ry, Rs, R3 ). The trajectory seems to be very
complex. To investigate this complicated structure,
we utilized a Poincaré map. TFor example, Figure 7
shows points (Rs, Rs3) where the tracjectory pierces
the plane Ry = 0.36. The points (R», R3) are denoted

L L
a AU “a ol
*

Figure 5. Movement of three vortex rings.

Figure 6. Motion of radii variation in three-dimensional
space.
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02 027 024 024 0Z8 04 042 0.4 044
(2

Figure 7. Momentum conservation of motion.

by the diamond symbol (¢). In Figure 7, the solid line
expresses the momentun conservation law, expressed as
Rs = \/0.41 —0.362 — R2. Tt is clear that the symbol
(¢) coincides completely with the curve. Therefore, we
conclude that three vortex rings move simply on the
curved surface following the momentum conservation
law.

Next, we estimated the energy using Egs. (9)-
(11). Figure 8 shows separately the variations of E,
Ey, and F,, as functions of time. Two contributions
Ey and E,, vary nonperiodically with time. The total
energy F shows small fluctuations in some intervals of
time due to the vortex interaction when the vortices
come close together. The cut-off factor expressed in
Eq. (6) breaks the energy conservation law. The energy
is, however, approximately constant except for the
intervals. From the discussion in Case A, it is plausible
that the direction of motion is backward because Fy
is negative. When Azy; and Azp are larger than
the above example, three vortex rings behave in a
somewhat simpler manner like cases A and B.

CONCLUSION
We summarise our results as follows :

1. The motion of a vortex ring depends on its radius.
We can divide the directions of motion into forward

u E
T W
= E-F'f-r
- L L
L] u3a - - |
b3

Figure 8. Conservation of energy.
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and backward motions. The sign of F¢ indicates
the direction of motion. Positive and negative signs
correspond to forward and backward directions,
respectively.

2. The motion of two vortex rings of equal radii always
shows an overtaking process and has two directions
of motion similar to the results of a vortex ring.

3. According to the radii and the axial spaces among
three vortex rings, they exhibit a wide variety of
behaviors which are simple or complex.

4. Although the cut-off factor is invoked, it does not
alter momentum conservation. On the other hand,
in the case of energy, some small fluctuations occur
in the total energy, but the energy conservation law
is found to be applicable for energy estimation.
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